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Abstract: Polymer flooding is an important enhanced oil recovery (EOR) method with high per-
formance which is acceptable and applicable on a field scale but should first be evaluated through
lab-scale experiments or simulation tools. Artificial intelligence techniques are strong simulation
tools which can be used to evaluate the performance of polymer flooding operation. In this study, the
main parameters of polymer flooding were selected as input parameters of models and collected from
the literature, including: polymer concentration, salt concentration, rock type, initial oil saturation,
porosity, permeability, pore volume flooding, temperature, API gravity, molecular weight of the
polymer, and salinity. After that, multilayer perceptron (MLP), radial basis function, and fuzzy neural
networks such as the adaptive neuro-fuzzy inference system were adopted to estimate the output
EOR performance. The MLP neural network had a very high ability for prediction, with statistical
parameters of R2 = 0.9990 and RMSE = 0.0002. Therefore, the proposed model can significantly help
engineers to select the proper EOR methods and API gravity, salinity, permeability, porosity, and salt
concentration have the greatest impact on the polymer flooding performance.

Keywords: polymer; enhanced oil recovery; artificial neural network; fuzzy logic

1. Introduction

After primary production, approximately two-thirds of the initial oil in place is ex-
pected to remain in the reservoirs. Enhanced oil recovery (EOR) methods which have
become a main subject in petroleum engineering to meet the demand for energy will extract
enough oil to fulfill a significant portion of the global oil demand [1]. As an EOR method,
chemical flooding has been a popular strategy for improving oil recovery in mature oil
fields that is now carried out using a variety of chemical agents and it has been shown to
be successful [2]. Two types of features, microscopic and macroscopic sweep efficiencies,
are considered in an EOR process. For the first case, chemical agents like surfactants
are used and, for the second one, polymers are utilized to improve the mobility ratio by
increasing the shear viscosity of water. Polymer flooding is an effective way to boost
the water flooding effect and field experiments and applications have been conducted
in a series of oil fields, with positive results in terms of increasing oil production [3,4],
where water-soluble polymers were used to improve the rheological properties of water [5].
Therefore, every factor that strengthens or weakens rheological properties of the polymer
solution is an influential factor [6]. Besides the polymer type and its concentration, there
are many influencing factors which should be considered regarding the water, oil, and
rock type of a reservoir [7]. Therefore, the various screening criteria of polymer flooding
make the evaluation of its performance before field-scale operations difficult. One way
to overcome this issue is the simulation of the process through core flood experiments

Polymers 2021, 13, 2606. https://doi.org/10.3390/polym13162606 https://www.mdpi.com/journal/polymers

https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-0469-7533
https://orcid.org/0000-0001-6915-4882
https://doi.org/10.3390/polym13162606
https://doi.org/10.3390/polym13162606
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/polym13162606
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym13162606?type=check_update&version=2


Polymers 2021, 13, 2606 2 of 20

that are still expensive and time consuming. One more way that is more economical and
facile is using simulation tools such as an artificial neural network (ANN), fuzzy inference
system (FIS), evolutionary computation (EC), and their hybrids, which have all been used
effectively to construct a predictive model [8]. These methods are appealing because they
can deal with various uncertainties. Soft computing approaches are increasingly employed
as a substitute for traditional statistical methods [9]. To the best of our knowledge, the
modeling and prediction of the polymer flooding experiment have not been widely in-
vestigated, particularly using ANNs such as multilayer perceptron (MLP), radial basis
function (RBF), and fuzzy neural networks such as an adaptive neuro-fuzzy inference
system (ANFIS). The current study investigated the performance of polymer flooding by
using the abovementioned modeling tools. The first step is to find out the important factors
and, as mentioned above, the polymer type and its concentration are known as influential
factors. The most widely used polymer in petroleum engineering for EOR operations is
hydrolyzed polyacrylamide (HPAM). Therefore, its data are shown in this article [10,11].
In addition to the species and concentration of polymer and its molecular weight, both the
type and concentration of salt also have a great effect on the rheological properties [12]
because the addition of divalent ions causes a large decrease in the rheological properties
of the polymer solution [13]. Hence, in addition to the salt concentration, three categories
are considered regarding salt type. The first category is fresh water, the second category is
a low saline, which is assigned to monovalent salts, and the third category is a high saline,
which is assigned to salts that contain both monovalent and divalent ions [6]. Mobility
ratio, which is roughly defined as the ratio of flooded fluid (oil) to flooding fluid (polymer
solution) [14], is an important influencing parameter that should be considered during
performance evaluations of EOR processes. As mentioned previously, the viscosity of
polymer solutions is dependent on several parameters that are considered as inputs for
the models and, therefore, it cannot be considered directly because putting dependent
parameters as inputs in the model will impose huge complexity on the model versus
fewer gains. Hence, some of the abovementioned independent parameters, of which the
polymer solution viscosity is a function, were selected as inputs to indirectly see the effect
of polymer solution viscosity. Additionally, as for the oil viscosity, because it is indirectly
dependent on American Petroleum Institute (API) oil gravity [15–17], just the API gravity
was considered as an input parameter to avoid complexity.

Not only rock type [18], porosity [19], permeability [20], temperature [21], API grav-
ity [22], and initial oil saturation [23], among the reservoir properties, but also the volume
of flooded fluid (pore volume (PV)) among the operational parameters, were considered as
input parameters for the ANN and, finally, EOR was predicted using the abovementioned
networks [24].

Briefly, the aim of this paper is to introduce a proper model with high accuracy to
predict the performance of polymer flooding as an EOR method before doing any lab- and
field-scale activities.

2. Methodology
2.1. Data Collection

Six prior investigations on both carbonate and sandstone core reservoir samples
provided the raw data needed for modeling [25–30]. There were 847 data records in the
gathered data sets, which were separated into three groups: training (70%), validating
(15%), and testing data (15%). Eleven relevant elements were present in the actual or
experimental input data, including (1) polymer concentration, (2) salt concentration, (3)
rock type, (4) initial oil saturation, (5) porosity, (6) permeability, (7) pore volume flooding,
(8) temperature, (9) API gravity, (10) molecular weight of the polymer, and (11) salinity.
The only output of the utilized models was the oil recovery factor via polymer flooding
compared to the final one after pure water flooding per unit percentage (%), which was
presented as a percentage and dubbed “EOR after polymer flooding”. Table 1 displays the
ranges of various input parameters.
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Table 1. Features of the present study’s input variables.

Sample
Number Polymer Type

Polymer
Concentration

(ppm)

Salt
Concentration

(ppm)
Rock Type Initial Oil

Saturation Porosity Permeability
(md) PV (cm3) Temperature

(◦C) API

Molecular
Weight of the

Polymer
(g/mol)

Salinity

1
Flopaam 3630S
(SNF Floerger)

polyacrylamide
300 3600 Sandstone 78 18.43–19.04 84.61–117.43 0.37–5.11 22 29.29 2 × 107 High Saline

2

viscoelastic
Alcoflood 935
polymer (Ciba

Specialty Canada
Inc., ON, Canada)

6000 10,000 Sandstone 82–88 21–22 202–219 0.04–2.92 25 31.14–36.95 9 × 106 Low Saline

3 FLOPAAM 3430 2000 15,000 Sandstone 55 19.4 20 0.03–0.76 27 31.14 1 × 108 Low Saline

4 HPAM 2000 0 Carbonate 89 24.2 301 0.1–1.25 27 34 6 × 106 Fresh Water

5 Polyacrylamide
(PAM) 2000 3276–32,754 Sandstone 72.55–75.47 25.73–28.12 212.69–240.84 0.07–2.12 70 39.3 1 × 104 High Saline

6 HPAM 3100–3200 21,500 Sandstone 76.2 18.2 282 0.09–1.2 25 17 1.2 × 107 Fresh Water
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2.2. ANN

ANNs, often known as neural networks, are current systems and computational ap-
proaches for machine learning, knowledge presentation, and, lastly, using that information
to maximize the output responses of complex systems. The primary principle behind these
networks is based on how the biological brain system processes data and information to
learn and produce knowledge. The creation of new methods for information processing
systems is a major component of this concept [31].

This system consists of a huge number of highly linked processing components, i.e.,
neurons that collaborate to solve problems and send information via synapses (electro-
magnetic communications). If one cell in these networks is harmed, other cells can be
compensated by contributing to its regeneration. Thereby, these networks can learn. By
injecting tactile nerve cells, for example, the cells learn not to travel to the heated body,
and the system learns to fix its error with this algorithm. These systems learn adaptively,
meaning that when new inputs are presented, the weight of the synapses changes in such a
manner that the system delivers the proper response [32].

Input, output, and processing are the three levels of an ANN unless the user inhibits
communication between neurons, and each layer comprises a set of nerve cells that are
ordinarily interconnected with all nerve cells in other layers. However, the nerve cells in
each layer have no link with other nerve cells in the same layer. A nerve cell is the smallest
unit of information processing that allows neural networks to operate. A neural network
is a collection of neurons that build a specific architecture based on connections between
neurons in distinct layers while being positioned in distinct layers. As neurons are a type
of nonlinear mathematical function, a neural network made up of them can be a fully
complicated nonlinear system. Each neuron in a neural network works independently, and
the network’s overall activity is the product of the actions of numerous neurons. In other
words, neurons in a cooperative process correct each other [33–35].

2.3. MLP Artificial Neural Network

The MLP network consists of several types of layers, including the input, one or more
hidden layers, and the output that every type of layer possesses some of the processing
neurons, and every neuron is entirely linked to succeeding layers via a weighted intercon-
nection [8]. Therefore, the first one has an equal number of input parameters and neurons,
and the model’s output is related to a neuron in the third one. Additionally, the correlation
of the model’s output and input is specified in the second type of layer. Their numbers of
hidden layers and neurons will crucially affect the efficiency of the MLP network [36]. The
node’s value in the second and the last type of layer is determined based on its weight in
the former layer [37]. After that, the offset value is aggregated to the gained results, and
the computed value is transited to the trigger level via the transfer function to generate the
final output. Various activation functions, such as a binary step, identity Gaussian, and
linear functions, could be adopted for the second and third types of layers. The following
equation shows the results of the model:

yk = Fk

(
m

∑
i=1

wkjxj + bk

)
(1)

where yk is the output, wkj is the link weight, xj is the input, bk is the bias vector, and Fk
is the activation function. The MLP training process is executed using a backpropagation
algorithm such as scaled conjugate gradient, gradient descent, Levenberg-Marquardt, and
resilient backpropagation [38].
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In this paper, among several activation functions used in MLP artificial neural net-
works including tangent sigmoid (tansig) and log-sigmoid, and linear transfer function
(purelin), tansig is used for the link between the input and the hidden layers and purelin
is adopted for the link between the hidden and the output layers [8]. The structure of the
MLP network used in this paper to predict the target data is shown in Figure 1.

Figure 1. MLP network structure for EOR prediction.

2.4. Radial Basis Function (RBF) Artificial Neural Network

The feasibility of this kind of neural network to process arbitrary sparse data, that
is easy to generalize to multidimensional space, and to provide spectral precision makes
it a particularly suitable alternative [38]. In addition, the RBF neural network is superior
to the MLP model because it has excellent accuracy in nonlinear data modeling and can
be trained in a single direct program instead of an iterative solution in MLP [39]. While
the frame of RBF is comparable to the MLP [40], the RBF possesses only one hidden layer,
which consists of multiple nodes called RBF units. The RBF neural network architecture
is a two-layer feed-forward neural network, in which the input is transmitted from the
neurons in the hidden layer to the output layer. Each RBF network possesses two important
factors, which describe the center position of the function and its deviation. Finding the
center of the unit and determining the optimal value of the weight connecting the RBF
unit and the output unit are the two main steps in the training process of the RBF neural
network [41]. Different methods, such as random center selection [42], clustering [43], and
density estimation [44], could be adopted to discover the center in the RBF network. The
output of the system can be expressed as Equation (2):

f(xi) = wT ϕ(xi) (2)

where wT is the transposed output of the shell vector, and ϕ(xi) is a kernel function. For
this, different optimization algorithms can be applied. Here, trial and error are adopted to
find out the optimal value for this parameter [8]. By changing this parameter, RBF neural
networks with different structures are developed and the product of each RBF neural
network is observed according to the MSE value of the test data subset [38].
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2.5. ANFIS

This fuzzy logic (FL)-based average value was initially provided in 1998 [45]. The
ANFIS model can use qualitative methods to solve nonlinear problems and model physics,
instead of operating quantitative methods by turning input data into a particular term
called even fuzzy set or linguistic. The frame of the neuro-fuzzy system has five layers
which are illustrated here [46,47].

First, the fuzzy input is made based on transforming input data by defining a mem-
bership function (MF) [48]. The computed membership degree of every input factor is
reproduced, resulting in the firing strength, as shown below:

wi =
m

∏
i=1

µij
(
xj
)

(3)

where wi is the calculated firing strength, µij is the degree of membership of the jth MF
for the ith input, and m employs the input counter. For each rule, the firing strength is
obtained using multiplication, and the highest one obtained matches with the input [32].
The next layer operates based on the following equation:

wl =
wi

∑i wi
(4)

where wl is the normalized firing strength. At the end, the final result is obtained using the
following equation:

wl × fi = wl ×
(

m

∑
i=1

nijxj + rij

)
(5)

In the above formula, fi can be a constant or polynomial function. The values of nij
and rij are the adjustment factors of TSK-FIS and their values should be optimized by the
specified algorithm to have a more accurate prediction [8]. The ultimate layer sums the
outputs in the prior layer to generate the following general ANFIS output:

overall output = ∑
i

wi fi =
∑i wi fi

∑i wi
(6)

In this work, three types of ANFIS are studied, and the characteristic that distinguishes
them is the distribution of membership functions. The first kind of system is identified by
the division of the grid, and the membership function is uniformly distributed in space,
while the second kind of system uses a subtractive grouping mechanism; the last one is
based on fuzzy clustering of c-means. See a previous article for more theories [8].

To optimize the network parameters, the grasshopper optimization algorithm (GOA) [49],
genetic algorithm (GA) [50], and swarm optimization algorithm (PSO) [51] can be applied
on artificial neural networks. In this study, we used a trial and error method that examined
500 replications for each parameter to ensure that the optimal value of the data also changed
randomly with each iteration.

3. Model Evaluation

Several statistical standards were adopted to evaluate the accuracy of the applied
model, including coefficient of determination (R2), mean squared error (MSE), root mean
squared error (RMSE), mean error (µ), error standard deviation (σ), and average absolute
relative deviation (AARD):

R2 = 1−
∑N

i=1

(
EORactual

i − EORpredicted
i

)2

∑N
i=1

(
EORactual

ave − EORpredicted
i

)2 (7)
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MSE =
1
N

N

∑
i=1

(
EORactual

i − EORpredicted
i

)2
(8)

RMSE =
√

MSE (9)

Errori = EORactual
i − EORpredicted

i (10)

µ =
1
N

N

∑
i=1
|Errori| (11)

σ =

√
1

N − 1

N

∑
i=1
|Errori − λ| (12)

where λ is the mean of the error:

λ =
1
N

N

∑
i=1

Errori (13)

AARD =
100
N

N

∑
i=1
|
EORactual

i − EORpredicted
i

EORactual
i

| (14)

N is the amount of data, and EORactual
i and EORpredicted

i represent the original target
data and the predicted output of the model, respectively.

4. Results and Discussion

Among the 847 datapoints collected for each of the parameters ((1) polymer con-
centration, (2) salt concentration, (3) rock type, (4) initial oil saturation, (5) porosity, (6)
permeability, (7) pore volume flooding, (8) temperature, (9) API gravity, (10) molecular
weight of the polymer, (11) salinity, and (12) EOR) from different articles, an attempt
was made to model using MLP, RBF, and ANFIS neural networks. In the following, the
networks are created and their effective parameters and optimization are examined.

4.1. Optimum MLP Structure

The results of MLP neural network sensitivity analysis are shown in Table 2. This three-
layer network, that includes input, hidden, and output layers, was evaluated with different
training algorithms, due to their higher speed (which is less costly to the system) and higher
efficiency (statistical parameters indicate this). The Levenberg–Marquardt backpropagation
algorithm, as the superior algorithm, was used in the rest of the comparisons in this study
(Table 3). In this study, we assigned 70% of the collected data to the training data and,
to the validation and test data, 15%, which is clearly shown in Table 4, using this data
distribution to obtain the power of the most optimal MLP networks. Additionally, based
on Table 2, the best number of neurons was determined, and based on this, six neurons
was considered to be the best. As the number of neurons in the MLP network increases,
the quality and efficiency of the network increases, but more than six neurons in the data
of this study do not increase the cost of efficiency, so six neurons are regarded to be the
best value. The structure of the superior MLP network can be found in Figure 1.
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Table 2. Sensitivity analysis of MLP network with Levenberg–Marquardt backpropagation training algorithm.

Number of Hidden Neurons Data Type R2 MSE RMSE AARD µ σ

2 Training 0.9850 0.0032 0.0566 194.5814 0.0257 0.0505
Validation 0.9818 0.0039 0.0632 49.1834 0.0320 0.0547

Testing 0.9801 0.0041 0.0640 32.2844 0.0209 0.0608
All Data 0.9837 0.0034 0.0591 148.4453 0.0265 0.0529

5 Training 0.9977 0.0013 0.0361 53.8793 0.0307 0.0190
Validation 0.9983 0.0017 0.0415 9.6962 0.0323 0.0260

Testing 0.9973 0.0007 0.0278 3.5931 0.0168 0.0222
All Data 0.9978 0.0018 0.0426 39.7145 0.0364 0.0222

6 Training 0.9990 0.0002 0.0168 15.7565 0.0114 0.0123
Validation 0.9988 0.0001 0.0135 5.6454 0.0026 0.0133

Testing 0.9990 0.0002 0.0172 58.3171 0.0027 0.0170
All Data 0.9990 0.0002 0.0164 20.6220 0.0100 0.0130

9 Training 0.9993 0.0000 0.0085 0.0151 0.0005 0.0085
Validation 0.9990 0.0001 0.0126 20.1423 0.0041 0.0119

Testing 0.9992 0.0117 0.0117 5.5036 0.0067 0.0095
All Data 0.9993 0.0001 0.0103 3.8347 0.0047 0.0091

14 Training 0.9990 0.0002 0.0151 2.7835 0.0108 0.010
Validation 0.9990 0.0003 0.0174 1.1617 0.0138 0.0106

Testing 0.9990 0.0008 0.0293 6.8770 0.0269 0.0117
All Data 0.9990 0.0007 0.0278 0.7434 0.0255 0.0110

17 Training 0.9996 0.0000 0.0068 2.0459 0.0020 0.0067
Validation 0.9996 0.0001 0.0126 7.2944 0.0099 0.0078

Testing 0.9995 0.0002 0.0151 3.1677 0.0131 0.0075
All Data 0.9996 0.0001 0.0127 0.8136 0.0105 0.0071

Table 3. Evaluation of the efficiency of different MLP neural network training methods.

Training Algorithm MSE RMSE R2 Elapsed Time (s)

Bayesian regulation backpropagation 0.001954 0.044213 0.99822 1.620583
Conjugate gradient backpropagation

with Powell–Beale restarts 0.00876 0.062257 0.99494 2.083174

Levenberg–Marquardt back
propagation 0.002479 0.019794 0.99829 1.455637

Gradient descent backpropagation 0.181400 0.425920 0.17097 0.065064
Gradient descent with adaptive
learning rate backpropagation 0.008550 0.092469 0.94342 1.035535

Batch training with weight/bias
learning rules 0.006039 0.077710 0.95544 3.626539

One-step secant backpropagation 0.012979 0.113930 0.99444 1.381093
Sequential order weight/bias training 0.011043 0.105090 0.91877 2.744659

The MLP network was trained in the most optimal mode presented, and its result can
be seen in Figure 2. Figure 3 shows the network error after data normalization, which is
a reasonable and very low network error that can have many industrial applications in
this field.

Figure 4 shows the regression diagram of all the output data of the model and the
target data obtained from the articles. This diagram shows the amount of difference
between the model and target data that overlap. Figure 5 represents an error histogram
graph that has been obtained from the normal data loss, which can also be seen below the
network error value. Meanwhile, it can be seen that there are very few outliers that can
easily be seen at this high level of precision.
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Table 4. Sensitivity analysis for the distribution of data types.

Data Type (%) R2 MSE RMSE AARD µ σ

Training 80 0.9987 0.0008 0.0284 10.0495 0.0253 0.0128
Validation 10 0.9988 0.0001 0.0133 10.5108 0.0070 0.0114

Testing 10 0.9968 0.0009 0.0309 40.8921 0.0252 0.0180

Training 70 0.9990 0.0002 0.0168 15.7565 0.0114 0.0123
Validation 15 0.9988 0.0001 0.0135 5.6454 0.0026 0.0133

Testing 15 0.9990 0.0002 0.0172 58.3171 0.0027 0.0170

Training 60 0.9991 0.0002 0.0167 1.1088 0.0100 0.0134
Validation 20 0.9984 0.0004 0.0207 6.2579 0.0114 0.0173

Testing 20 0.9982 0.0019 0.0436 382.0992 0.0360 0.0247

Training 50 0.9979 0.0013 0.0360 18.7630 0.0300 0.0199
Validation 25 0.9959 0.0006 0.0257 6.6518 0.0144 0.0212

Testing 25 0.9950 0.0049 0.0684 139.5505 0.0540 0.0421

Training 40 0.9982 0.0007 0.0278 60.9115 0.0206 0.0186
Validation 30 0.9966 0.0014 0.0387 3.4631 0.0313 0.0227

Testing 30 0.9943 0.0021 0.0465 45.5541 0.0365 0.0288

Training 70 0.9983 0.0016 0.0411 51.0327 0.0347 0.0221
Validation 20 0.9977 0.0021 0.0461 1.7933 0.0390 0.0247

Testing 10 0.9982 0.0007 0.0266 206.1784 0.0157 0.0215

Training 70 0.9985 0.0012 0.0348 45.5224 0.0290 0.0193
Validation 10 0.9984 0.0007 0.0270 195.1773 0.0226 0.0155

Testing 20 0.9982 0.0022 0.0477 7.2765 0.0419 0.0229

Figure 2. Comparison between actual EOR and MLP values.
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Figure 3. MLP error chart.

Figure 4. Relationship between MLP network output and EOR target data.
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Figure 5. Error histogram of the MLP neural network.

4.2. Optimum RBF Structure

Based on Table 5, to determine the optimal parameter of the RBF neural network,
we first determined the optimal maximum number of neurons in the hidden layer. After
running the program about 700 times for each neuron from 1 to 100, 44 neurons were
selected as the best number of neurons. Then, the spread coefficient was determined and
this operation was carefully examined with about three points from 1 to 100, which gave the
best network results with a spread coefficient of 1.1, which can be clearly seen in Table 5.

Table 5. Sensitivity analysis of RBF network.

Number of Hidden Neurons Spread Data Type R2 MSE RMSE AARD µ σ

22 1.1 Training 0.9913 0.0017 0.0412 123.8424 0.0271 0.0311
Testing 0.9904 0.0019 0.0444 229.5288 0.0301 0.0327

All Data 0.9910 0.0018 0.0425 155.5358 0.0286 0.0315

22 2 Training 0.9878 0.0015 0.0393 161.0398 0.0068 0.0387
Testing 0.9858 0.0020 0.0456 329.8626 0.0221 0.0399

All Data 0.9872 0.0016 0.0403 211.6667 0.0067 0.0398

22 10 Training 0.9818 0.0025 0.0208 156.0130 0.0212 0.0461
Testing 0.9765 0.0024 0.0495 243.5169 0.0115 0.0482

All Data 0.9804 0.0025 0.0509 182.2538 0.0202 0.0467

30 1.1 Training 0.9941 0.0006 0.0256 89.0743 0.0032 0.0254
Testing 0.9950 0.0006 0.0257 158.5864 0.0063 0.0249

All Data 0.9944 0.0007 0.0265 109.9198 0.0081 0.0252

44 1.1 Training 0.9983 0.0003 0.0196 5.5895 0.0127 0.0149
Testing 0.9973 0.0008 0.0283 6.0256 0.0191 0.0209

All Data 0.9980 0.0007 0.0282 2.1064 0.0212 0.0185

45 1.1 Training 0.9986 0.0002 0.0164 6.7843 0.0089 0.0138
Testing 0.9979 0.0003 0.0195 13.4048 0.0118 0.0155

All Data 0.9970 0.0004 0.0212 7.3379 0.0111 0.0181

50 1.1 Training 0.9987 0.0008 0.0287 3.7032 0.0222 0.0182
Testing 0.99801 0.0029 0.0539 285.5218 0.0418 0.0340

All Data 0.9985 0.0029 0.0540 83.0302 0.0444 0.0307

It should be noted that in this particular data, when increasing the spread coefficient,
the accuracy of the network decreases, and also, as mentioned earlier, when increasing
the number of neurons, more accuracy can be expected from the neural network, but this
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happens until the cost that is applied to the network is at the same level as the accuracy of
the network (increasing neuron number increases the cost).

Figures 6–9 are related to the superior RBF neural network in polymer data, expressing
the high accuracy of this neural network. Figures 6 and 7, which show the normalized
error of the data, indicate that this network has a very low error in data estimation and has
a good ability to predict the data. In addition, based on Figures 8 and 9, this capability can
be seen and it can also be easily seen that this network has very few outliers and residual
values have normal scattering, which show the strength of this network.

Figure 6. Comparison between actual EOR and RBF values.

Figure 7. RBF error chart.
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Figure 8. Relationship between RBF network output and EOR target data.

Figure 9. Error histogram of the RBF neural network.

4.3. Optimum ANFIS Structure

Experiments were performed and different ANFIS networks from three common
types of ANFIS, grid partitioning-based ANFIS, subtractive clustering based ANFIS, and
fuzzy c-means (FCM) clustering, were run [8], and Table 6 shows their sensitivity analysis.
Information about fuzzy neural networks based on subtractive clustering is reported.

Table 6. The performance of different types of ANFIS.

ANFIS Type Max Epoch Data Type R2 MSE RMSE AARD

Grid Partitioning 5 Training 0.9557 0.0073 0.0855 105.3691
Testing 0.9562 0.0088 0.0941 267.7566

All Data 0.9559 0.0077 0.0880 154.0662

Subtractive Clustering 100 Training 0.9749 0.0146 0.1210 195.5981
Testing 0.9678 0.0135 0.1162 5.3421

All Data 0.9729 0.0150 0.1226 138.5438

FCM Clustering 100 Training 0.9519 0.0059 0.0771 157.8325
Testing 0.9494 0.0057 0.0761 293.8182

All Data 0.9511 0.0060 0.0779 198.6106
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To determine the optimal parameters of the fuzzy neural network which are presented
in this section, a trial and error method and its repetition for each parameter at a rate of 100
times and recording network data and determining the best values for the neural network
was carried out. Based on the sensitivity analysis that is shown in Table 7, it can be stated
that by increasing the step size decrease rate for polymer data to 23, the desired result is
obtained, and as the size of the network increases, an error also occurs. The same is true for
changing the step size increase rate parameter up to 20. Increasing the value of the initial
step size parameter above four and decreasing it to less than four networks do not provide
the desired results. The value of the radius parameter is a vector that determines the range
of influence of the center of the clusters in each of the data dimensions. With a lot of trial
and error, a value of 0.333 was determined for this parameter, which provides the most
desirable network for these polymer data.

Table 7. Sensitivity analysis of ANFIS network based on subtractive clustering.

Radius Initial Step
Size

Step Size
Decrease

Rate

Step Size
Increase

Rate
Data Type R2 MSE RMSE AARD µ σ

0.333 4 11 13 Training 0.9376 0.0119 0.1039 37.3869 0.0138 0.1085
Testing 0.9408 0.0091 0.0957 472.6515 0.0395 0.0873

All Data 0.9385 0.0113 0.1063 167.9149 0.0129 0.1055

0.333 14 11 13 Training 0.9261 0.0156 0.1249 275.7756 0.0447 0.1167
Testing 0.9249 0.0194 0.1395 62.7544 0.0626 0.1249

All Data 0.9256 0.0185 0.1361 211.8944 0.0592 0.1226

0.333 4 23 13 Training 0.9410 0.0102 0.1010 43.9129 0.0057 0.1010
Testing 0.9403 0.0112 0.1062 500.3728 0.0262 0.1031

All Data 0.9409 0.0109 0.1046 180.7970 0.0193 0.1028

0.333 4 23 20 Training 0.9749 0.0146 0.1210 195.5981 0.1030 0.0635
Testing 0.9678 0.0135 0.1162 5.3421 0.0969 0.0643

All Data 0.9729 0.0150 0.1226 138.5438 0.1044 0.0643

4 4 23 20 Training 0.9448 0.0173 0.1316 202.9277 0.0750 0.1028
Testing 0.9426 0.0146 0.1211 9.4858 0.0588 0.1061

All Data 0.9441 0.0170 0.1307 144.9179 0.0729 0.1086

0.4 4 23 20 Training 0.9753 0.0055 0.0746 228.8593 0.0473 0.0605
Testing 0.9659 0.0074 0.0865 22.1922 0.0552 0.0667

All Data 0.9727 0.0069 0.0835 166.8836 0.0536 0.0641

0.3 4 23 20 Training 0.9330 0.0199 0.1411 134.4072 0.0951 0.1043
Testing 0.9241 0.0262 0.1621 185.1166 0.0121 0.1076

All Data 0.9299 0.0264 0.1626 149.6141 0.1196 0.1101

Figures 10–13 show the accuracy of this network, and according to Figures 10 and 11,
this network has more errors than the MLP and RBF networks presented in the previous
sections. Based on Figures 12 and 13 showing the linear regression and a histogram of the
error of the data after their normalization, respectively, it was found that there are very few
outlier when estimating data using the fuzzy neural network and relatively good accuracy
but due to the higher accuracy seen in previous cases, it is less accurate than MLP and RBF
neural networks.

4.4. Performances of Optimized MLP, RBF, and ANFIS Models

Based on the comparisons made in the previous sections, it can be presented that the
MLP neural network has the best performance for teaching this type of data. Figures 2–5
show the performance of the trained network using polymer data, which was discussed in
detail in the previous sections. The MLP neural network with the Levenberg–Marquardt
backpropagation algorithm, along with its sensitivity analysis presented in Table 2, has a
very strong prediction ability with the desired data inside and outside the predicted range.
The general shape of the network with six neurons in the hidden layer is shown in Figure 1.
The complete information of the best-trained network (which is of the MLP type) is shown
in Table 8.
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Figure 10. Comparison between actual EOR and ANFIS values.

Figure 11. ANFIS error chart.

Table 8. Properties of the optimized MLP model.

Parameter Value or Description

Amount of all/training/validating/testing data 847/593/127/127
Number of input/output variables 11/1

Training method Levenberg–Marquardt backpropagation
Number of neurons in the hidden layer 6

Number of hidden layers 1
Number of neurons in the input/output layer 11/1
Transfer function in the hidden/output layer Tangent sigmoid/Linear

Number of epochs 1000



Polymers 2021, 13, 2606 16 of 20

Figure 12. Relationship between ANFIS network output and EOR target data.

Figure 13. Error histogram of the ANFIS neural network.

5. Overfitting Evaluation

Overfitting is a phenomenon in which the accuracy of network training data is very
high and powerful, but this is not observed in network test data. The reasons for this
can be a small dataset [52] and a very complex model [53]. The figures and diagrams
embedded in the previous sections clearly show that the trained neural networks do not
involve overfitting at all, but a method similar to the Tabaraki and Khodabakhshi method
presented in 2020 [53] can be used to prove that the models that are presented in this section
do not include overfitting

At the beginning of the work for the target network (here, for the top MLP, RBF, and
ANFIS networks), the value of the total number of adjustable parameters (TNAP) was
calculated, and for this purpose the following equation is used:

TNAPANNs = nhid ×
(
ninp + 3

)
(15)
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TNAPANFIS =
(

ninp × nm f × npm f

)
+ (nout × nr) (16)

where nhid, ninp, nm f , npm f , nout, and nr are the numbers of hidden neurons, input neurons,
membership functions, parameters in membership functions (this value is specifically
intended to be two for Gaussian functions), output neurons, and rules, respectively. These
values are measured for the best MLP and RBF neural networks, which are equal to
84 and 616, respectively. To calculate this value for ANFIS, we have: number of input
neurons (11), number of membership functions (11), number of parameters in membership
functions (2), number of output neurons (1), and number of rules (3). By placing these
values in Equation (16), the value 245 is obtained for the desired parameter [53].

To determine the threshold value of the total number of adjustable parameters, the
value of another parameter that is presented in the following equation must be determined:

NPAP =
1
2
(

NTraining
)

(17)

The amount of NTraining is equal to the amount of training data. This value is 296.5 for
the data of this study (593 divided by 2. See Table 8 for more information). According to
the literature, if NPAP is lower than TNAP, there will be no overfitting [53,54].

From the experiments performed, it can be clearly stated that the MLP neural network
and the superior ANFIS neural network do not encounter any kind of overfitting in this
study, but the introduced superior RBF network may have overfitting.

6. Relevancy Factor Evaluation

It was concluded that the introduced networks have good accuracy in predicting EOR
data, for which the MLP network was introduced as the top network. In the following
section, the impact of each input on the output (EOR) is measured.

r =
∑n

i=1
(
Xk,i − Xk

)(
Yi −Y

)√
∑n

i=1
(
Xk,i − Xk

)2
∑n

i=1
(
Yi −Y

)2
(18)

where Xk,i and Xk designate the ith value of the kth input variable and the average value
of the kth input variable, respectively; Yi indicates the ith predicted EOR value, Y denotes
the mean value of predicted values of EOR, and finally n is the amount of data in the
gathered dataset. On the other hand, the value of the relevancy factor is defined in the
range between −1 and +1. The closer the value of r is to +1, the more positive the effect,
and the closer the value of r is to −1, the more negatively it affects the network.

Relevancy factor values for each input are presented in Table 9. Accordingly, API
gravity, salinity, permeability, porosity, and salt concentration have the greatest impact on
EOR. It should be noted that these cases can only be expressed for the data collected in
these articles that their specifications can be seen in Table 1.

Table 9. Relevancy factor to predict EOR.

Input Variable MLP RBF ANFIS Original EOR

Polymer Concentration −0.1035 −0.1122 −0.1087 −0.1058
Salt Concentration 0.7592 0.7593 0.7590 0.7598

Rock Type −0.2933 −0.2835 −0.2809 −2928
Initial Oil Saturation −0.2930 −0.2945 −0.2949 −0.2942

Porosity −0.7848 −0.7839 −0.7826 −0.7851
Permeability 0.8512 0.8529 0.8594 0.8519

Pore Volume flooding −0.2335 −0.2370 −0.2417 −0.2343
Temperature −0.5758 −0.5731 −0.5730 −0.5749

API of the Petroleum −0.9064 −0.9067 −0.9048 −0.9070
Molecular Weight of the Polymer −0.2143 −0.2172 −0.2160 −0.2155

Salinity −0.8682 −0.8698 −0.8727 −0.8688
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7. Conclusions

In this paper, MLP, RBF, and ANFIS neural networks based on subtractive cluster-
ing of EOR data using existing polymer, rock, and fluid properties, including polymer
concentration, salt concentration, rock type, initial oil saturation, porosity, permeability,
pore volume flooding, temperature, API gravity, molecular weight of the polymer, and
salinity, were used to predict the EOR performance of HPAM polymer flooding. All the
proposed models had a very high accuracy (R2 = 0.9990 and RMSE = 0.0002 for MLP,
R2 = 0.9973 and RMSE = 0.0008 for RBF, and R2 = 0.9729 and RMSE = 0.0150 for ANFIS
neural network) in predicting the data, however, the MLP was the top network. Finally, by
using overfitting prevention methods and testing whether the networks were overfitted or
not, the networks were evaluated. It can be also clearly stated that the MLP neural network
is valid in all respects to predict data inside and outside the network built-in range. Next,
through relevancy factor evaluation, the parameters which have the greatest impact on
EOR performance of polymer flooding were shown to be API gravity, salinity, permeability,
porosity, and salt concentration. The results emphasized that by using the proposed model,
the performance of HPAM polymer flooding in a special reservoir can be well evaluated
before carrying out any lab-scale experiments or field-scale operations.
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