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Suppressor of cytokine signaling (SOCS) proteins are major negative feedback  
regulators of cytokine signaling mediated by the Janus kinase (JAK)-signal transducer 
and activator of transcription signaling pathway. In particular, SOCS1 and SOCS3 are 
strong inhibitors of JAKs and can play pivotal roles in the development and progression 
of cancers. The abnormal expression of SOCS1 and SOCS3 in cancer cells is asso-
ciated with the dysregulation of cell growth, migration, and death induced by multiple 
cytokines and hormones in human carcinomas. In addition, the mechanisms involved 
in SOCS1- and SOCS3-regulated abnormal development and activation of immune 
cells in carcinogenesis, including T cells, macrophages, dendritic cells, and myeloid- 
derived suppressor cells, are still unclear. Therefore, this study aims to further discuss 
the molecules and signal pathways regulating the expression and function of SOCS1 
and SOCS3 in various types of cancers and elucidate the feasibility and efficiency of 
SOCS-based target therapeutic strategy in anticancer treatment.
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inTRODUCTiOn

The occurrence and progression of cancer are closely linked to the microenvironment of tumor. 
In tumor microenvironment, many inflammatory cytokines, such as interleukin (IL)-6 (1), 
granulocyte colony-stimulating factor (G-CSF) (2), interferon (IFN)-α (3), IFN-γ (4), and leptin 
(5), contribute to tumorigenesis by promoting tumor growth and invasion. Cytokines regulate 
the proliferation, apoptosis, and migration of tumor cells by binding to cell-surface receptors 
and activating intracellular signal transduction cascades. Janus kinase (JAK)-signal transducer 
and activator of transcription (JAK/STAT) signaling pathways are most frequently activated 
upon cytokine stimulation. However, the activation of JAK/STAT signaling pathways in normal 
cells is short and quick because of the rapid triggering of varied negative feedback loops, which 
efficiently block the STAT signaling pathways and the activities of downstream functional 
proteins (1). Such biological process is disrupted by dysfunctional negative feedback loops, 
which induce the constitutive activation of STAT signaling pathway, oncogenic transformation, 
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tumor cell invasion, and metastasis (6). At least three kinds 
of inhibitors, namely, protein tyrosine phosphatases (such as 
SHP-1 and CD45), protein inhibitors of activated STATs, and 
suppressor of cytokine signaling (SOCS) proteins, contribute 
to the negative regulation of cytokine signaling. Among 
these inhibitors, the SOCS family includes the most frequent 
and important inducible negative regulators upon cytokine 
stimulation.

To date, over 900 publications regarding the relationship 
between the SOCS family and cancer exist (7). The abnormal 
expression of SOCSs regulates tumor development in various 
tumor cells. Among them, SOCS1 and SOCS3 are the critical 
molecules in the development of cancers (Table 1) (8–10). The 
abnormal expression of SOCSs has been discovered not only 
in cancer cells but also in immune cells in the tumor micro-
environment. SOCS1 and SOCS3 are important regulators of 
tumor-infiltrated T cell, dendritic cells (DCs), myeloid-derived 
suppressor cells (MDSCs), and macrophages (Figure 1) (11–13). 
Therefore, the present study focused on the similarity and dis-
parity of the expression, distribution, function, and regulation 
of SOCS1 and SOCS3 between tumor cells and immune cells in 
the tumor microenvironment. Consequently, the feasibility and 
efficiency of SOCS-based target therapeutic strategy in anticancer 
treatment were elucidated.

SOCS PROTein FAMiLY

The SOCS protein family consists of eight classical members, 
including SOCS1–7 and cytokine-induced Src homology (SH2)-
containing protein (CIS) (7). Members of the SOCS family 
present similar structures, such as a conserved SH2 domain, 
extended SH2 domain, a SOCS box in the C-terminal, and an 
N-terminal region of variable length. In addition, SOCS1 and 
SOCS3 possess a kinase inhibitory region (KIR) that serves as 
a pseudosubstrate for JAKs, thereby blocking the JAK function. 
According to orthologous features, SOCS proteins are divided 
into three subgroups: CIS and SOCS1–3, SOCS4/5, and SOCS6/7 
(14, 15). CIS and SOCS1–3 group is strictly associated with the 
control of cytokine signaling (4, 16), whereas SOCS4–7 homologs 
regulate the growth factor-induced receptor tyrosine kinase 
signaling (17, 18).

Among the SOCS subfamily, SOCS1–3 are well characterized 
and the most potent negative regulators of proinflammatory 
cytokine signaling through triggering a feedback loop on 
the JAK/STAT pathway (19, 20). Upon activation of JAKs, 
SOCS-mediated negative regulation loop is initiated. First, 
the conserved SOCS box in the C-terminus recruits Elongin 
B/C, Cullin 2, and Ring-box 2 to form an ubiquitin E3 ligase 
complex, which promotes the degradation of SH2-binding 
proteins by proteasome (21). Afterward, the SH2 domain 
competitively combines with the phosphorylated tyrosine sites 
of the cytokine receptors and prevents STAT activation (1). 
Moreover, the KIR structures in SOCS1 and SOCS3 interact 
with the phosphotyrosine sites on JAK kinases to hinder the 
activation of STAT proteins (22, 23). Both SOCS1 and SOCS3 
directly inhibit JAK1, JAK2, and TYK2 (24–26). In addition, 
SOCS1 and SOCS2 display critical roles in regulating STAT3 

and STAT5 activation (27, 28), and SOCS3 can regulate other 
STAT pathways, such as STAT1 (29) and STAT4 (30).

SOCS AnD TUMORS

SOCS1 in Tumor
Suppressor of cytokine signaling 1 expression is affected by 
various cytokines and hormones. SOCS1 displays a potent 
antiproliferative effect on tumor cells and is dependent on 
the inhibition of STAT3 and on other signaling proteins 
(31). In non-small cell lung cancer cells, SOCS-1 inhibits 
the activity of FAK-dependent signaling pathway, except for 
JAK/STAT signaling, by suppressing the phosphorylation of 
FAK tyrosine (32, 33) and promoting polyubiquitination and 
the degradation of FAK in a SOCS box-dependent manner 
(21). In prostate cancer, SOCS1 expression decreases after 
androgen-deprivation treatments and is elevated in recur-
rent patients to inhibit cell proliferation. SOCS1 also exerts 
a growth-inhibitory function through downregulation of 
cyclin D1, cyclin-dependent kinases2 (CDK2), and CDK4, 
in prostate cancer (34). Furthermore, SOCS1 inhibits the 
invasion and migration of colorectal tumors by preventing 
the epithelial–mesenchymal transition and promoting the mes-
enchymal–epithelial transition by increasing E-cadherin and 
decreasing ZEB1 observed in cell lines and mouse xenograft 
models (35). SOCS1 expression exhibits a correlation with the 
clinical stages of colorectal tumors. Tumors at stages II–IV 
express lower levels of SOCS1 mRNA than those of tumors at 
stage I; additionally, SOCS1 protein is highly expressed in all 
of the well-differentiated adenocarcinomas (35). Thus, SOCS1 
can be regarded as a molecular marker of the disease progres-
sion of colorectal tumors. SOCS1 expression in breast tumor 
tissues and cell lines might be caused by proinflammatory 
cytokine, growth hormone, and prolactin in the tumor micro-
environment (36, 37), which result in the loss of sensitivity to 
subsequent prolactin stimulus (38). Breast cancer patients with 
positive expression of SOCS1 protein exhibit a decreased risk 
of detectable circulating tumor cells in the peripheral blood. 
Therefore, SOCS1 is critical for the successful control of tumor 
dissemination (39). High expression level of SOCS1 mRNA 
is associated with early tumor stages and improved clinical 
outcomes in breast cancer (40). SOCS1 expression in chronic 
myeloid leukemia correlates with poor cytogenetic response to 
IFN-α and short progression-free survival time (41). Evidence 
indicated that SOCS1 downregulates the biological functions 
of IFN (42, 43). Hence, aberrant SOCS1 expression might 
induce the resistance against IFN-α therapy and cause poor 
prognosis, which implied that SOCS1 might be a negative 
prognostic biomarker in the chronic myeloid leukemia treated 
with IFN-α.

Taken together, SOCS1 shows an antitumor effect in most 
of tumors through inhibiting tumor proliferation, attenuating 
tumor invasion, and reducing the sensitivity of tumor cells to 
cytokines or hormones. The expression of SOCS1 is associated 
with clinical stages of tumor. In tumors at early stage, elevated 
SOCS1 is frequently observed compared with those tumors at 
advanced stage, which could be regarded as a molecular marker 
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TABLe 1 | Suppressor of cytokine signaling (SOCS) 1 and SOCS3 are critical molecules in the development of cancers.

Genes Cell types Data sources expression Function Regulated target genes Reference

SOCS1 Non-small-cell lung cancer cell Cell lines Upregulation Suppress proliferation STAT3, Janus kinase (JAK) 1, 
JAK2, and FAK

(33)
Mouse xenograft model
Cell lines Downregulation Enhance cell growth, viability, invasion, and migration STAT3 (91)

Prostate cancer cell Cell lines
Human samples

Downregulation Cause a potent growth stimulation of cell lines Cyclins D1 and E, cyclin-
dependent kinases2 (CDK2), 
CDK4

(34)

Colorectal tumor cell Human samples
Cell lines
Mouse xenograft model

Upregulation
Upregulation

The expression level was negatively related with tumor stages
Prevent the EMT and metastases E-cadherin, ZEB1, and 

fibronectin-1

(35)

Breast cancer cell Human samples
Cell lines
Human samples
Cell lines

Upregulation

Downregulation

Better clinical outcomes

May elicit increased epithelial proliferation and/or survival in response to cytokines

(37)

(73)

Chronic myeloid leukemia cell Human samples Upregulation A shorter progression-free survival time
Confer resistance against cytokine therapy

Interferon (IFN)-α (41)

Lymphoma cell Cell lines
Human samples

Downregulation Promote cell proliferation JAK2 and STAT5 (80)

Dendritic cells (DCs) Mice model Downregulation Induce an enhanced antitumor inflammation and suppress tumor development
Induce stronger Th1-type responses
Induce maturation of DCs

IL-12
IFN-γ/STAT1
STAT1

(51)
(52)
(53)

T cells Mice model Upregulation Inhibit Th1 differentiation
Is necessary for Th17 differentiation

STAT1 
STAT3 and SMADs

(67)
(69)

SOCS3 Breast cancer cell Cell lines
Mouse xenograft model

Downregulation
Upregulation

Upregulate inflammatory cytokine IL-6
Inhibit tumor growth and reduce circulating tumor cells

IL-6/STAT3/NF-κB (47)

Prostate cancer cell Cell lines Upregulation Inhibit androgen-mediated proliferation and secretion CDK2, CDK4, cyclins E, and D1 (44)

Melanoma cell Cell lines Upregulation Influence the responsiveness of melanoma cells to IFN-a and IFN-γ STAT1, ISG-15, OAS1, and 
IRF1

(49)

Malignant pleural mesothelioma 
cell

Cell lines
Pleural xenograft model Upregulation

Induce apoptosis and partial G0/G1 arrest and inhibit tumor growth JAK/STAT3, ERK, FAK, and p53 (45)

Cholangiocarcinoma cell Cell lines
Human samples

Downregulation
Downregulation Resistance to apoptosis

IL-6/STAT3
IL-6/STAT3

(74)
(75)

Head and neck squamous cell 
carcinoma cell

Human samples
Cell lines

Downregulation
Upregulation Cause growth inhibition and apoptosis STAT3, Bcl-2, Bcl-xL (8)

Hepatocellular carcinoma cell Cell lines Downregulation Promote cell growth and migration IL-6/JAK/STAT3 and FAK (9)

Lung cancer cell Cell Lines
Human samples
Cell Lines

Downregulation

Upregulation Induce apoptosis and growth suppression

STAT3 (76)

(Continued )
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of cancer progression. However, the concrete molecular mecha-
nisms regulating the expression of SOCS1 in different stages of 
tumors have not been fully elucidated.

SOCS3 in Tumor
Suppressor of cytokine signaling 3 can act either as an oncogene 
or a tumor suppressor, depending on cellular context. SOCS3 
is frequently silenced in cancer, thereby leading to a growth 
advantage for cancer cells. Similar to SOCS1, SOCS3 significantly 
diminishes the cell cycle regulatory proteins CDK2 and CDK4, 
cyclin E, and cyclin D1 in prostate tumor (44). The overexpression 
of SOCS3 induces apoptosis and partial G0/G1 arrest by inhibit-
ing JAK1, ERK, and FAK signaling pathways in malignant pleural 
mesothelioma EHMES-1 and H226 cell lines. Furthermore, 
SOCS3 exhibits antitumor activity in a mesothelioma xenograft 
model, such as reducing tumor volume and tumor nodule weight 
and inducing tumor apoptosis (45).

Suppressor of cytokine signaling 3 can potentially hinder the 
receptor recruitment of the SH2 domain-containing tyrosine 
phosphatase to Tyr759 of gp130, which results in inhibition 
of ERK activation (9, 46). Methylation silencing of SOCS3 
increases the IL-6/JAK/STAT3 and FAK phosphorylation 
in human hepatocellular carcinoma (9). The restoration of 
SOCS3 decreases STAT3 and FAK phosphorylation and FAK 
protein level, thereby inhibiting cell migration and growth 
(9). SOCS3 can also negatively control the STAT3/NF-κB 
signaling pathway in a triple-negative breast cancer model. 
Downregulation of SOCS3 correlates with increased level of 
IL-6 (47). The molecular and mutational analyses of breast can-
cers revealed that inactivation of tumor suppressors, p53, and 
PTEN is accompanied with downregulation of SOCS3, which is 
forcefully associated with the development and progression of 
triple-negative breast cancer (47). Additionally, the knockdown 
of p53 and PTEN in MCF10 cells promotes the downregulation 
of SOCS3 at translational/posttranslational level; such action is 
attributed to the proteasomal degradation after the activation 
of proinflammatory IL-6/STAT3/NF-κB signaling pathway 
rather than DNA methylation in colorectal and hepatocellular 
carcinomas (9, 48). This study provided a new understanding 
regarding the mechanism of SOCS3 silencing. SOCS3 can 
be also detected in breast cancer tissue samples because the 
number of analyzed samples is relatively small (3 normal breast 
tissues, 6 in situ ductal carcinomas, and 11 infiltrating ductal 
carcinomas) (37). Increasing the number of samples may be 
necessary to validate this contradictory result. Melanoma cells 
abnormally express high levels of SOCS3, which influences 
the responsiveness of melanoma cells to IFN-α and IFN-γ 
and consequently reduces the efficiency of immunotherapy 
(49). This study demonstrated that the expression of SOCS3 
in melanoma is a disadvantage.

Suppressor of cytokine signaling 3 regulates numerous tumors 
through inhibition of various signaling pathways and functioning 
as a tumor suppressor gene. Similar to SOCS1, the expression 
and function of SOCS3 vary significantly among different tumor 
types. SOCS3 also promotes the progression of melanoma and 
attenuates the therapeutic efficacy of IFN-α and IFN-γ treatments. 
Therefore, a comprehensive understanding of the functions and 
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FiGURe 1 | Role of suppressor of cytokine signaling (SOCS) 1 and SOCS3 in dendritic cells (DCs) (A), macrophages (B), myeloid-derived suppressor 
cells (MDSCs) (C), and T-cells (D). (A) SOCS1-silenced DCs induce an enhanced antigen-specific CTL response and antitumor activity; STAT6 signaling is 
inhibited by SOCS1, and SOCS3 may be required for DCs maturation. SOCS3 promotes indoleamine 2,3-dioxygenase degradation and enhances DCs antitumor 
effects. (B) SOCS3 could regulate macrophage polarization. (1) SOCS3 deficiency in macrophages prevents M1 activation and promotes anti-inflammatory 
responses. Therefore, SOCS3 is necessary for M1 macrophage polarization in inflammatory diseases. (2) However, SOCS3 deficiency in macrophages prevents 
cancer metastasis and suppresses tumor growth, which is related to elevated M1 cytokines levels. SOCS1 promotes M2 phenotype. (C) Genetic deletion of SOCS3 
in myeloid cells significantly elevates the levels of MDSCs and increases the immunosuppressive activities. (D) SOCS1-deficient naive CD4+ T cells are 
predominantly differentiated into Th1 and poorly into Th17. SOCS1 is necessary for Th17 differentiation by suppressing the antagonistic effect of interferon (IFN)-γ on 
both STAT3 and SMAD. SOCS3 promotes Th2 and inhibits Th1 differentiation through inhibition of interleukin (IL)-12-mediated STAT4 activation. Tregs are deficient 
in SOCS3 protein expression. IL-12 permits the conversion of mouse IL-17-producing CD8+ T (Tc17) cells to IL-17/IFN-γ-double producing CD8+ T cells. Such 
conversion is caused by the prohibitive epigenetic modifications of SOCS3 gene promoters.
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mechanisms regulating the expression of SOCS1 and SOCS3 
might facilitate their future clinical applications, either as diag-
nostic or prognostic biomarkers.

SOCS AnD iMMUnOCYTeS

SOCS in DCs
Suppressor of cytokine signaling 1 is critical in the regulation 
of the function of DCs (11). SOCS1-silenced DCs can induce 
an enhanced antigen-specific CTL response and antitumor 
activity (50). SOCS1 can maintain the self-tolerance of DCs at 
the host level through the constraint of IL-12 and downstream 
cytokine signaling cascade (51). Immunization with SOCS1−/− 
DCs induces hyper Th1 immune responses and antitumor 
activities (52). During DCs differentiation, the STAT pathway 
is developmentally regulated; considerable increases of SOCS1, 

SOCS2, and SOCS3 are correlated with the downregulation 
of STAT6 (53) and regulate DCs maturation. In addition to 
the regulation of phosphokinase, SOCS3 can also regulate the 
metabolic enzyme in DCs. Indoleamine 2,3-dioxygenase (IDO) 
is a rate-limiting enzyme in the catabolic process of tryptophan, 
which is an essential amino acid for T-cell proliferation and 
activation (54). IDO+ DCs are a subset of human tolerogenic 
DCs that play a pivotal role in establishing an immunosuppres-
sive microenvironment. The degradation of IDO in CD8+ DCs 
is mediated by SOCS3. SOCS3 binds mouse IDO, recruits the 
Elongin–Cullin–SOCS E3 ligase, and targets the IDO/SOCS3 
complex for proteasomal degradation (55). Moreover, the IL-6-
dependent upregulation of SOCS3 is responsible for inhibiting 
the IFN-driven transcriptional expression of IDO (56). Thus, 
an inverse relationship exists in DCs between SOCS3 and IDO. 
Furthermore, SOCS3 can bind to pyruvate kinase type M2 
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(M2-PK) in DCs. M2-PK is a key enzyme in glycolysis. The inter-
action of SOCS3 with M2-PK reduces the ATP production and 
weakens the curative effect of antitumor immune therapy, which 
indicates that SOCS3 manipulates the activation and function of 
DCs in the tumor microenvironment (57) (Figure 1A). Hence, 
depending on the regulated enzymes, SOCS3 is probably both a 
promoter and an inhibitor for the function of DCs.

SOCS in Macrophages and MDSCs
Macrophages express SOCS1 and SOCS3 (58, 59), and they are 
both rapidly inducible and present potent but distinct inhibi-
tory roles. The increased infiltrating numbers of macrophages 
express SOCS3 in tumors with complete responses compared 
with those without response to chemotherapy (60). Given that 
SOCS3 inhibits the STAT3 signaling that is responsible for the 
inflammatory cytokine section of macrophage and that STAT3 
signaling is highly activated in M1 macrophages, the expression 
of SOCS3 significantly regulates the macrophage differentiation 
and its proinflammatory properties (61).

Suppressor of cytokine signaling 3 is an important controller 
of macrophage phases and functions, which could regulate mac-
rophage polarization. In macrophages, SOCS3 is knocked down 
by siRNA-prevented M1 activation; consequently, STAT3 activ-
ity is enhanced and the syntheses of NO and IL-6 is decreased, 
thereby suggesting that SOCS3 is necessary for development 
of M1 macrophages (13, 62). Recently, SOCS3 deficiency in 
macrophages exhibits a remarkable bias toward M2-like popula-
tion and results in resistance to LPS-induced endotoxic shock. 
Conversely, SOCS2 deficiency enriches the M1-like phenotype. 
The SOCS3 in the macrophages suppresses M2 by inhibiting 
IL-4- and IL-12-induced STAT6 phosphorylation (63). Thus, 
SOCS3 is an essential controller of macrophage polarization 
and function, thereby promoting anti-inflammatory responses 
in the case of SOCS3 deficiency. Nevertheless, some studies 
proposed conflicting opinions. Some reports demonstrated 
that SOCS3 deficiency promotes M1 macrophage polarization 
in tumors (64, 65). In glioma, SOCS3-deficient bone marrow-
derived macrophages display enhanced and prolonged expres-
sion of proinflammatory M1 cytokines, which contradicts 
the observation in inflammation (65). Suppression of SOCS3 
(specific SOCS3 conditional knockout) in macrophages pre-
vents cancer metastasis by modifying macrophage phase and 
inducing the production of antitumorigenic chemokine MCP2/
CCL8 (61). These results implied that SOCS3 exerts remarkably 
different effects on macrophage differentiation and promotes 
M1 polarization in tumor deficiency of SOCS3. Inflammation 
overexpression of SOCS3 confers similar effects. The difference 
between these two phenomena might be attributed to the differ-
ent microenvironments.

The genetic deletion of SOCS3, specifically in myeloid cells, 
significantly enhances tumor growth, which correlates with 
elevated levels of MDSCs in the tumor microenvironment. 
SOCS3 negatively regulates the G-CSF-induced generation of 
Gr-1+CD11b+ cells by inhibiting the JAK/STAT3 activation (66). 
The loss of SOCS3 in myeloid cells promotes the differentiation 
of BM-derived progenitor cells into Gr-1+CD11b+ MDSCs and 
the generation of immunosuppressive microenvironment (66). 

Their findings clearly demonstrated the importance of SOCS3 
in restricting MDSC-mediated immunosuppression activity in 
tumor (Figures  1B,C). Further work should be performed to 
verify the critical function of SOCS3 as a negative regulator of 
MDSCs development and function in tumor environment.

SOCS in T Cells
The inhibition of Th1 differentiation by IL-6 is mediated by 
SOCS1. IL-6 upregulates the SOCS1 expression in activated 
CD4+ T cells, thereby interfering with the STAT1 phos-
phorylation and blocking Th1 differentiation (67). SOCS3 
regulates the activation and differentiation of naive CD4+ T 
cells, preferentially promoting Th2 and inhibiting Th1 dif-
ferentiation through the inhibition of IL-12-mediated STAT4 
activation (68). SOCS1 and SOCS3 function contradictory in 
Th1 differentiation. SOCS1-deficient naive CD4+ T cells are 
predominantly differentiated into Th1 and poorly into Th17 
in  vitro. A large amount of IFN-γ in SOCS1-deficient T cells 
suppresses Th17 differentiation, which can be explained by the 
SOCS3-induced STAT3 suppression after STAT1 activation 
in SOCS1-deficient T cells (69). The TGF-β-mediated SMAD 
transcriptional activity is severely inhibited in SOCS1-deficient 
cells in the presence of IFN-γ. Therefore, SOCS1 is necessary 
for Th17 differentiation by suppressing the antagonistic effect 
of IFN-γ on both STAT3 and SMAD (69). SOCS1 promotes 
Th17 differentiation through upregulating STAT3 and SMAD 
signaling. Moreover, targeting SOCS1 in the T-cell compart-
ment could represent a novel means to enhance the antitumor 
activity of exogenously administered IFN-α in melanoma (70). 
The overexpression of SOCS1 and SOCS3 in T cells inhibits 
IFN-α-induced phosphorylated STAT1 and the transcription of 
IFN-stimulated genes (3). Unlike the T-helper cells, Tregs are 
deficient in SOCS3 expression. The in vitro overexpression of 
SOCS3 in Tregs decreases their proliferation and Foxp3 expres-
sion. Similarly, some research found that SOCS3 removal in 
T-lymphocytes upregulates CTLA-4 expression, which shows 
that SOCS3 negatively regulates CTLA-4 level in T cells and 
provides a mechanistic explanation for the expansion of Tregs 
(71). IL-12 permits the conversion of mouse IL-17-producing 
CD8+ T (Tc17) cells to IL-17/IFN-γ-double producing CD8+ T 
(Tc17/IFN-γ) cells by the prohibitive epigenetic modifications 
of the SOCS3 gene promoters (72). This conversion mechanism 
for therapeutic tumor immunity can be manipulated because 
these Tc17/IFN-γ cells exhibit potent antitumor activities 
(Figure 1D).

ReGULATiOn On SOCS eXPReSSiOn

epigenetic and Genetic Dysregulations of 
SOCS1 and SOCS3
The epigenetic dysregulation of SOCS family genes frequently 
occurs in cancer and causes gene silence, protein downregula-
tion, and inactivation in relatively large number of tumor cells. 
The methylation status of SOCS genes varies in different 
types of tumors (73). SOCS3 hypermethylation is observed in 
cholangiocarcinoma (74, 75), head and neck squamous cell 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


7

Jiang et al. Dysregulation of the SOCSs Family in Carcinogenesis

Frontiers in Immunology | www.frontiersin.org February 2017 | Volume 8 | Article 70

carcinoma (8), and lung cancer (76). SOCS1 hypermethyla-
tion is detected in myeloid leukemia (77–79), lymphoma (80), 
Barrett’s adenocarcinoma (81), and breast cancer (73). However, 
SOCS1 hypermethylation shows no correlation with clinical 
features, OS, and PFS in acute myeloid leukemia patients (79). 
Both phenomena can be detected in hepatocellular carcinoma 
(9, 82). miR-29b induces the demethylation of the SOCS1 gene 
promoter, which results in SOCS1 protein upregulation that is 
associated with reduced STAT3 phosphorylation and impaired 
NF-κB activity (83). The acetylation status of SOCS genes also 
influences the expression and function of SOCS proteins. Histone 
deacetylase inhibitor, that is, sodium butyrate, increases the 
transcript and protein expression levels of SOCS1 and SOCS3 
by triggering the histone acetylation of SOCS1 and SOCS3 gene 
promoters in myeloproliferative neoplasm (84). Trichostatin A 
(TSA), a histone deacetylase inhibitor, suppresses JAK2/STAT3 
signaling by increasing the expression of SOCS1 and SOCS3 in 
human colorectal cancer cells (85) and manipulates the expres-
sion of SOCS proteins in tumors. The somatic hypermutation of 
SOCS1 in lymphocyte-predominant Hodgkin lymphoma (lpHL) 
is accompanied with high JAK2 expression and STAT6 activation 
(86). Furthermore, the genomic deletions of the region encom-
passing SOCS1 are frequent in lpHL and affect the expression of 
SOCS1 (87). Several genomic single nucleotide polymorphisms 
within the locus of SOCS1 are associated with the dysfunction of 
SOCS1 in leukemia (88).

microRnA (miRnA) Regulation on SOCS1 
and SOCS3
microRNAs are small non-coding RNAs that bind to comple-
mentary sequences on target mRNAs to induce gene silence and 
manipulate gene functions (89). miRNA-155 can modulate the 
differentiation and function of Th17 cells by targeting SOCS1. 
Pre-miR-155 inhibits the expression of SOCS1 and enhances the 
phosphorylation of STAT3 and STAT5 proteins (90). miR-19a 
and miR-19b could downregulate the expression of SOCS1 and 
SOCS3 in various tumors. miR-19a directly binds the 3′-UTR 
of the SOCS1 and regulates its expression in NSCLC cells; the 
transfection with miR-19a mimics significantly decreases the 
mRNA and protein levels of SOCS1 (91). Similarly, miR-19a 
significantly decreases SOCS3 mRNA and protein, whereas a 
miR-19a antagonist specifically reverses the inhibitory effect of 
miR-19a to SOCS3 (92). Furthermore, the miR-19a-mediated 
reduction of SOCS3 enhances the IFN-α and IL-6 signal trans-
ductions through STAT3 (92). The overexpression of miR-19b 
in human colon cancer cell line HT-29 cells downregulates the 
protein level of SOCS3, but not that of the SOCS3 mRNA. The 
downregulation of SOCS3 by miR-19b causes the phosphoryla-
tion of STAT3 and induces the expression of cyclinD1, which 
could promote cell proliferation by the transition from G1 phase 
to S and G2 phases (93). miR-221 directly inhibits the expression 
of SOCS3 and sensitizes prostate cancer cells to IFN-γ-mediated 
growth inhibition (94). Therefore, although few references have 
reported that miRNA-induced dysregulation of SOCS expres-
sion and function exerts significant influence on the clinical 
outcome of cancer patients, some miRNAs, such as miR-155, 
miR-19a, miR-19b, and miR-221, might be promising biomarker 

candidates in predicting and evaluating the clinical prognosis of 
certain tumor types.

SOCS TARGeT THeRAPY

As the pivotal negative regulators of cytokine signaling both in 
tumor cells and immunocytes, the dysregulation of the expres-
sion and function of SOCS1 and SOCS3 proteins significantly 
promotes tumor growth, migration, and invasion. Hence, further 
investigation on the feasibility of SOCS1 and SOCS3 as potential 
cancer therapeutic targets has been conducted in many types of 
cancers.

Nevertheless, considering the disparity in the expression 
patterns of SOCS1 and SOCS3 in tumor cells and immunocytes, 
contradicting therapeutic approaches have been proposed. 
Overexpression of SOCS proteins in tumor cells is one approach 
to inhibit tumor growth by suppressing tumor-promoting 
STATs. Downregulating the expression of SOCS proteins in 
immunocytes, such as DCs and T cells, enhances the antitumor 
immunity by increasing STATs activation (16). The infection 
of cells with oncolytic adenovirus CN305 (AdCN305)-SOCS3 
and AdCN305 cell-penetrating peptides-SOCS3 (membrane 
permeable SOCS3) results in considerable cytotoxicity of liver 
tumor cells and downregulation of cyclin D1 and Bcl-xL (7, 
95). Tyrosine kinase inhibitor peptide, Tkip, was developed as 
a mimetic of SOCS proteins and effectively inhibited the JAK2-
mediated phosphorylation of STAT1 and proliferation of prostate 
cancer cells (96, 97). Platelet factor-4 enhances the expression 
of SOCS3 protein, thereby suppressing the STAT3 activation 
and inducing cell apoptosis in myeloma (98). TSA increases the 
expression of SOCS1 and SOCS3 in human colorectal cancer 
cells and suppresses CRC growth (85). Dehydrocostus lactone, 
a plant-derived sesquiterpene lactone, inhibits cell proliferation 
by inducing cell cycle arrest and apoptosis through upregulating 
SOCS1 and SOCS3 in breast cancer cells (99). The exogenous 
expression of SOCS3 in MCF-7 cells increases the sensitization 
to cisplatin-mediated apoptosis, which implied that SOCS target 
therapeutic strategy may be helpful to overcome cisplatin resist-
ance in breast cancer patients (100). In addition, the transfection 
of SOCS1 siRNA in DCs significantly enhances the immuno-
genicity of DC-based tumor vaccines to break self-tolerance 
and induces effective antitumor immunity (101, 102). Similarly, 
silencing SOCS1 in macrophages to prompt antitumor immunity 
also yielded encouraging results (103).

COnCLUDinG ReMARKS

Following the discovery of the SOCS protein family, the dys-
regulation of SOCS proteins has been identified in many types 
of tumor cells and immunocytes through different molecular 
mechanisms. SOCS proteins are mainly responsible for the dys-
functional negative feedback loops upon cytokine stimulation, 
which promote oncogenic transformation and tumor cell inva-
sion by inducing the constitutive activation of the STAT signaling 
pathway. Thus, specific treatment targeting SOCS1 and SOCS3 
might be considerably important in inhibiting tumor develop-
ment and progression. However, considering the difference in 
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