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Abstract

Prostate cancer is the most common cancer in men, resulting in over 10 000 deaths/year

in the UK. Sequencing and copy number analysis of primary tumours has revealed
heterogeneity within tumours and an absence of recurrent founder mutations, consistent
with non-genetic disease initiating events. Using methylation profiling in a series of multi-
focal prostate tumours, we identify promoter methylation of the transcription factor HES5
as an early event in prostate tumourigenesis. We confirm that this epigenetic alteration
occurs in 86-97% of cases in two independent prostate cancer cohorts (n=49 and n=39
tumour—-normal pairs). Treatment of prostate cancer cells with the demethylating agent
5-aza-2'-deoxycytidine increased HES5 expression and downregulated its transcriptional
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target HES6, consistent with functional silencing of the HES5 gene in prostate cancer.
Finally, we identify and test a transcriptional module involving the AR, ERG, HES1 and HES6
and propose a model for the impact of HES5 silencing on tumourigenesis as a starting point

for future functional studies.
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Introduction

Current analysis of cancer genome sequencing has
revealed disease processes and genomic alterations that
may underlie disease initiation or evolution (Nik-Zainal
et al. 2012, Baca et al. 2013, Tarpey et al. 2013). These
approaches have identified and enumerated recurrently
mutated driver genes in several cancer types, such as KRAS
which is mutated in 93% of pancreatic cancers (Biankin

et al. 2012) and TP53 which is mutated in 96% of high-
grade serous ovarian cancers (Cancer Genome Atlas
Research Network 2011), 69% of oesophageal cancer
(Weaver et al. 2014) and over 50% of colorectal cancers
(Cancer Genome Atlas Network 2012). In contrast with
these highly recurrent mutations, a recent study of 112
aggressive primary prostate cancers has reported that the
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most significantly mutated gene (SPOP) was altered in only
13% of cases, with the next most commonly affected gene
TP53 affected in only 6% of prostate tumours (Barbieri
et al. 2012).

Therefore, while genome sequencing approaches have
provided important insights into the biology of prostate
cancer (Berger et al. 2011, Baca et al. 2013, Lindberg et al.
2013, Weischenfeldt et al. 2013) the high intra- and inter-
tumour heterogeneity coupled with the small samples
sizes may have limited the identification of genetic driver
events in primary tumours. Indeed, previous genome
sequencing studies have reported few common mutations
between different tumour foci within the same prostate
(Lindberg et al. 2013), highlighting marked intra-tumour
heterogeneity and the absence of a genetic founder
mutation. This complexity has led many groups to focus
on late-stage, aggressive disease with the aim of identify-
ing genomic events associated with disease progression
(Barbieri et al. 2012, Grasso et al. 2012). However, their
remain important unanswered questions over the early
stages of prostate tumour evolution where genetic events
appear to be for the most part heterogeneous. One notable
exception to this is gene fusions involving ETS (E26
transformation-specific) transcription factors that have
been found to occur in approximately half of all prostate
cancers (Tomlins et al. 2005, Perner et al. 2006). However,
these androgen receptor (AR)-driven gene fusions alone
are insufficient to initiate prostate tumours in disease
models (Carver et al. 2009, Chen et al. 2013) and may not
be early ‘founder’ events in disease evolution (Barry et al.
2007, Mertz et al. 2013, Minner et al. 2013).

Therefore current evidence would seem to suggest
that if a common initiating driver event exists it is
not genetic, implicating other mechanisms in disease
aetiology. In addition to somatic mutation several other
disease-initiating pathways have been proposed in pros-
tate cancer including germline predisposition (Kote-Jarai
et al. 2011, Eeles et al. 2013), telomere shortening
(Sommerfeld et al. 1996, Heaphy et al. 2013), chronic
inflammation (Elkahwaji et al. 2009, Caini et al. 2014),
metabolic stress (Freedland 2005, Kalaany & Sabatini
2009) and epigenetic alterations (Lee et al. 1994, Kanwal
et al. 2014). It is likely that non-genetic and genetic
alterations interact during tumourigenesis and several
studies have identified interactions between somatic
mutations and micro-environmental changes (Garcia
et al. 2014), inflammation (Kwon et al. 2014) and
metabolism (Kalaany & Sabatini 2009). Current tech-
nologies allow accurate identification and quantification
of epigenetic alterations and are therefore a tractable
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second line of enquiry to identify driver events in prostate
tumourigenesis.

We have recently identified a role for the enhancer of
split transcription factor HES6 in prostate cancer and AR
signalling (Ramos-Montoya et al. 2014). Herein, we
characterise an epigenetic alteration at the promoter of
the related HESS gene, which has been recently reported in
a panel of genes that showed promise as a prostate cancer
marker in biopsy samples (Paziewska et al. 2014). We
profile this change in detail and show it to be an early
event in prostate cancer development and highly recur-
rent across three unrelated prostate tumour cohorts. We
then characterise an interaction between the epigenetic
silencing of HESS and the expression of HES6 and provide
evidence for interactions with known oncogenic pathways
in prostate cancer (namely AR signalling and ERG gene
fusions), highlighting a transcriptional network that is
altered in prostate cancer development first by an
epigenetic change and then by a genomic rearrangement.

Materials and methods
Sample cohorts

In a series of four radical prostatectomy specimens, we
systematically dissected the whole prostates, identified
regions containing tumour and harvested 17 tumour-rich
samples from 13 spatially separated tumour cores (median
46% tumour, interquartile range (IQR) 36-62%), four
adjacent benign samples and three whole-blood samples
(Fig. 1a and Supplementary Figure la, see section on
supplementary data given at the end of this article). Each
tumour core was taken from a 5 mm tissue slice and the
tumour content of samples used for DNA extraction was
assessed by a pathologist using H&E staining of immediately
adjacent sections (Warren et al. 2013). From two such cores,
we also took three sets of sections for DNA extraction to
allow assessment of heterogeneity within cores in addition
to the spatial heterogeneity within and between cancerous
prostates (Supplementary Figure 1a). These samples were
used for global methylation profiling using Infinium
HumanMethylation450 arrays (see below for details).

In a separate cohort of 39 matched prostate tumour
and adjacent benign samples, we performed targeted
bisulphite sequencing of the HES5 promoter, to assess
the frequency of HES5 hypermethylation in prostate
cancer. This analysis provides a promoter-wide view of
DNA methylation changes at the HES5 promoter (in
contrast to the limited number of CpGs assessed using
methylation profiling arrays).
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Figure 1

HES5 promoter methylation is an early event in prostate tumourigenesis.
(A) Representation of sections through four cancerous prostates from
which multiple tumour cores (T1-T5) and adjacent benign cores (N1) were
taken for methylation analysis. Regions in purple indicate histologically
malignant foci and different shades of purple indicate tumour foci that
appeared unconnected in 3D-sectioning. Sample keys provided are ICGC
Prostate UK IDs. (B) Heatmap showing the median tumour over benign
methylation changes at regions in the promoter regions of eight candidate
genes. (C) Boxplots showing the methylation status at the promoter region
of HES5 in the cohort of prostate tumours with multiple tissue cores,

In an unrelated, larger cohort of prostate cancers
with publicly available methylation array data (n=304
tumours, n=49 matched normal samples) (Weinstein
et al. 2013), we assessed the recurrence of HESS promoter
methylation.

DNA methylation profiling in blood, benign prostate and
multiple spatially separate tumour foci

Clinical samples for analysis were collected from prosta-
tectomy patients with full research consent at the
Addenbrooke’s Hospital, Cambridge, UK. The prostates
were sliced and processed as described previously (Warren
etal. 2013). A single 5 mm slice of the prostate was selected
for research purposes. Tissue cores of 4 mm or 6 mm were
taken from the slice and frozen. The frozen cores were
mounted vertically and sectioned transversely giving a
single 5 pm frozen section for H&E staining followed by
6X50 pm sections for DNA preparation using the Qiagen
Allprep kit. Using the Infinium HumanMethylation
450 BeadChip kit, DNA was subjected to bisulphite

Chromosome 11 coordinates

adjacent benign and blood DNA samples. Boxplots depict quartiles for
probes within promoter region genomic windows, error bars denote
95% Cl and data points are shown for values outside 95% Cls. (D and E)
Genomic views of DNA methylation in tumour cores compared with
adjacent benign tissue for (D) the HES5 gene promoter region and

(E) the methylation-positive control GSTPT gene promoter. Plots show the
methylation profiles from multiple tumour foci for Case-006, data are
presented as log; ratio of tumour over benign. Gene promoters and
orientation are annotated at the top of each plot.

conversion, amplification, fragmentation, hybridisation,
extension and labelling, according to the manufacturer’s
instructions (Illumina, Little Chesterford, Essex, UK). Bead
summary data from Infinium HumanMethylation450
arrays were processed using the Minfi package in the R
statistical software (Aryee ef al. 2014, R-Core-Team 2014).
As previously described, probe types were normalised
separately (Marabita et al. 2013) before generating M- and
B-values for exploratory analysis. Summary plots were
generated in the R statistical software (R-Core-Team 2014).
Raw and processed data have been uploaded to the
ArrayExpress portal under accession E-MTAB-2964, in
addition all code used to generate figures in the paper
are included as part of the R-markdown HTML document
available on our group webpage.

Targeted bisulphite sequencing

PCR primers were designed to amplify a 441 bp fragment
from the HES5 promoter containing 60 CpGs (HESS-
BSx-F: 5'-GAGGGGGTGTTAGGTTGGTT-3'; HES5-BSx-R:
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5’-ACCCACCTACTCCTTAAAAAAC-3’). The amplicons
were generated separately for 39 matched tumour normal
sample pairs and assessed before preparing barcoded
sequencing libraries using a Nextera XT kit (Illumina).
Barcoded DNAs were quantified and equal amounts of
each indexed library were then pooled and sequenced on
an Illumina MiSeq (PE300). Fastq data files were split using
index sequences and downstream methylation analysis
was performed using Bismark (Krueger & Andrews 2011)
and summary plots and test statistics were generated using
the R statistical software (R-Core-Team 2014). This analysis
gave a median sequencing coverage of 786X (Supple-
mentary Figure 3, see section on supplementary data
given at the end of this article). All code used to generate
figures in the paper are included as part of the R-markdown
HTML document available on our group webpage.

Data mining

An R markdown document containing all code required
to reproduce our analysis and all figures has been included
as a supplementary HTML document (available on our
group webpage). Briefly, DNA methylation 450k array data
for LNCaP prostate cancer cells and PrEC benign prostate
epithelial cells (CC-2555, Lonza, Basel, Switzerland) were
obtained from GEO (triplicate data for each cell line from
GSE34340 and singleton data for each cell line from
GSE40699) (Statham et al. 2012, Varley et al. 2013) and
summary plots were generated using the R statistical
software (R-Core-Team 2014). Gene expression data from
LNCaP cells treated with the demethylating agent 5-aza-
2/-deoxycytidine were retrieved from GEO (GSE25346).
Gene expression data from human prostate benign and
tumour tissues were obtained from GEO (GSE3325). Gene
expression data from control and ERG-knockdown VCaP
cells was retrieved from GEO (GSE60771). All GEO data
were retrieved using the GEOquery package in the
R statistical software and summary plots were generated
using the same software (Davis & Meltzer 2007, R-Cor-
e-Team 2014). Transcriptional networks were drawn using
the BioTapestry application (Longabaugh 2012) construct-
ing models using ChIP-seq binding profiles, expression
correlations and published transcriptional links.

HES5 motif enrichment analysis

The position weight matrix for HESS was obtained from Yan
etal. (2013) and used to search the genomic sequence of the
HES6 gene locus (including 1 kb upstream and 1 kb down-
stream sequence). Motif searches were carried out using the
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RSAT matrix-scan (with human ‘upstream-noorf’ back-
ground control) (Turatsinze et al. 2008), and motif scores
were visualised using BioSAVE (Pollock & Adryan 2008).

Androgen time-course gene expression profiling in
LNCaP and VCaP cells

Following 72-h steroid depletion in the media containing
10% charcoal-stripped FBS, LNCaP and VCaP cells were
subjected to androgen stimulation (1 nM R1881) or
vehicle control treatment (0.01% ethanol). The cells
were harvested at the indicated timepoints over a 24 h
period following treatment and RNA extracted using
Trizol (Life Technologies). For the LNCaP treatment
time-course, a full analysis has been published (Massie
et al. 2011) and raw and normalised data have been
deposited at GEO (GSE18684). Data for the VCaP
androgen treatment time-course have also been deposited
at ArrayExpress (E-MTAB-2968). Expression data were
analysed using the beadarray software, with spatial
artefacts identified and removed automatically (BASH)
and curated manually (Dunning et al. 2007, Cairns et al.
2008). The resulting data set was summarised with outliers
removed to obtain mean log-intensity and standard error
for each probe/array combination.

Results

HES5 promoter methylation is an early event in
prostate tumourigenesis

In order to investigate the epigenetic landscape within
and between prostate tumours, we systematically dis-
sected four radical prostatectomy specimens, harvesting
17 tumour-rich samples from 13 spatially separated
tumour cores (median 46% tumour, IQR 36-62%), four
adjacent benign samples and three whole-blood samples
(Fig. 1a and Supplementary Figure la). Consistent with
previous reports (Lindberg et al. 2013), these spatially
separated tumour cores appeared to be only distantly
related by somatic mutations and therefore our aim was
to identify early (common ‘trunk’) epigenetic events.
Analysis of the methylation distributions for all assayed
CpGs revealed that global methylation profiles were
similar between tumour and benign prostate samples
(Spearman’s rank correlation of tumour vs benign methy-
lation profiles 0.94-1.00; Supplementary Figure 1b,c, d
and e). A recent study has highlighted eight genomic
loci that showed differential methylation in a series of
unmatched tumour and benign prostate samples (i.e. from
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different individuals), a subset of which were proposed as
molecular markers to support pathological diagnosis of
biopsies (Paziewska et al. 2014). We assessed the repro-
ducibility and clonality of these eight differentially
methylated regions in our cohort of cases with multiple
spatially separate tumour samples, matched benign tissue
and blood DNA samples (Fig. 1b and Supplementary
Figure 1f, g, h, i, j, k, 1, m).

In our cohort, the promoter region of the HESS
gene showed the largest and most consistent increase in
methylation in tumour samples compared with matched
normal tissue (median 7.6-fold increase, median variance=
0.003), together with consistently low methylation in
adjacent normal tissue (median normal methylation=
0.08, median variance=0.0006; Fig. 1b, ¢, d and Supple-
mentary Figure 1f, g, h, i, j, k, |, m). The study by Paziewska
et al. (2014) showed low HES5 promoter methylation
in benign prostatic hyperplasia and hypermethylation
in prostate tumour biopsies. Among the other regions
examined, we found that tumour methylation at the
ITGB2 and mirlOB loci showed no difference with
matched benign tissue, the APC locus showed variable
differences between tumour and matched benign and the
remaining four loci (RARB, CSorf4 (FAXDC2), TACC2
and DGKZ) showed increased methylation in tumour vs
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Validation of HES5 promoter methylation as a common event in two
additional independent prostate cancer cohorts. (A) CpG methylation
summary of the HES5 promoter as determined by bisulphite sequencing
from a representative tumour-normal pair. Each column represents one
CpG assayed (n=60), red and blue stacked bars represent the proportion of
methylated and unmethylated reads, respectively, at each CpG. Column
widths are proportional to sequencing coverage (median=786X).

(B) Scatter plot summary of HES5 promoter methylation for 39 tumour—
normal pairs. (C) Histogram summary of significance testing for increased
HES5 promoter methylation in tumour vs normal sample pairs (n=39 pairs
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matched benign samples, although to a lesser extent
than the HESS locus (Fig. 1b, ¢, d and Supplementary
Figure 1f, g, h, i, j, k, 1, m). The tumour-specific
methylation changes at the HES5 promoter were con-
sistent within and between cases and comparable with
the hypermethylation observed at the GSTPI gene (Fig. 1d
and e), which is invariably silenced in prostate cancer
and has been extensively studied (Lee et al. 1994). These
consistent methylation changes at the HES5 promoter
appear to be locus specific, as highlighted by the similarity
of global methylation profiles (Supplementary Figure 1b,
¢, d and e) and the absence of consistent changes in
DNA methylation at other genomic loci across spatially
separated tumour samples from the same patient (Supple-
mentary Figure 2, see section on supplementary data given
at the end of this article).

Therefore using our cohort of cases with multiple
tumour foci and matched benign samples, we found that
hypermethylation at the HES5 promoter region was
observed across tumour samples from all patients and in
all spatially separated tumour foci from the same patient.
The homogenous hypermethylation of the HES5 promoter
across genetically heterogeneous tumour cores is con-
sistent with this being an early event in tumourigenesis
(Fig. 1c and Supplementary Figure 1m).
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from panel-C; paired Wilcox rank sum test; —log, P values are plotted to
visualise distributions). (D) Boxplot summary of HES5 promoter methyl-
ation for 304 tumour and 49 benign prostate samples on Illumina 450k
arrays (TCGA data). (E) Histogram summary of significance testing for
increased HES5 promoter methylation in TCGA tumour vs normal sample
pairs (n=49 pairs from panel-E; paired Wilcox rank sum test; —log, P values
are plotted to visualise distributions). (F) ROC curve for HES5 promoter
methylation using data from bisulphite sequencing of 39 tumour normal
pairs (A, B and C) and methylation array profiling of 49 tumour normal
pairs (D and E).
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HES5 promoter methylation is a recurrent event
in prostate tumours

To assess the frequency of HES5 hypermethylation in
prostate cancer, we performed targeted bisulphite
sequencing of the HES5 promoter in a separate cohort

of 39 matched tumour and adjacent benign samples. This
analysis included 60 CpGs in the HES5 promoter and gave
a median sequencing coverage of 786X (Supplementary
Figure 3). This analysis provided a comprehensive view of
DNA methylation across the HES5 gene promoter, in
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contrast to the four CpGs assessed using methylation
arrays and a narrow genomic window in a previous
study (Paziewska et al. 2014). Benign samples showed
hypomethylation across the entire HES5 promoter,
whereas matched tumour samples had consistent
hypermethylation across all 60 CpGs assayed (Fig. 2a, b
and Supplementary Figure 4, see section on supple-
mentary data given at the end of this article). This
pattern of hypomethylation in benign tissue and hyper-
methylation in tumours was consistent in 38/39 matched
tumour normal pairs (97% at P<0.05, Wilcox test;
Fig. 2¢). In the single discordant sample pair, there was
increased methylation in the matched benign sample
that was maintained in the tumour (median methylation
20.7 and 15.4 respectively; Supplementary Figure 4),
consistent with either a pre-transformation change in
this single case or tumour contamination of this normal
tissue core.

We also assessed HES5 methylation in an additional
prostate cancer patient cohort using publicly available
methylation array data (n=304 tumours, n=49 matched
normal samples) (Weinstein et al. 2013). In this second
validation cohort, we again observed hypermethylation
in tumours and hypomethylation in benign samples
(42/49 pairs, 86% at P<0.05, Wilcox test; Fig. 2d and e).
Receiver operating characteristic (ROC) curve analysis
for these two geographically distinct validation cohorts
run on different platforms revealed high sensitivity and
specificity (positive predictive value (PPV)=0.92, area
under the curve (AUC)>0.9, Fig. 2f). These results clearly
demonstrate that in addition to being an early event in
prostate tumourigenesis HES5 methylation is a highly
recurrent event in prostate cancer, suggesting potential as
a specific disease marker and an early acquired (or selected)
event in prostate tumourigenesis.

HESS5 silenced early in prostate 22:2 137

tumourigenesis

HESS5 is silenced in prostate cancer cells and
demethylation restores expression

Consistent with observations in human tumours, we
found that LNCaP prostate cancer cells exhibit hyper-
methylation of the HES5 promoter, in contrast to HESS
hypomethylation in benign epithelial cells PrEC (Fig. 3a).
The expression of HESS is low or undetectable in cultured
prostate cancer cell lines and is also low in human
prostate tumours (Supplementary Figure Sa, c, see section
on supplementary data given at the end of this article
and Fig. 3d, f), consistent with epigenetic silencing of
HESS in prostate cancer (Supplementary Figure 5g and h).
Treatment of LNCaP cells with the DNA demethylating
agent 5-aza-2'-deoxycytidine caused de-repression of the
HESS gene (Fig. 3b), consistent with active epigenetic
silencing of the HESS5 gene in prostate cancer cells.

HESS5 epigenetic silencing is associated with
HES6 expression

HESS is known to play a role similar to that of HESI in
developmental processes (Hatakeyama et al. 2004, 2006,
Tateya et al. 2011), and both are involved in negative
feedback loops with HES6 (Fior & Henrique 2005, Jacobsen
et al. 2008), which antagonises the activity of HESI and
HESS (Bae et al. 2000, Salama-Cohen et al. 2005). Of note,
HES6 has been recently reported to play an important
functional role in prostate cancer enhancing oncogenic
signalling through the AR (Ramos-Montoya et al. 2014).
Although a rare HES6 gene fusion has been reported
(Annala et al. 2014), no molecular mechanism has been
found for the frequent up-regulation of HES6 in prostate
cancer. In prostate cancer cells, de-repression of HESS with
the demethylating agent 5-aza-2'-deoxycytidine resulted

Figure 3

HES5 expression is repressed by methylation in prostate tumour cells and
shows an inverse trend with HES6 expression. (A) Boxplot showing
methylation status of the HES5 promoter region in LNCaP prostate cancer
cells and PrEC benign prostate cells (triplicates from GSE34340 and
singletons from GSE40699). (B and C) Expression of (B) HES5 and (C) HES6 in
LNCaP prostate cancer cells treated with the demethylating agent 5-aza-
2'-deoxycytidine (Aza-dC) for 24 and 48 h (GSE25346). Expression presented
as log; ratios over control untreated cells. (D and E) Boxplot showing the
expression of (D) HES5 and its known target (E) HES6 in a separate cohort of
prostatic benign and primary tumour tissue (GSE3325). Boxplots depict
quartiles, error bars denote 95% Cl and data points are shown for values
outside 95% Cls. (F, G, H and I) Scatter plots of gene expression from clinical
prostate tumours showing the relationship between (F) HES5 and HESS6,
(G) HES6 and ERG, (H) HEST and ERG, (1) HEST and HES6 (including samples
from the cohort shown in Fig. 2b and c). Plots on the left show pairwise

relationships between gene expression, dashed quadrant lines indicates
the mid-point of expression values for each gene. Plots on the right show
the relationship between the level and difference in expression for each
pair of genes (using median centred values for each gene). Divergence
from the dashed zero line indicates an inverse relationship, red trend lines
depict loess regression. (J) Simple models of the putative expression
networks in benign prostate, prostate cancer and ERG-positive prostate
cancer involving the AR, HES5, HES6, ERG and HES1. Genes are depicted by
thick horizontal lines, connecting lines depict transcriptional targets of
each encoded transcription factor. Connectors with arrowheads depict
positively regulated targets, while connectors with flat ends depict
repressed targets. Genes shown in grey depict low/no expression in a given
condition. On the HES5 gene open circles depict hypomethylation and
filled circles depict hypermethylation. ARGs denotes AR-regulated genes.
Model drawn using BioTapestry.
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in a delayed downregulation of HES6 (Fig. 3¢), consistent
with HESS repression of HES6. We also observed an inverse
relationship between HESS and HES6 expression in a series
of primary tumours compared with benign prostate

samples, where HESS5 expression decreased and HES6
expression increased in tumour vs benign prostate samples
(Fig. 3d and e). In our cohort of multiple spatially
separated tumour samples, we found that HESS expression
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was decreased in tumour cores compared with matched
benign tissue and that HES6 was also increased in some
of those tumour cores, consistent with HESS silencing in
tumourigenesis and additional mechanisms regulating
HES6 expression (Supplementary Figure S5e and f).
However, we found no evidence of a correlation between
HESS5 methylation and expression in a larger series of
tumours (n=39), nor between HES5 and HES6 expression
in this tumour cohort (Fig. 3f). This lack of correlation may
at least in part be explained by the low or absent
expression of HESS in prostate tumour samples (Figs 2
and 3d, f) confounding such correlative analysis. Indeed,
we found that HESS expression appeared to be low and
showed little variation in this series of 39 prostate tumours
(Fig. 3f). The few samples that had slightly higher HESS
expression also had low HES6 expression (Fig. 3f), which
although not compelling alone is consistent with our
other data supporting an inverse relationship between
HESS5 and HES6 in addition to highlighting the recurrent
silencing of HESS in tumourigenesis. There are no
successful HES5 genomic binding data nor chromatin
immunoprecipitation grade antibodies for HESS; there-
fore; we could not assess direct binding of HESS at
the HES6 gene locus (Yan et al. 2013). However, the
preferred consensus DNA-binding sequence of HESS5 has
been determined experimentally (Yan et al. 2013) and
we found strong HESS5 consensus sites in and around
the HES6 gene (Supplementary Figure 5i, j and k). Taken
together our observations of i) the inverse correla-
tion between HESS5 and HES6 in cancer cells treated with
5-aza-2'-deoxycytidine, ii) their inverse correlation in
tumour-normal comparisons and iii) strong consensus
HESS binding sites at the HES6 gene locus suggests
that HESS may repress HES6 in prostate epithelial cells.
The ubiquitous HESS silencing in tumours cells may
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therefore potentiate (or de-repress) HES6 expression in
prostate tumours.

ERG and HES6 expression show an inverse relationship

Despite the early and frequent silencing of HESS in
prostate cancer, we observed variable expression of the
HESS transcriptional target HES6 in prostate tumour
samples (Fior & Henrique 2005) (Fig. 3f and Supple-
mentary Figure 5f), prompting us to investigate other
factors that may regulate HES6 expression in prostate
tumour cells. We found that variations in HES6 expression
showed an inverse relationship with expression of the
frequently rearranged ERG gene in prostate tumours,
highlighted by an inverse correlation (r=-0.28) and
mutual exclusivity of HES6 and ERG expression (i.e. no
samples have both high ERG and HES6 expression, Fig. 3g
left panel). This inverse relationship is illustrated clearly
by the increasing difference between ERG and HES6 at
higher levels of expression (i.e. divergence from zero with
increasing expression, Fig. 3g right panel).

ERG and HES1 expression show a positive correlation

In contrast the other major HES6 antagonist HES1 (Bae
et al. 2000, Hatakeyama et al. 2004, 2006, Jacobsen et al.
2008) showed a strong positive correlation with ERG
expression (r=0.65; Fig. 3h), suggesting an ERG-HESI-
HES6 transcriptional network in ERG-fusion positive
prostate cancer cells (Fig. 3g, h and i). In support of this
prediction, we found evidence for extensive ERG binding
at the HESI gene locus (Fig. 4f) and also confirmed the
previously reported AR binding sites upstream of the HES6
gene (Ramos-Montoya et al. 2014) by using multiple data
sets (Fig. 4g).

Figure 4

Detailed gene expression time-course analysis, genomic binding profiles
and ERG knockdown supports an AR-ERG-HES1-HES6 transcriptional
cascade. (A, B and C) Gene expression profiles from androgen stimulation
and vehicle control time-course experiments using VCaP (ERG-positive) and
LNCaP (ERG-negative) prostate cancer cells. Panels on the left show the
mean centered transcript profiles (as log, ratios/average) and panels

on the right show bar plots of the expression levels (log, intensity) for
(A) TMPRSS2, (B) HEST and (C) HES6. Error bars depict Cl for each time-point
measured. Vertical dashed lines correspond to the ‘change-points’ for gene
expression in the VCaP (dark red) and LNCaP (dark blue) time-series. (D and
E) Bar plots showing the androgen-induced expression ‘change-points’ for
each gene from (D) LNCaP and (E) VCaP androgen treatment time-series
(values correspond to the dashed lines in panels A, B and Q). (F and G)

Genomic binding profiles for ERG, ETV1 and the AR in prostate cells

at the (F) HEST and (G) HES6 gene loci. Genomic binding sites for each
transcription factor are depicted by coloured horizontal rectangles.
Multiple datasets are included for AR-binding profiles using the labelling
scheme ‘factor-sample, study’ (i.e. ‘AR-VCaP, Wei et al. (2010)' represents
the binding profile of the AR in VCaP cells from the study of Wei et al.
(2010)). A scale bar is shown at the top together with chromosomal
locations and gene locations and orientations are indicated at the bottom
of each plot. (H and I) Boxplots showing the expression of (H) ERG and (1)
HEST in VCaP cells under control or ERG knockdown conditions (GSE60771).
Significance testing was performed using t-tests, P values annotated on
each plot.
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A transcriptional network involving HES5, AR, ERG
and HES6

Combining our observations of HESS silencing in prostate
cancer with expression correlations in prostate tissue,
DNA binding profiles for ERG and the AR and published
transcriptional links (i.e. between HESS and HES6 (Fior &
Henrique 2005), HES1 and HES6 (Jacobsen et al. 2008),
reciprocal HES6 and HES1/5 negative-feedback (Bae et al.
2000, Salama-Cohen et al. 2005, Hatakeyama et al. 2006)
and AR and HES6 (Ramos-Montoya et al. 2014)), we
constructed models of putative gene expression networks
in benign prostate, prostate cancer and prostate cancer
harboring ERG-rearrangements (Fig. 3j). In this model, we
predict that i) HESS expression in benign epithelial cells
contributes to HES6 repression and ii) HES5S promoter
methylation and silencing in prostate tumours potentiates
AR activation of HES6 to start an oncogenic feed-forward
transcriptional signalling network (Fig. 3j). Finally, our
model suggests that in tumour cells harbouring an ERG
gene fusion iii) AR activation of the ERG fusion gene
creates a dynamic negative feedback loop impacting
on both the AR and HES6, creating a more complex
transcriptional network (Fig. 3j). Negative feedback loops
are common motifs in biological networks and have
been shown to increase robustness and speed-up response
times of transcriptional circuits (Rosenfeld et al. 2002,
Shen-Orr et al. 2002, Austin et al. 2006, Nevozhay et al.
2009). Therefore, our model may highlight a previously
unknown signalling node in ERG-positive tumours that
may increase the robustness and response-rates of key
pathways in prostate cancer.

ERG-fusion status affects HES1 and HES6 regulation
by the AR

We tested the putative AR-HES6 and AR-ERG-HES1-HES6
transcriptional networks in AR-positive prostate cancer
cells with and without TMPRSS2-ERG gene fusions (VCaP
and LNCaP, respectively; Fig. 4). Using an androgen
stimulation time-course, we were able to both track
changes in gene expression and map their dynamics in
prostate cancer cells with and without AR-regulated ERG-
fusion expression following AR stimulation (Tomlins et al.
2005, Massie et al. 2011). We observed early up-regulation
of the known AR-target gene TMPRSS2 in both ERG-fusion
positive and ERG-fusion negative cells in response to
androgen stimulation (Fig. 4a), while ERG induction
only occurred in TMPRSS2-ERG fusion positive cells
(Supplementary Figure 7a, see section on supplementary
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data given at the end of this article). Consistent with its
epigenetic silencing, we found low expression and no
change in HESS5 expression in either cell type (Supple-
mentary Figure 7b). HES1 expression was not significantly
changed in ERG-fusion negative cells, but showed strong
androgen induction in ERG-fusion positive cells (Fig. 4b).
HES6 expression was increased in ERG-fusion negative cells
but was downregulated in ERG-fusion positive cells
(Fig. 4c). Defining the timing of gene expression changes
(‘change-points’) for these genes in ERG-fusion positive
cells shows the sequence of events: i) TMPRSS2-ERG
upregulation; ii) HES1 upregulation; iii) HES6 downregula-
tion (Fig. 4e). These data show that HESI is only induced
by androgen signalling in ERG-fusion positive cells and
that induction precedes HES6 repression. This transcrip-
tional data are supported by genome-wide binding profiles
showing that the AR is recruited to the HES6 gene locus
(Fig. 4g) but not to the HESI gene locus in ERG-fusion
negative cells (Fig. 4f). However, in ERG-fusion positive
cells, ERG binding is widespread at the HES1 locus (Fig. 4f),
consistent with direct ERG regulation of the HES1 gene.

HES1 expression is dependent on ERG

To test this further, we looked at the expression of HES1
following ERG knockdown in VCaP cells (Mounir et al.
2014) (Fig. 4h and Supplementary Figure 6b, c, see section
on supplementary data given at the end of this article)
and found that HESI expression was dependent on the
expression of ERG (Fig. 4i and Supplementary Figure 6d, e),
further supporting our model. In addition to the timing of
expression changes in response to androgen stimulation,
these data support an AR-ERG-HES1-HES6 transcriptional
network in ERG-fusion positive prostate cancer cells.
While in ERG-fusion negative cells, a simpler AR-HES6
network seems to occur. In each case, these transcriptional
networks may have been preceded (and potentiated) by
HESS epigenetic silencing in early tumourigenesis.

Discussion

Our data are consistent with an early role in prostate
tumourigenesis for promoter-wide hypermethylation of
HESS5, supported by the very high frequency of this
epigenetic change and our observation that this was a
common alteration in a series of multi-focal tumours.
While the functional role of HESS methylation in prostate
tumourigenesis is yet to be determined, we found that
demethylation resulted in downregulation of the HESS-
target gene HES6, which has recently been shown to drive
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progression in prostate cancer via the androgen receptor
(Ramos-Montoya et al. 2014). Therefore, we speculate
that one potential effector mechanism of HESS silencing
could be de-repression of HES6 that in turn enhances
AR regulation of key oncogenic targets, contributing to
transformation and/or priming cells for subsequent acqui-
sition of aggressive phenotypes. In addition, HES5 has
established roles in tissue patterning during development
(Hatakeyama et al. 2004, Tateya et al. 2011), with HES5-null
cells promoting an imbalance in intestinal and neural stem
cell fate choices resulting from defective NOTCH signal-
ling (Sancho et al. 2013). Intriguingly defective NOTCH
signalling has recently been shown to drive clonal
expansions of P53 mutant cells (Alcolea et al. 2014), raising
the possibility that HESS silencing early in prostate
tumourogenesis might drive clonal expansions and
contribute to the ‘field effect’ observed in prostate tumours
(Bostwick et al. 1998, Hanson et al. 2006, Mehrotra et al.
2008). However, these and other downstream consequ-
ences of the early and common epigenetic silencing of
HESS5 will require careful dissection in future studies.

It is intriguing that this HES5-HES6/AR-HES6 tran-
scriptional network is affected by TMPRSS2-ERG gene
fusion status. While the functional consequences of this
remain to be explored, the implication of both AR and
ERG oncogenenic signalling axes provides further weight
for the importance of the HES transcriptional network
in prostate cancer. Future studies will need to include
overexpression of HESS in prostate cancer cells to establish
the direct consequences on HES6 and AR signalling, as
well as the phenotypic consequences of bypassing HESS
silencing. In addition, depletion of HES5 in 5-aza-
2'-deoxycytidine-treated prostate cancer cells (both ERG-
positive and ERG-negative) will allow an assessment of
de-repression of the endogenous HESS5 locus on gene
expression and cellular phenotypes. Finally, future studies
should also address the mechanisms upstream of HESS
silencing, the high frequency of which would be consis-
tent with either a strong-selective pressure or a targeted
silencing of HESS, for example via loss of GCM as
described in neural stem cells (Hitoshi et al. 2011).

This report highlights HESS silencing as an early and
frequent event in prostate tumourigenesis that may serve
as a useful biomarker or as a starting point for preventive
medicine or targeted intervention strategies.

Supplementary data
This is linked to the online version of the paper at http://dx.doi.org/10.1530/
ERC-14-0454.
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