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Abstract: The long-tailed goral (Naemorhedus caudatus) is an endangered species found in the moun-
tains of eastern and northern Asia. Its populations have declined for various reasons, and this
species has been designated as legally protected in South Korea. Although various ecological studies
have been conducted on long-tailed gorals, none have investigated the gut microbiome until now.
In the present study, we compared the diversity and composition of the gut microbiome of seven
populations of Korean long-tailed gorals. By analyzing the gut microbiome composition for each
regional population, it was found that four phyla—Firmicutes, Actinobacteriota, Bacteroidota, and
Proteobacteria—were the most dominant in all regions on average. The alpha diversity of the gut
microbiome of the goral population in the northern regions was high, while that in the southern
regions was low. Through the analysis of beta diversity, the seven long-tailed goral populations
have been divided into three groups: the Seoraksan population, the Samcheock population, and the
Wangpicheon population. It was possible to confirm the regional migration of the animals using
the gut microbiome based on the site-relational network analysis. It was found that the most stable
population of long-tailed gorals in Korea was the Seoraksan population, and the closely related
groups were the Samcheok and Wangpicheon populations, respectively. Wangpicheon appeared to
be a major point of dispersal in the migration route of Korean long-tailed gorals.

Keywords: Naemorhedus caudatus; long-tailed goral; geographical relationship; gut microbiome; 16s
rRNA sequencing; endangered species; ruminant; network analysis

1. Introduction

The long-tailed goral (Naemorhedus caudatus) is a vulnerable species distributed in the
eastern and northern Asian mountains, including Russia, China, and Korea [1,2]. In South
Korea, long-tailed gorals have experienced a genetic bottleneck effect by the rapid decrease
in their population size as thousands of gorals died due to heavy snowfalls and hunting in
1964 and 1965. Their populations declined sharply due to poaching, habitat destruction,
and abnormal climate conditions, resulting in decreased genetic diversity [3,4]. As a result,
the long-tailed gorals were designated as an endangered species by the Ministry of the
Environment, and as a natural monument by the Cultural Heritage Administration. In
addition, various studies are being conducted to prevent extinction, but no research has
been investigating the gut microbiome in this species yet.

The animal gut microbiome is determined by its host [5–7] and can reflect geographic
features that characterize the host itself [8], which contributes to understanding the animal’s
ecology. Studying the animal gut microbiome by analyzing variable data allows researchers
to overcome the limitations of a biogeographic perspective. Previous research methods
mainly studied haplotypes by region using partial mitochondrial DNA [3]. This type of
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study can reveal regional differences, but they are mainly used for phylogenetic research,
and they cannot adequately explain the relationships between regions. The majority of
other studies related to long-tailed gorals are based on field research. In the field, photos
are taken using a camera trap to identify individuals [9], or a geographic information
system is used to analyze habitat use [10]. Still, field research cannot address issues such as
the regional relationships between goral populations in different regions.

However, the gut microbiome of animals presents a species-specific pattern and
various information can be obtained from it, ranging from the species to the genus, family,
order, class, and phylum, and each taxon is composed of various strains. Therefore, it is
possible to explain long-tailed gorals’ regional characteristics and relationships based on
the wide range of microbial information available. Most studies describe long-tailed gorals
as a resident species [11]. However, the absence of migration between populations cannot
explain the presence of long-tailed gorals in new areas. Therefore, the purpose of this
study was to analyze the diversity and composition of the gut microbiome among different
populations, based on the regional relationship of long-tailed goral populations and to
understand their migration routes and patterns from the microbial ecology perspective.

2. Materials and Methods
2.1. Sample Collection

Long-tailed goral fecal samples were collected from six conservation sites and one
nonconservation site. The former are the Seoraksan National Park, Odaesan National
Park, Woraksan National Park, Taebaeksan National Park, Juwangsan National Park, and
the Wangpicheon Conservation Area, and the nonconservation site is the Samcheok Area
(Figure 1). To avoid soil contamination, only fresh feces from the upper layers were selected
for sampling. After collection, samples in sterile low-density polyethylene containers were
sent to the laboratory and stored at −80 ◦C until DNA was extracted.

Figure 1. Map of the seven study sites in South Korea, where fecal samples were collected, and
photo of the long-tailed goral. Abbreviations: SA = Seoraksan National Park (n = 24); OD = Odaesan
National Park (n = 8); WA = Woraksan National Park (n = 6); TB = Taebaeksan National Park (n = 3);
SC = Samcheok Area (n = 27); WPC = Wangpicheon Conservation Area (n = 14); JW = Juwangsan
National Park (n = 4). Map generated from QGIS 3.10.12 with VWORLD map.

2.2. Microbiota Analysis

Total DNA was extracted from 250 mg of homogenized fecal solution with the Power
Fecal DNA Isolation Kit (MoBio Laboratories Inc., Carlsbad, CA, USA) following the man-
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ufacturer’s protocol. The extracted metagenomic DNA was used as template for gene am-
plification of the V4–V5 region of the 16S ribosomal ribonucleic acid (rRNA). The bacterial
16S ribosomal RNA gene sequence-biased primers 515F (5′-GTGCCAGCMGCCGCGG-3′)
and 907R (5′-CCGTCAATTCMTTTRAGTTT-3′) were used to amplify polymerase chain
reaction fragments that were 420 base pairs in length [12]. Each sequencing sample was
loaded on an Ion 318 Chip Kit v2 BC (Thermo Fisher Scientific, Waltham, MA, USA) and
sequenced on an Ion Torrent Personal Genome Machine (PGM) (Thermo Fisher Scientific,
Waltham, MA, USA) for 1250 flows using an Ion PGM Hi Q Sequencing Kit (Thermo Fisher
Scientific, Waltham, MA, USA) [13]. The Ion Torrent PGM was used along with the specific
pipeline software Torrent Suite v 5.0 (Thermo Fisher Scientific, Waltham, MA, USA) to
generate sequence reads, trim adapter sequences, and filter and remove poor-signal profile
reads from the sequencing data [14]. The primer-trimmed files were then imported into
Quantitative Insights Into Microbial Ecology 2 (QIIME2) v. 2020.11 software [15,16] for
microbiota analysis. Statistical and network analyses were performed in R using the phy-
loseq package [17,18]. Alpha diversity was measured through the Observed, Chao1, ACE,
Shannon, and Simpson indices with R software. The beta diversity was calculated through
a maximum distance analysis, with a partial least squares discriminant analysis (PLS-DA)
using the mixOmics package [19] and Principal Coordinate Analysis with Bray-Curtis
distances in R. All other statistical processing was performed in R.

3. Results
3.1. Biodiversity Patterns

The analysis of the composition and biodiversity of the gut microbiome for each
regional population of long-tailed gorals in South Korea revealed that, at the phylum
level, the population of Seoraksan National Park presented the most various biodiversity,
with 17 phyla, followed by the population of Samcheok Area with 14 phyla, and that of
Wangpicheon Conservation Area, with nine phyla. Eight phyla were detected in the Odae-
san National Park, Taebaeksan National Park, and Woraksan National Park populations.
(Figure 2). Surprisingly, the Juwangsan National Park population contained only four
phyla. In the seven populations of long-tailed goral analyzed, the four most dominant
phyla detected in the gut microbiome were: Firmicutes, Actinobacteriota, Bacteroidota,
and Proteobacteria. The percentage of the gut microbiome varied by region (Table S1). As
a result of comparing abundance at the phylum level, there were mainly differences in four
phyla (Figure S1).

As for the analysis of the composition and biodiversity of the gut microbiome for each
regional population of long-tailed gorals in South Korea on the genus level, the numbers
of genus of each population was a very different among the regions. The population of
Seoraksan National Park presented the most various biodiversity, with 262 genera, and the
population of the Samcheok Area had 136 genera, while the Wangpicheon Conservation
Area had 45 genera. Forty-three genera were detected in Odaesan National Park, followed
by the population of Taebaeksan National Park, which had 31 genera, and that of Woraksan
National Park, with 30 genera. (Figure 2). Surprisingly, the Juwangsan National Park
population contained only 17 genera. As a result of comparing abundance at the genus
level, there were mainly differences in six genera (Figure S2).

Alpha diversity indicators, based on sampling sites, showed comparable values for
Observed OTU index, Chao1 index, ACE index, the Shannon index, and Simpson’s index.
The diversity indices of the gut microbiome in the Seoraksan National Park population
were the highest, while those in the Woraksan National Park and Juwangsan National
Park populations were the lowest. The analysis of all five indices showed no difference in
microbiome diversity among the Juwangsan National Park, Wangpicheon Conservation
Area, and Woraksan National Park (Figure 3). The Samcheok Area and Seoraksan National
Park have shown a broad variation in all of diversity indices. Surprisingly, Seoraksan
showed a significant difference from all other regions.
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Figure 2. Bar charts representing the relative abundance of the total 16S rRNA sequence, taxonomically classified at the
(A) phylum level and (B) genus level. Abbreviations: JW = Juwangsan National Park; OD = Odaesan National Park;
SC = Samcheok Area; SA = Seoraksan National Park; TB = Taebaeksan National Park; WPC = Wangpicheon Conservation
Area; WA = Woraksan National Park.

By the beta diversity analysis using Principal Coordinate Analysis with Bray-Curtis
distances, all OTUs were in the 5% range, showing three core groups: Seoraksan National
Park and Samcheock Area groups, Wangpicheon Conservation Area group, and other
group (Figure 4). Seoraksan National Park, Samcheok Area, Wangpicheon Conservation
Area, and Woraksan National Park showed wide dispersion. Most OTUs from Soeraksan
and Samcheok were coordinated on the positive PCoA1 axis, and Wangpicheon, Woraksan,
Odaesan, Juwangsan and Taebaeksan areas were coordinated on the negative PCoA1 axis.
The OTUs of Wangpicheon and Woraksan sites were coordinated at the positive part of the
PCoA2 axis and that of Samcheok, Seoraksan, Odaesan, and Juwangsan were located at
the negative coordinates.
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Figure 3. Alpha diversity indices of the gut microbial communities at each sampling site. * p < 0.05, ** p < 0.01, *** p < 0.001.

Figure 4. (A) Principal Coordinate Analysis using Bray−Curtis distances. Abbreviations: JW = Juwangsan National Park;
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OD = Odaesan National Park; SC = Samcheok Area; SA = Seoraksan National Park; TB = Taebaeksan National Park;
WPC = Wangpicheon Conservation Area; WA = Woraksan National Park. (B) Maximum distance analysis of the gut
microbial communities between sampling sites. The yellow, green, and gray backgrounds indicate the maximum distance
in the Wangpicheon Conservation Area, Seoraksan National Park, and Samcheok Area, respectively.

The total sample was divided into the following three groups in the beta-diversity
analysis using PLS-DA with maximum distance: Seoraksan National Park, Samcheok Area,
and Wangpicheon Conservation Area (Figure 4). The beta-diversity plots of Seoraksan
National Park and Samcheok Area showed a high degree of dispersion, while those of the
Wangpicheon Conservation Area had a low degree of dispersion. Except for these three
groups, the other plots were located close to the Wangpicheon Conservation Area.

3.2. Site-Relational Network Analysis

Figure 5 depicts the relative regional relationships between long-tailed goral popula-
tions obtained from network analysis. Each network node represents the gut microbiome
of long-tailed gorals for a particular region. The color of each line indicates that the mi-
crobiome is diffused from the network node of that color. For example, if a green node
is connected to another node with a green edge, it means it has spread from that green
node. In regional terms, diffusion implies the migration of the animals. The long-tailed
gorals of Seoraksan National Park had the closest relationship with those of the Samcheok
Area, and there was migration between the two populations. The population of Odaesan
National Park was connected to those of the Samcheok Area, Woraksan National Park,
Juwangsan National Park, and Taebaeksan National Park instead of being connected to
the Seoraksan population, which was located at the nearest distance. The population of
Taebaeksan National Park was connected to that of the Wangpicheon Conservation Area.
The population of Samcheok Area was connected to those of Seoraksan National Park,
Odaesan National Park, Taebaeksan National Park, Wangpicheon Conservation Area, and
Woraksan National Park very broadly. The population of Woraksan National Park was
connected to those of the Wangpicheon Conservation Area and Odaesan National Park.
The population of Wangpicheon Conservation Area was connected to those of Seoraksan
National Park, Odaesan National Park, the Samcheok Area, and Juwangsan National Park.
Finally, the population of Juwangsan National Park was connected to that of the Samcheok
Area. It was found that the goral populations of each region migrated from at least one area.
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Figure 5. Site-relational network connecting long-tailed goral populations to habitat sites. Abbreviations: JW = Juwangsan
National Park; OD = Odaesan National Park; SC = Samcheok Area; SA = Seoraksan National Park; TB = Taebaeksan
National Park; WPC = Wangpicheon Conservation Area; WA = Woraksan National Park.

4. Discussion
4.1. Biodiversity and Regional Relationships

This is the first research study investigating the regional relationships between long-
tailed goral populations and gut microbiome biodiversity. The populations in each region
showed different diversity by presenting different percentages of microbiota phyla and
genera (Figure 2). In the alpha diversity results, it was found that the gut microbiome
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of long-tailed gorals was more diverse toward the northern regions (Seoraksan National
Park, Odaesan National Park, and Taebaeksan National Park), than toward the south
(Juwangsan National Park, Woraksan National Park, and the Wangpicheon Conservation
Area) (Figure 3). In previous studies, regardless of environmental conditions, microbiome
diversity was shown to depend on resource availability, being high in food-rich areas and
low in food-limited areas [20]. Also, studies have shown that the more diverse the gut
microbiome is [21], the healthier it is, and therefore habitat conditions appear unfavorable
toward the southern regions. Among the seven populations, Seoraksan showed the highest
values in the indices of alpha diversity of gut microbiome, therefore, the goral population
at this site seems healthier than those at the other sites. However, the populations in
Juwangsan National Park, located in the southern margin, Woraksan National Park in
the southwestern margin, and Wangpicheon Conservation Area in the eastern marginal
region presented the lowest alpha diversity values. Based on these findings, more attention
should be focused on the management and protection of long-tailed goral populations in
more southern habitats, particularly in Juwangsan National Park, Woraksan National Park,
and Wangpicheon Conservation Area.

In previous studies, the genetic diversity of Korean long-tailed goral populations,
based on the analysis of partial mitochondrial DNA, was divided into two—north and
south—geographical groups [3]. However, in the present gut microbiome research, con-
ducted through beta diversity analysis, the populations were divided into three groups: by
the PCoA Bray-Curtis distance, they were divided into (1) the Seoraksan National Park and
Samcheock Area group, (2) the Wangpicheon Conservation Area group, (3) the Juwangsan
National Park and Odaesan National Park group, and by PLS-DA with maximum distance,
it was divided into (1) the Seoraksan National Park group, (2) the Samcheok Area group,
and (3) the Wangpicheon Conservation Area group (Figure 4). Among the seven regions
examined in our study, those with a self-sustainable population comprising at least one
hundred individual gorals were Seoraksan National Park, Odaesan National Park, Wang-
picheon Conservation Area, and Woraksan National Park. The maximum distance method
analysis of beta diversity for the intestinal microbiota revealed that the Woraksan National
Park—despite having a self-sustainable population—could not be divided into an indepen-
dent group and belonged to the Wangpicheon Conservation Area. This seems to be due to
the reintroduction of rescued individuals from several different populations. However, the
verification of this hypothesis needs more detailed research conducted on a large number
of samples. Although the region is not designated as a conservation or protected area,
the Samcheok goral population appeared as an independent group and, together with the
Seoraksan and Wangpicheon Conservation Area, Samcheok has an already sustainable
population size. An increasing effort is needed to conduct detailed research studies on how
to manage these populations, trace changes in them, and regulate the coexistence of the
animals and the human population living in nearby areas.

4.2. Home Range, Dispersal, and Migration

Wild animals have three moving behaviors related to their habitat: staying within
a certain range of an area (home range), scattering out of the herd due to competition
(dispersal), or moving out of their home range (migration) [22]. Several studies on gorals
investigating the seasonal and monthly home range, altitude changes, and habitat use
have been conducted using GPS collars, but dispersal and migration in gorals has not been
studied yet [23–27]. However, studies of these last two factors have been conducted on
other species related to gorals. For example, it was shown that in male red deer (Cervus
elaphus), 45% of the population migrated, and young males migrated up to 65 km [28].
Sika deer (Cervus nippon) migrated between their summer and winter habitats and trav-
eled up to 31.9 km [29]. In the case of the European roe deer (Capreolus capreolus), 40%
of the population migrated from the summer highlands to the winter lowlands over a
distance of 12.0 ± 6.2 km [30], and males dispersed as one- or two-year-olds, or remained
philopatric [31]. It should be noted that these studies investigated dispersal and migration
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within the same region or population, and that no studies of dispersal and migration
between regions or populations have been conducted.

4.3. Site-Relational Network Analysis and Regional Migration

In the present study, we used site-relational networks with social network analysis and
Animal Social Network Repositories, which are valuable tools to understand the patterns,
evolution, and consequences of sociality [32]. We used network analysis because it requires
data accumulation, and the biodiversity of the abundant microbial species constituting
the gut microbiome can be effectively used as metadata [33]. So, for the first time, we
have applied gut microbiome metadata to the long-tailed gorals, and we have analyzed
migration patterns between regions or between populations (regional migration) in relation
to diversity and composition changes of the gut microbiome.

The results of this network analysis showed that active migrations of goral populations
occur between regions (Figure 5), even though the Samcheok Area is located more than
100 km away from Seoraksan National Park (Figure 1). Based on the analysis, these two
regions are the most closely related (Figure 5), providing evidence that north-to-south
migration occurred in the past. The present metadata analysis of the gut microbiome
revealed that the Samcheok population is closest to the Seoraksan population, which
is in contrast with a previous study suggesting that the Samcheok population was not
included in the Seoraksan population [34]. The other populations were closely related
to the Wangpicheon population. The site-relational network results obtained from the
metadata analysis of the gut microbiome of long-tailed gorals have shown that a large
migration flow occurred from north to south between populations, while a small migration
flow took place in the opposite direction in a few cases. Each region showed a highly
complex migration relationship. Long-tailed gorals seem to be actively migrating between
the Samcheok Area and the Wangpicheon Conservation Area. In Juwangsan National Park,
which is located at the southern edge the of distribution boundary of this species, gorals
were discovered a few years ago and are known as a new population of small individual
gorals. The connection between the Juwangsan National Park and Odaesan National
Park populations, and the population of Samcheok Area (Figure 5 JW1, JW2), which is
considerably distant, is explained by the fact that there was a migration of long-tailed
gorals between Odaesan National Park and the Samcheok Area. It seems that a part of
the individuals migrated to Juwangsan National Park. Woraksan National Park is the
first reintroduction area used for the long-tailed goral restoration project, and here dozens
of individuals rescued from other areas have been released. The long-tailed gorals of
Woraksan National Park were diversely linked with the populations of Seoraksan National
Park, Odaesan National Park, Wangpicheon Conservation Area, and the Samcheok Area.
These results contrast with previous studies, which showed low connectivity between goral
populations from two different regions [35]. Our metadata analysis of the gut microbiome
of long-tailed gorals could adequately explain the variation in the diversity of populations
and geographical migration between populations.

5. Conclusions

Although a large number of ecological studies exist on the long-tailed goral, the rela-
tionships or differences between populations in South Korea—and especially the possibility
of migration—remained unclear. In this study we have used a gut microbiome metadata
for network analysis. The alpha diversity, beta-diversity, and network analyses of the
microbiome produced three different results. First, it was revealed that the Seoraksan
population is the most stable and is a major migrating population. Second, there are
three separate populations (Seoraksan, Samcheok, and Wangpicheon). Third, based on the
network analysis, it appears that active migration occurs between populations, along a
north-to-south migration route, and, occasionally, a few individual gorals move from south
to north. Although Samcheok was not a designated as a protected area, this population
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was closely related to the Seoraksan population, and represented an independent group
with sustainable individual gorals.

Overall, the present metadata analysis of the gut microbiome of long-tailed gorals
could adequately explain the variation in the diversity of populations and geographical
migration between populations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/microorganisms9092002/s1. Table S1: The composition percentage of five phyla of gut micro-
biome for each region. Figure S1: Statistical comparisons of abundances for phyla (Wilcoxon rank
sum tests). Figure S2: Statistical comparisons of abundances for genera (Wilcoxon rank sum tests).
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