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The control of ambient air quality in the United States has been a major pub-
lic health success since the passing of the Clean Air Act, with particulate
matter (PM) reductions resulting in an estimated 160 000 premature deaths
prevented in 2010 alone. Currently, public policy is oriented around lower-
ing the levels of individual pollutants and this focus has driven the nature of
much epidemiological research. Recently, attention has been given to viewing
air pollution as a complex mixture and to developing a multi-pollutant approach
to controlling ambient concentrations. We present a statistical approach for
estimating the health impacts of complex environmental mixtures using a
mixture-altering contrast, which is any comparison, intervention, policy, or nat-
ural experiment that changes a mixture’s composition. We combine the notion
of mixture-altering contrasts with sliced inverse regression, propensity score
matching, and principal stratification to assess the health effects of different air
pollution chemical mixtures. We demonstrate the application of this approach
in an analysis of the health effects of wildfire PM air pollution in the Western US.

K E Y W O R D S

dimension reduction, mixtures, particulate matter

1 INTRODUCTION

The control of ambient air quality in the United States has been a major public health success since the passing of
the Clean Air Act, with particulate matter (PM) reductions resulting in an estimated 160 000 premature deaths pre-
vented in 2010 alone.1 Currently, public policy is oriented around lowering the levels of individual pollutants and this
focus has driven the nature of much epidemiological research. The individual pollutant framework made sense at a
time when the primary focus was lowering extreme levels seen in catastrophic episodes such as the London Fog2 or
Donora Pennsylvania.3 Recently, greater attention has been brought to viewing air pollution as a complex mixture and to
developing a multi-pollutant approach to controlling ambient concentrations.4

While advances in data collection have produced more detailed measurements of the complex air pollution mixture,
the statistical approaches used in traditional air pollution studies are not well-suited to studying the health effects of these
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mixtures. The traditional statistical approach to studying complex air pollution mixtures has been to select individual
components and adjust for the presence of other components. This approach greatly simplified modeling strategies and
allowed for the straightforward translation of research on health effects to interventions or policies: If pollutant X is
harmful, then we should reduce exposure to pollutant X. This inherent directionality induced by the one-dimensional
nature of the exposure (“lower” vs “higher”) leads to a clear next step.

Considering sets of pollutants as exposures introduces multi-dimensional measurements whose values do not lie on
an ordered line, but rather in an unordered high-dimensional space. The geometry of the multi-pollutant exposure space
removes the natural directionality of the single pollutant approach, breaking the simplicity that had previously connected
health effects research and potential interventions. A common way to circumvent this problem is to focus on one or a
few key pollutants and interpret health effects in the context of holding the concentrations of other pollutants constant.
However, such an approach is impractical because it may be impossible to design an intervention that modifies the mixture
in that exact manner.

One natural phenomenon that can significantly alter the composition of ambient air pollution is a wildfire.5 Previous
work on wildfires in the Western US has shown that wildfires generally increase the level of fine particulate matter air pol-
lution (PM2.5), defined as particles less than 2.5 𝜇m in aerodynamic diameter, and are harmful to population health.6,7 In
particular, Liu et al6 found that days with high intensity wildfire PM2.5, which they label as “smoke waves,” are associated
with a 7.2% (95% CI: 0.25%, 15%) increase in hospitalizations for respiratory diseases amongst elderly people enrolled in
the Medicare insurance system. Furthermore, it has been shown that the chemical composition of wildfire PM2.5 differs
substantially from the typical urban PM2.5 mixture and that the composition of wildfire PM2.5 depends in large part on
the vegetation of the local ecoregion.5

Given that previous work has identified wildfires as a phenomenon that can cause the composition of PM2.5 to change,
we saw this as an opportunity to directly study the health impacts of PM2.5 chemical composition in a real-world setting.
The goal of this article is to introduce and demonstrate a statistical method that addresses the challenges posed by studying
air pollution mixtures and overcomes the limitations of current approaches. In our method, we leverage natural changes
to mixtures that are induced by outside forces, such as wildfires, and connect the subsequent changes to the pollution
mixtures to population health outcomes. We then apply this approach a dataset of Medicare hospitalizations and wildfire
PM concentrations in the Western US.

2 METHODS

Estimating the health impacts of different mixtures of air pollutants is a challenging task given the number of com-
peting aspects that must be balanced. One must first be able to characterize the change in a mixture, which may be
high-dimensional, and then relate that change to a health outcome while controlling for potential confounders and
changes in the overall concentration of the pollutant. Finally, one must provide a reasonable interpretation for why the
mixture has changed in a given way and suggest next steps for mitigating any potential harm from particularly toxic
mixtures. The approach we describe in this section attempts to address all of these challenges in order to provide useful
insights into the health effects of PM air pollution mixtures.

Our overall goal is to develop evidence relating to the toxicity of certain air pollution chemical mixtures. In our appli-
cation (Section 4), we want to compare respiratory hospitalization rates on days with a high proportion of wildfire smoke
PM2.5 (“smoke wave” days) to hospitalization rates on days with more typical PM2.5. The approach that we have developed
for exploring the short-term health impacts of air pollution mixtures combines techniques from dimension reduction and
causal inference methodology:

1. We first apply propensity score matching to create a dataset where “smoke wave” days, that is, days with high levels
of wildfire PM2.5, are matched to non-smoke wave days.

2. We then apply sliced inverse regression (SIR) to identify a projection of the PM2.5 chemical constituents that best
characterizes the variation in PM2.5 chemical composition between smoke wave and non-smoke wave days.8,9

3. Finally, we make use of principal stratification10 to estimate the effect of changing the PM2.5 composition (as
summarized by the SIR projection) on respiratory hospitalizations.

Our methodology leverages the benefits obtained from dimension reduction methods but also produces interpretable
estimates of risk because of the presence of an external mixture-altering contrast.
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2.1 Matching

Let Zt be the binary indicator of a smoke wave day, where Zt = 1 indicates that day t is a smoke wave day and Zt = 0
indicates an otherwise normal day. For the propensity score matching, we model P(Zt = 1|wt) using a logistic regres-
sion where wt is a vector of potential confounding covariates such as temperature, season, or humidity. To execute the
matching algorithm and to create the matched dataset, we used the MatchIt package of Ho et al11 with the default nearest
neighbor matching option selecting four controls for each observation in the treatment group with replacement. Sensi-
tivity analysis did not indicate that the results would be substantially altered by varying the ratio of controls to treatment
from 1 to 4.

A key challenge to studying the effects of chemical composition is controlling for the overall level of the pollutant.
Because it is already known that higher levels of PM2.5 are associated with worse respiratory outcomes, we would naturally
expect higher respiratory hospitalizations associated with smoke waves due to the increase in PM2.5 levels.6 However, we
can use the matched dataset to identify days where the smoke wave is not predicted to change the overall level and make
our comparisons weighting more heavily those days.

If PMt(1) and PMt(0) are the potential outcomes for the overall level of PM2.5 on day t when there is and is not a
smoke wave, respectively, then we want to identify days where Δt = PMt(1) − PMt(0) < 𝜀 for some chosen small value
of 𝜀. The challenge of course is that for any given day t we only ever observe one of PMt(1) or PMt(0). Our approach
models the joint distribution of the PM2.5 potential outcomes as a bivariate Normal on the matched dataset with baseline
covariates vt and correlation coefficient 𝜔. With this formulation, we can predict the conditional mean of each potential
outcome as

E [PMt(1)|PMt(0), vt] = v′
t𝜉 + 𝜏 + 𝜔

𝜂1

𝜂0
(PMt(0) − v′

t𝜉),

E [PMt(0)|PMt(1), vt] = v′
t𝜉 + 𝜔

𝜂0

𝜂1
(PMt(1) − v′

t𝜉 − 𝜏),

where 𝜏 = E [PMt(1) − PMt(0)], 𝜂1 and 𝜂0 are the standard deviations of PMt(1) and PMt(0), respectively, and 𝜉 is a vector
of regression coefficients. The correlation parameter 𝜔 is not estimable from the data and so we choose a range of values
between 0 and 1 and examine the sensitivity of our results to the different values. The remaining unknown parameters
can be estimated from the observed sample from the marginal distributions of the potential outcomes.

2.1.1 Weighting

For each t now we have a pair values PMt(1) and PMt(0), one of which is observed and one of which is predicted. We then
develop a set of weights ut ∝ exp

(
− 1

2
(PMt(1) − PMt(0))2∕b

)
, where b is chosen to define when PMt(1) and PMt(0) are

thought to be “close.” The weights ut then allow us to downweight days where this a large change in PM2.5 level when esti-
mating the change in pollution mixture. Smaller values of b restrict the allowable difference between the PM2.5 potential
outcomes but may not allow for enough information to estimate the mixture change. Larger values of b allow for the
inclusion of more observations but have greater potential to confound the change in mixture with the change in overall
level.

2.2 Principal mixture direction

We use weighted SIR for binary outcomes8,9 to estimate the change in PM2.5 mixture between smoke wave and non-smoke
wave days. On each day t we have the concentrations of 28 chemical constituents of PM2.5. SIR gives us the projection of
the chemical constituent data that best explains the difference between the smoke wave and non-smoke wave days. We
call this projection the principal mixture direction as it shows how the PM2.5 mixture can change with the presence of
wildfires. Because SIR only uses information about the mean of the data, there is only one such projection (equivalent to
linear discriminant analysis in this case). However, the approach of framing the estimation of the mixture direction as an
SIR problem allows for straightforward extension to potential drivers of mixture change that have more than two levels.
We address this possible extension in Section 6.
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Let M be an n × p matrix where n represents the total number of days of observations in the matched dataset and p
is the number of chemical constituents of PM2.5 that we measure. Let z = (z1, … , zn) be an indicator vector where zt = 1
indicates a smoke wave day and zt = 0 indicates a non-smoke wave day. Finally, let U = diag(u1,u2, … ,un) be an n × n
diagonal matrix of weights where u1, … ,un are defined in Section 2.1.

First, we create the weighted chemical constituent matrix M̃ = U1∕2M and let ΣM be the covariance matrix of M̃.
Then the standardized constituent matrix is R = Σ−1∕2

M
(

M̃ − E
[
M̃
])

. Then we can estimate the first SIR direction as

𝜸 =
(

R′z
z′z

− R′(1 − z)
(1 − z)′(1 − z)

)
Σ−1∕2

M ,

that is, the group mean difference of the rows of R between smoke wave and non-smoke wave days. The vector 𝛾 is the
principal mixture direction and can be used to score each day’s PM2.5 mixture as being more “smoke-wave-like” or more
“non-smoke wave-like.” For an observation of a set of chemical constituents mt, this score can be computed for each day
t as xt = (mt − m)′𝜸, where m is the vector of means for each chemical constituent. We then refer to xt as the principal
mixture score. If xt is strongly positive, then the PM2.5 mixture on day t is more like a smoke wave. If it is strongly negative,
the PM2.5 mixture is more like a typical day (non-smoke wave).

2.3 Principal stratification

Let Yt(1) and Yt(0) represent the potential outcomes of a population health response on day t. In order to assess the
health impact of changes to an air pollution mixtures, we want to examine the outcomes Yt(1) and Yt(0) and their rela-
tionship with the potential outcomes of the principal mixtures score, which we will denote as xt(1) and xt(0). For our
application, Yt(1) and Yt(0) will represent the rate of respiratory hospitalizations on days with or without a smoke wave,
respectively, and the principal strata will be defined by the difference xt(1) − xt(0). We are interested in the log of the ratio
E [Yt(1)] ∕E [Yt(0)] (ie, the log-relative risk) within those principal strata.

Note that in Section 2.2, we showed how to estimate xt, which represents the observed principal mixture score for a
given day t. If day t was a smoke wave day, then we have zt = 1 and we observe the potential outcome xt = xt(1). If day t
was a non-smoke wave day, then we have zt = 0 and we observe the potential outcome xt = xt(0). In either case, we can
only observe one of the potential outcomes on any given day t and the task in this section is to build a model for estimating
the unobserved potential outcome on day t. Briefly, our approach is to consider the unobserved potential outcome as
missing data, build a model for the joint distribution of both potential outcomes (the “complete data”), and then infer the
unobserved potential outcome given the observed outcome.

The health outcome is modeled with a Poisson distribution, with,

Yt(zt)|xt(1), xt(0) ∼ Poisson(𝜇t(zt)),
log𝜇t(zt) = r′t𝛼 + 𝛿zt + ztf (xt(1) − xt(0)), (1)

where r is a vector of baseline covariates, zt is the smoke wave indicator for day t, 𝛼 is a vector of regression coefficients, and
f is a smooth function of the difference in principal mixtures score, xt(1) − xt(0). Our focus is on estimating the function f
to see what we can learn about the relationship between a change in principal mixture score and risk of hospitalization.

The potential outcomes for the principal mixture scores xt(1) and xt(0) are modeled as bivariate Normal,(
xt(1)
xt(0)

)
∼ 

((
h′

t𝜃 + 𝜁

h′
t𝜃

)
,

(
𝜎2

1 𝜌𝜎1𝜎0

𝜌𝜎1𝜎0 𝜎2
0

))
, (2)

where h is a vector of covariates for predicting xt(1), xt(0), 𝜃 is a vector of coefficients, and 𝜁 is the additive effect of smoke
waves on the mixture score. The covariates in h are not PM2.5 chemical constituents, but rather are other factors that may
be useful for predicting the mixture score (eg, weather or seasonal indicators). Note that on every day t we will observe
one of xt(1) or xt(0) and so our primary task is to infer the value of the unobserved potential outcome. Given a value for 𝜌
and a vector of covariates h, along with estimates of 𝜃 and 𝜁 , we can infer the value of either xt(1) or xt(0) using the full
conditional distributions.
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Our goal is to estimate the quantity

log
E [Yt(1)|xt(1), xt(0)]
E [Yt(0)|xt(1), xt(0)]

= 𝛿 + f (xt(1) − xt(0)). (3)

Here, 𝛿 is the change in risk when the change in the mixture score is zero and could potentially be interpreted as a
direct effect of the smoke wave. The function f tells us the log change in hospitalization risk associated with a change in the
difference of potential mixture scores. While the shape of this function is potentially of interest, it does not specifically have
a causal interpretation. Rather, we may be more interested in specific values of the log-relative risk within strata defined
by the potential outcome difference xt(1) − xt(0). In order to assess the uncertainty of our estimate of this quantity, we use
the bootstrap procedure. Within the matched dataset, observations in the smoke wave and non-smoke wave groups are
resampled separately with replacement and we reimplement the principal stratification estimation procedure after each
resampling. We use 5000 bootstrap replications and compute 95% confidence intervals for our log-relative risk estimates
using the percentile method.

3 SIMULATION STUDY

We designed and conducted a simulation study to assess the ability of the approach described above to detect any relation-
ship between a change in chemical composition of a mixture (as measured by the mixture score) and a health outcome.
In particular, we focused on the method’s ability to estimate the function f in (3), which characterizes the relationship
between xt and Yt, under some model misspecification. For the purposes of the simulation study, we specified f as a lin-
ear function so that the relative risk of hospitalization is log E[Yt(1)|xt(1),xt(0)]

E[Yt(0)|xt(1),xt(0)] = 𝛿 + 𝛽(xt(1) − xt(0)) and the primary target
of inference is 𝛽. We will examine the bias, variance, and overall root mean squared error of our estimate of 𝛽.

We first simulated daily observations of the 28 PM2.5 chemical constituents for both smoke wave and non-smoke wave
days using a multivariate Normal distribution with covariance matrix equal to the empirical covariance matrix estimated
from the observed data. We specified the difference between the smoke wave and non-smoke wave days as a random
shift in the means of the 28 constituents. For the purpose of the simulation, we assumed the observations were already
“matched” and did not simulate values for any potential confounding variables. Because PM2.5 chemical constituent data
were simulated for both smoke wave and non-smoke wave potential outcomes, we subsequently simulated the principal
mixture scores xt(1) and xt(0) for both smoke wave and non-smoke wave days, respectively using a multivariate Normal
distribution, as in (2). Marginal variances of xt(1) and xt(0) were chosen to match what we observe in the dataset and we
specified the correlation 𝜌⋆ to vary from 0 to 0.8 across a series of simulation runs. With both potential outcomes xt(1)
and xt(0) simulated we could simulate the hospitalization data using the model in (1).

With the simulated potential outcomes data, we derived an “observed” dataset and applied our procedure. We first
estimated the principal mixture direction using SIR and then calculated principal mixture scores for each observation.
From there we applied principal stratification to estimate the linear relationship between the mixtures score and hospi-
talizations. For that aspect of the approach we specified a value for 𝜌 to produce an estimate 𝛽. We then compared 𝛽 to the
true 𝛽 used to simulate the hospitalization data and computed the absolute bias, standard deviation (SD), and root mean
squared error (RMSE).

The results of the simulation study are summarized in Figure 1A-C, which show the absolute bias, standard deviation,
and root mean squared error of 𝛽, respectively. On the x-axis of each figure is the true value of 𝜌⋆ used to simulate the
potential outcome data. Each of the different colors represents the model being applied using a specific value of 𝜌 ranging
from 0 to 0.8 and each circle represents the average over 1000 simulations.

From Figure 1, it is clear that specifying a value of 𝜌 equal to that used to simulate the data results in the small-
est bias, in general. However, certain values of 𝜌 can result in overall less bias, regardless of the true value of 𝜌⋆.
For example, specifying value of 𝜌 of 0.7 is almost uniformly better with respect to bias than specifying 𝜌 = 0.8. With
the SD and RMSE, there is very little variation across true values of 𝜌⋆. It seems clear from Figure 1B,C that spec-
ifying 𝜌 = 0 results in the smallest SD and overall RMSE. Although the bias in 𝛽 seems to vary somewhat with the
true value of 𝜌⋆, the overall RMSE is dominated by the variance of the estimator, which does not vary with 𝜌⋆.
Hence, the choice of 𝜌 that minimizes the overall RMSE is 𝜌 = 0. However, if one is more interested in minimizing
the overall absolute bias (across all values of 𝜌⋆) while sacrificing some variance, the optimal 𝜌 from the simulation
is 0.3.
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F I G U R E 1 Results from the simulation study on bias, variance (SD), and root mean squared error of the estimate of 𝛽

4 APPLICATION: WILDFIRES, AIR POLLUTION, AND HEALTH

Air pollution from wildfires represents a topic of important public health interest, but we take a slightly different inter-
est in wildfires for the purposes of this article. Because wildfires introduce a rapid shift in the chemical composition of
ambient air pollution in their surrounding regions, they provide an opportunity to study the short-term health impacts
of changing the composition of PM2.5. Although wildfires are typically started by humans and are predictable in certain
ways (ie, there is a well-defined fire season in most areas), from the perspective of people living in major popula-
tion centers, the occurrence of wildfires is reasonably modeled as random.12 In addition, while wildfires can certainly
pose a direct threat to human populations, most wildfires originate in largely uninhabited areas and so primarily affect
people’s health via the pollution that they generate and transport. As such, wildfires present an interesting opportu-
nity to study the effect of air pollution composition changes if the appropriate methodology could be developed and
applied.

Recently, there have been calls in the air pollution community to leverage novel study designs in order to develop
stronger forms of evidence.13 Our aim here is to take this opportunity as a case study on which to build the methodology
for studying air pollution mixtures that could be generalized to a variety of other scenarios.

4.1 Data

The analysis that is the focus of this article incorporates data on (1) respiratory hospitalizations amongst enrollees in the
US Medicare insurance system; (2) the chemical composition of ambient PM2.5; and (3) wildfires in the Western US for
the years 2004 to 2009. This section provides some details on these datasets and how they were obtained.

Information about hospitalizations for respiratory diseases was obtained from the US Medicare system, which is a
national health insurance system for people aged 65 years and older. The Center for Medicare and Medicaid Studies (CMS)
provides billing claims for hospitalizations for Medicare enrollees. We obtained records for the entire US for the years
2004 to 2009 and included any Medicare Part A (hospital inpatient) claim with a primary International Classification of
Disease (version 9) code in the range of 490 to 492 (chronic obstructive pulmonary disease), 464 to 466, or 480 to 487
(respiratory tract infection). This dataset was subsequently subsetted to include counties in the Western US for which
wildfire information was available.

The chemical composition of ambient PM2.5 can be obtained from the US Environmental Protection Agency’s Chem-
ical Speciation Network, as well as numerous state and local air monitors. Together, they provide 24-hour average
concentrations of over 50 chemical constituents of PM2.5 on a 1-in-3 day or 1-in-6 day basis. We obtained PM2.5 chemical
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speciation data from the EPA Air Quality System (which assembles all these data) for the entire US for the years 2004 to
2009. There are approximately 300 monitoring locations across the United States that measure PM2.5 chemical speciation.
The analysis presented in Section 5 focuses on 28 constituents that make up most of the mass of ambient PM2.5 and are
commonly measured across all sites.

The locations used for this article were at the intersection of the hospitalization and chemical speciation datasets.
Because the PM2.5 chemical speciation data were primarily collected near urban locations, the included locations primar-
ily consist of urban communities. In total, there were 48 counties included in the analysis and they are shown in Figure 2.
Summary information about the counties, including average chemical constituent levels and county demographics is
presented in Supplementary Figure 1.

4.2 Wildfires and smoke waves

We employed wildfire outputs from the GEOS-Chem chemical transport model (v9-01-03) to generate daily
wildfire-specific PM2.5 levels for 6 years (2004-2009). GEOS-Chem is a global 3D atmospheric chemistry model driven
by meteorology.14 The modeling integrates meteorological data from Goddard Earth Observing System (GEOS-5) of the
NASA Modeling and Assimilation Office and observed wildfire area burned based on the Global Fire Emissions Database
(GFED3). GFED3 combines satellite observations of fire counts, area burned, and fuel load to produce gridded, daily maps
of wildfire emissions.15 The GEOS-Chem model outputs used in this study are daily (24-hour-average), gridded surface
PM2.5 concentrations for fire seasons (May 1-October 31) 2004 to 2009. The grid size is 0.5 × 0.67 degrees (approximately
50 × 75 km) latitude-by-longitude.

The GEOS-Chem model provides an estimate of the proportion of ambient PM2.5 at a given location and
time that originates from a wildfire, regardless of the location of the wildfire because wildfire smoke can travel
large distances. We defined population exposure to wildfire PM2.5 based on daily wildfire-specific PM2.5 estimates

Not Included

Included

F I G U R E 2 Western US counties included in data analysis, 2004 to 2009
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from the GEOS-Chem model. The GEOS-Chem model was able to provide wildfire smoke exposure estimates
for all subjects in the domain of the study. Further details of the validation of the model can be found in
Liu et al.6

In our previous work, in order to estimate health effects associated with rare but extreme episodes of wildfire-specific
PM2.5 we introduced the concept of a “smoke wave” which allows us to capture periods with high concentration, sporadic,
and short-lived characteristics of wildfire PM2.5. We define a smoke wave as at least 2 consecutive days with daily calibrated
wildfire-specific PM2.5 > 20 𝜇g/m3 (near the 98th percentile of all county-days across all counties). This definition is
based on daily wildfire-specific PM2.5 levels above a designated threshold and the daily levels in all days in a smoke
wave must exceed the threshold. Unlike the EPA monitoring data, the GEOS-Chem model provides daily data, including
daily estimates of wildfire-specific PM2.5. Therefore, we were able to identify smoke wave days throughout the study
period regardless of the availability of data from the EPA monitoring network. While the GEOS-Chem model, as used
here, gives us the proportion of wildfire-specific PM2.5, it does not give us the specific chemical composition of PM2.5 on
each day. That is why we must use the SIR method to estimate the change in mixture from non-smoke wave to smoke
wave days.

5 RESULTS

In the first step, we conduct propensity score matching to on the non-smoke wave and smoke wave days to balance
key covariates between the two types of days. We include daily temperature, dew point temperature, month, and year
(to capture time trends), and an indicator of the county location (to capture approximate spatial variation). The data
on wildfires cover months in the wildfire season of May to October, so the winter and spring seasons are already
excluded. Supplementary Figure 2 shows the standardized difference in year, temperature, month, and dew point tem-
perature between smoke wave and non-smoke wave days in the matched and unmatched datasets. In the unmatched
dataset, it is clear that the smoke wave days generally have higher temperature (and dew point temperature) and
tend to fall in later years and later months within the year. In the matched dataset, these differences are narrowed
substantially.

One important feature of the resulting matched dataset that is the representation of the counties themselves is simi-
lar across smoke wave and non-smoke wave days. We would not want our comparison of the PM2.5 mixture across smoke
wave and non-smoke wave days to be confounded with a large-scale spatial contrast across, for example, northern and
southern counties. Such a comparison would likely be confounded by other unobserved factors that vary with spatial
location. The matching process ensures that we can preserve a similar configuration of counties between the smoke wave
and non-smoke wave observations. Supplementary Figure 3 presents for each county the difference in the proportion
of observations coming from that county between smoke wave and non-smoke wave days. In the unmatched dataset,
we see a greater spread around the zero-line with some counties more under-represented and others over-represented.
In the matched dataset, this spread narrows somewhat with fewer extremes of inbalance in the representation of
counties.

The two parameters 𝜔 and 𝜌 that characterize the correlation between the potential outcomes for PM2.5 and the
principal mixture score, respectively, cannot be estimated from the data. For choosing 𝜌 we used 𝜌 = 0 based on the
results of our simulation study in Section 3. We used a value of 𝜔 = 0.2 after extensive sensitivity analyses did not
show much change in the estimates of risk with different combinations of values for this parameter (Supplementary
Figures 4-6). The parameter b described in Section 2.1.1 controls how different the PM2.5 potential outcomes can be
in order to play a role in estimating the principal mixtures score. We used a value of b = 0.75 in the primary analysis
and also tried values of b = 0.4 and b = 1.5. The smaller value of b increased the uncertainty around the health risk
estimation relative to the larger value, but overall shape of the risk curve was the same for all values of b (see Supple-
mentary Figures 7 and 8). Hence, it appeared that the choice of b largely affected the variance of the resulting estimate
rather than the bias given that b effectively controls how many observations are used to estimate the principal mix-
ture direction. We settled on using b = 0.75 to be somewhat more conservative with respect to the estimates of health
risk.

Smoke waves significantly increase the overall levels of PM2.5 in the air, as we might expect. Figure 3 shows boxplots
of the log total PM2.5 daily mass concentrations by non-smoke wave and smoke wave days in the matched dataset. From
the figure, we can see that smoke wave days tend to experience about twice the levels of PM2.5 as non-smoke wave days,
although with large variation in the levels on both categories of days.
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F I G U R E 3 Log total PM2.5 by non-smoke wave and smoke wave day

The predicted and observed potential outcomes for log total mass PM2.5 on each day are shown in Figure 4. The tick
marks on the x- and y-axes show the observed values of PM2.5 on non-smoke wave and smoke wave days, respectively. The
interior of the scatterplot shows the predicted value assigned to each observed value. The solid line is the y = x line and the
dashed lines represent y = x ± 0.75, indicating the region where observations will carry the most weight in the weighted
SIR described in Section 2.2. In this case, we have specified that |PMt(1) − PMt(0)| < 0.75 is considered a relatively small
change.

Given the predicted potential outcomes for PM2.5 on each day t, we can identify days where the predicted
change in PM2.5 concentration is small and weight those days more heavily when estimating the principal mixture
direction with SIR. Similarly, we will downweight observations that are predicted to have a large change in PM2.5
concentration.

5.1 Principal mixture score estimation

The principal mixture direction found by running the weighted SIR procedure described in Section 2.2 is shown in
Figure 5. Each vertical bar indicates the SIR coefficient corresponding to each of the 28 PM2.5 chemical constituents, with
a downward bar indicating a negative coefficient and an upward bar indicating a positive coefficient. We can see from
Figure 5 that smoke waves appear to have relatively more selenium, vanadium, bromine, cand chromium, while having
relatively less arsenic, copper, lead, rubidium, strontium, and zirconium.

The units of the mixture score do not take any special meaning except that positive values indicate a composition that
is like a smoke wave and negative values indicate a composition that is less like a smoke wave. Nevertheless, we need to
identify a range of variation that is perhaps typical in order to calibrate what is meant by a “change in mixtures score,”
that is, xt(1) − xt(0), on a given day. Using the observed data, the average difference in mixture score between smoke wave
and non-smoke wave days is 0.0027.
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F I G U R E 5 Principal mixture direction coefficients
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F I G U R E 6 Relative risk of respiratory hospitalization by change in principal mixture score

5.2 Health risk estimation

The estimated relative risk as a function of the difference in predicted mixture score xt(1) − xt(0) is shown in Figure 6. In
this figure, we used a 2-degree of freedom natural spline to model the relationship between the mixture score difference
and the hospitalization relative risk to allow for flexibility in the relationship beyond linearity. It seems clear from Figure 6
that there is a decreasing trend in risk as the difference in mixture score goes from negative to positive. This trend suggests
that as the chemical composition of PM2.5 concentrations are changed to be more like a smoke wave, we observe a decrease
in respiratory hospitalizations from what we might otherwise expect. On the other hand, as PM2.5 composition becomes
more like the typical mixture (non-smoke wave like), we see an increase in respiratory hospitalizations.

All things being equal (including, critically, the overall PM2.5 level), Figure 6 suggests that the chemical composition
of wildfire PM2.5 is somewhat less harmful than PM2.5 from non-wildfire sources in these communities. At a difference
in mixture score of 0.0027, which was the average difference in mixture score between smoke wave and non-smoke wave
days, we estimate a −2.2% (95% CI: −12.5%, 7.8%) change in respiratory hospitalizations. At a difference in mixtures score
of 0.0076 we estimate a −13.6% (95% CI: −27.3%, −0.45%) change in respiratory hospitalizations. If we look at negative
differences in the mixture score, meaning that the PM2.5 mixture changes to be less like a smoke wave, we see that for a
mixture difference of −0.005 we estimate a 5.1% (95% CI: −20%, 40%) change in respiratory hospitalizations. Across the
range of the x-axis in Figure 6, we see that there is substantial uncertainty in the estimate of the relative risk associated with
a change in composition. Nevertheless, the data suggest that while small changes in chemical composition of PM2.5 are
not strongly associated with changes in risk, larger changes in composition, particular toward a more “wildfire-like”
composition, may substantially change the risk of hospitalization.

5.3 Sensitivity analysis

We conducted a sensitivity analysis of the main results with respect to the specified parameters 𝜌,𝜔, and b and the resulting
estimated curves are shown in the Supplementary Material. In general, we found that varying the values of 𝜌 and 𝜔
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between 0.2 and 0.8 (Supplementary Figures 4-6) did not significantly alter the estimated mixture risk curve and did not
lead to any different conclusions. Similarly, altering the value of b did not change the shape of the curve (Supplementary
Figures 7 and 8) but a larger value of b appeared to decrease the uncertainty around the curve. This is perhaps expected as
increasing the value of b widens the definition of similarity between potential outcomes PMt(1) and PMt(0) and therefore
allows more observations to be used to estimate the principal mixture direction.

6 DISCUSSION

The primary contribution of our work is the linkage of the principal mixture score, which characterizes the pollution mix-
ture in a low-dimensional manner, with both the occurrence of smoke waves and respiratory hospitalizations. While the
mixture score we propose shares properties with traditional dimension reduction approaches, the improved interpretabil-
ity of the score comes from the direct linkage of the mixture score to the occurrence of a smoke wave. Therefore, our
approach would suggest that if one wanted to modify the mixture score, one could, for example, dedicate more resources
to wildfire suppression or prevention. Traditional dimension reduction approaches do not by default make such a direct
linkage, so even if a change in the score were shown to be harmful or beneficial, there would be no obvious intervention
designed to modify the score.

We found that wildfires in the Western US from 2004 to 2009 modified both the average level and chemical composi-
tion of PM2.5. Figures 4 and 5 indicate the increase in PM2.5 concentrations on smoke wave days and how the chemical
composition of PM2.5 changes between smoke wave and non-smoke wave days. The propensity score matching described
in Section 2.1 was employed to account for potential confounding effects of temperature, dew point temperature, season,
and spatial and temporal trends. In addition, the propensity score matching may provide some robustness to possible
model misspecification.16

This analysis only examined a single lag of exposure, so that the exposure to a smoke wave and hospitalization were
assumed to occur on the same day (lag 0). While previous work in air pollution and health has suggested that the effect
of changes in air pollution could be spread out over multiple days,17 especially for mortality outcomes, work focusing
on hospitalization outcomes has largely shown that the strongest effects occur at lag 0.18 Furthermore, limitations of the
PM2.5 monitoring network in the United States make conducting more sophisticated distributed lag analyses difficult
without significant imputation of missing data.19

One potential extension of this methodology is to examine the change in PM2.5 mixture in different regions of the West-
ern US. We previously found that the composition of wildfire PM2.5 can change between eco-regions5 and the locations
included in this study (Figure 2) span multiple eco-regions. Supplementary Figure 9 shows the average concentrations
of the 28 PM2.5 constituents on smoke wave and non-smoke wave days. We separate out California here as it repre-
sents a large eco-region within the study area. In general, there could be residual confounding due to the differences in
PM2.5 composition due to eco-region. While the propensity score matching might have mitigated this problem somewhat,
it would be worth conducting an analysis on a larger dataset that could stratify by eco-region.

We found that the change in PM2.5 mixture induced by wildfire smoke wave days appeared to be associated with fewer
respiratory hospitalizations relative to the PM2.5 mixture observed on non-smoke wave days. As the principal mixture
score that we estimated increased to be more “smoke wave like” we found a decreasing trend in the relative rate of respi-
ratory hospitalizations (Figure 6). There was, however, substantial uncertainty around the estimation of the risk function,
suggesting caution should be used when interpreting these results. Nevertheless, the notion that PM2.5 from biogenic
sources is less harmful than PM2.5 from other combustion sources has some precedence in the literature.20

It is worth reiterating here that because wildfires increase the overall concentration of PM2.5 in the air, there is a
positive association between total wildfire PM2.5 and respiratory hospitalizations.6 Our approach separates the issues of
examining the increase in the total PM2.5 mixture and the change in the composition. An alternative approach could
be to look at the change in the percentage of each PM2.5 constituent in the total mixture.21 However, such a compo-
sitional approach combines the issue of change in level and change in mixture, which may be appropriate in some
settings. In our setting, it is useful to separate these issues out given how dramatically ambient PM2.5 can change
with the occurrence of a wildfire. With our methodology, if a health effect is detected with a change in mixture score,
we can have some confidence that it is not explained by a change in the overall level of pollution occurring in the
background.

It is clear from the simulation study and the data analysis that there is significant uncertainty associated with the esti-
mate of the effect of the mixture score on hospitalizations. From the simulation study, the variance appeared to dominate
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the overall mean squared error. This is perhaps not surprising given the large amount of “missing data” (ie, potential out-
comes) that must be imputed in order to estimate the difference xt(1) − xt(0). Given that the imputation of these potential
outcomes will always be necessary for this approach, it will likely remain a limitation of the approach.

Considering mixtures in the context of mediation analysis has also been discussed in the literature in conjunction with
dimension reduction approaches like PCA or mixture models. Bellavia et al22 review a variety of approaches in which
components of a complex mixture might be incorporated into mediation models in order to estimate direct and indirect
effects of environmental exposures. The approach presented here is perhaps closest their “two-stage” approach except in
the first stage, we model the mixture based on the intervention rather than the outcome. Our work significantly builds on
the ideas presented in Bellavia et al22 by demonstrating that such approaches can be applied to large-scale population-level
data to produce meaningful and interpretable results.

One limitation of the current approach stems from our dichotomization into smoke wave and non-smoke wave days,
which constrains the SIR procedure to produce a one-dimensional mixture score. As a result, we could be limited in our
ability to distinguish between days with different PM2.5 mixtures but similar score values. One extension of our approach
would be to treat the proportion of wildfire-specific PM2.5 as a continuous measure, which would allow for the exploration
of higher dimensions with the SIR method. Another limitation related to the use of SIR is the possibility that the change
in PM2.5 composition due to wildfires is better captured using higher order information, which the SIR method ignores.8
It is possible that approaches such as principal Hessian directions or sliced average variance estimation, which use the
covariance structure of the data, could better capture those changes.9,23

The statistical approach described here provides a way to explore the health effects of air pollution mixtures using epi-
demiological data. The advantage of such an approach is that it addresses the question of air pollution toxicity using data
directly observed on the population of interest. The analysis described here looked at changes in air pollution composition
over short periods of time. However, it may be possible to extend this approach to examine spatial contrasts, comparing
different locations that may be exposed to different mixtures of pollutants. Such an extension may be explored in future
work.
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