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Adult neurogenesis persists in the adult mammalian brain due to the existence of
neural stem cell (NSC) reservoirs in defined niches, where they give rise to new
neurons throughout life. Recent research has begun to address the implication of
constitutive (basal) autophagy in the regulation of neurogenesis in the mature brain.
This review summarizes the current knowledge on the role of autophagy-related genes
in modulating adult NSCs, progenitor cells and their differentiation into neurons. The
general function of autophagy in neurogenesis in several areas of the embryonic
forebrain is also revisited. During development, basal autophagy regulates Wnt and
Notch signaling and is mainly required for adequate neuronal differentiation. The
available data in the adult indicate that the autophagy-lysosomal pathway regulates
adult NSC maintenance, the activation of quiescent NSCs, the survival of the newly
born neurons and the timing of their maturation. Future research is warranted to validate
the results of these pioneering studies, refine the molecular mechanisms underlying the
regulation of NSCs and newborn neurons by autophagy throughout the life-span of
mammals and provide significance to the autophagic process in adult neurogenesis-
dependent behavioral tasks, in physiological and pathological conditions. These lines
of research may have important consequences for our understanding of stem cell
dysfunction and neurogenic decline during healthy aging and neurodegeneration.

Keywords: neural stem cell (NSC), adult neurogenesis, autophagy (macroautophagy), autophagy-lysosomal
pathway, protein aggregate

Abbreviations: ALP, autophagy-lysosomal pathway; Ambra1, activating molecule of Beclin 1-regulated autophagy; AMPK,
AMP activated protein kinase; Atg, autophagy proteins; Beclin1, BCL-2 interacting moesin-like coiled-coil protein 1;
DCX, doublecortin; GFAP, glial fibrillary acidic protein; HDAC6, histone deacetylase 6; IM, isolation membrane; LAMPs,
lysosomal-associated membrane proteins; LC3, microtubule-associated protein light chain 3; MA, methyladenine; mTOR,
mammalian target of rapamycin; NBR1, neighbor of BRCA1 gene 1; NSC, neural stem cell; NSPCs, neural stem and
progenitor cells; OB, olfactory bulb; P, postnatal; PI3K, phosphatidylinositol 3 kinase; qNSC, quiescent neural stem cell; RAB7,
ras-related protein; ROS, reactive oxygen species; RV, retroviral; SEZ, subependymal zone lining the lateral ventricles; SGZ,
subgranular zone of the hippocampal dentate gyrus; SNAREs, soluble N-ethylmaleimide-sensitive fusion (NSF) attachment
protein receptors; TFEB, transcription factor EB; TuJ1, beta tubulin III; Ub, ubiquitinated; ULK1, uncoordinated 51-like
kinase 1; Vps, vacuolar protein sorting; VZ/SVZ, ventricular zone/subventricular zone.
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INTRODUCTION

Autophagy (“self-eating” in greek) is a highly conserved
intracellular catabolic pathway that occurs in response to
different forms of stress such as starvation, hypoxia, drugs,
infection, growth factor deprivation and ROS accumulation.
The main function of autophagy is to provide nutrients for
vital cellular functions during fasting and other stressors and
selectively eliminate unwanted, potentially harmful cytosolic
material, such as damaged mitochondria or protein aggregates.
There are different forms of autophagy: microautophagy,
chaperon-mediated autophagy, mitophagy and macroautophagy.
The latter (in the following referred to as the ALP, or simply as
autophagy), consists in degrading and recycling cell components
by a vesicular structure called the autophagolysosome, that comes
from the fusion of an autophagosome with a lysosome (Galluzzi
et al., 2017).

Autophagy-lysosomal pathway plays a pivotal role in a
wide range of physiological and pathological conditions and is
fundamental for the nervous system. Terminally differentiated
cells that no longer divide, such as neurons, depend on basal
autophagy for the proper turnover of cytoplasmic contents and
for protein quality control. Consequently, ALP-deficient mice
accumulate ubiquitinated protein aggregates in neurons and
suffer from neurodegeneration even in the absence of other
pathological triggers (Hara et al., 2006; Komatsu et al., 2006).
Autophagy is also required for proper membrane turnover in
axon terminals (Komatsu et al., 2007) and for neurogenesis, the
production of new neurons from neural stem cells (NSCs). Here
we will provide a condensed review of the current knowledge
about the physiological role of basal autophagy in neurogenesis,
surveying the data available in embryonic development and the
few studies conducted in adults. The general role of autophagy
in neurogenesis and stem cell regulation has been the subject of
other reviews, to which we would like to refer the reader for more
extended information (Dhaliwal et al., 2017; Boya et al., 2018).
For a better understanding of the topic, we will first give a brief
overview of the main autophagy players in mammalian cells and
their pharmacological manipulation.

THE AUTOPHAGY-LYSOSOMAL
PATHWAY

Autophagy-lysosomal pathway is a step-wise procedure regulated
by several protein complexes: the ULK1-Atg13-FIP200-Atg101
complex, required for autophagy induction; the class III
phosphatidylinositol 3-kinase (PI3K) complex (PI3K/Vsp34,
Beclin1, Atg14/Atg14L, Vps15, and Ambra1), responsible for
autophagosome initiation and the Atg12-Atg5-Atg16L1 and
LC3-I/LC3-II complexes, fundamental for the extension and
closure of the autophagosome (Rodolfo et al., 2016) (Figure 1).
We will next focus on how these proteins control ALP steps:

(1) Autophagy induction is tightly regulated by mTOR and
AMPK, a metabolic sensor of the AMP/ATP ratio. Under
nutrient deprivation, AMPK promotes autophagy through

ULK1 phosphorylation at Ser317 and Ser777, whilst under
nutrient sufficiency, high mTOR activity phosphorylates
ULK1 at Ser757 preventing its activation (Kim et al.,
2011). In addition, TFEB is normally phosphorylated by
mTOR and is retained in the cytosol, but under fasting
TFEB translocates to the nucleus to induce lysosomal gene
expression (Napolitano and Ballabio, 2016), enhancing
the cell’s degradative capability (Sardiello et al., 2009).
Autophagy induction can be modulated by several chemical
compounds such as rapamycin, which inhibits mTOR
(Benjamin et al., 2011) and metformin, an indirect activator
of AMPK (Kim and Guan, 2015).

(2) Vesicle nucleation (phagophore formation). ULK1 activation
leads to FIP200 and Atg13 phosphorylation, causing the
assembly of the ULK1-Atg13-FIP200-Atg101 complex,
which in turn triggers class III PI3K complex formation.
The subsequent PI3-phosphate enrichment leads to
formation of the endoplasmic reticulum cradle, from which
an IM grows (Bissa and Deretic, 2018). The IM can be
also originated from other sources (Figure 1) and forms a
cup-shaped structure termed the phagophore that recruits
autophagy (Atg)-related proteins (Dikic and Elazar, 2018).
This step can be modulated by the class III PI3K inhibitors
3-methyladenine (3-MA) and wortmannin (Wu et al.,
2010).

(3) Vesicle elongation (autophagosome formation) depends
on two ubiquitin-like conjugating systems: Atg12-Atg5-
Atg16L1 and LC3 (Wang et al., 2018). First, Atg5 binds
to Atg12 in a reaction catalyzed by Atg7 and Atg10; the
resulting complex is conjugated to Atg16L1 and is recruited
to the pre-autophagosomal membrane by Eva1a/TMEM166
(Hu et al., 2016; Menzies et al., 2017). Atg12-Atg5-Atg16L1
assists in the recruitment of LC3, which gets cleaved
by Atg4 to form LC3-I that in turn is conjugated to
phosphatidylethanolamine by Atg3 and Atg7, generating
lipidated LC3-II that participates in phagophore membrane
elongation (Weidberg et al., 2010).

(4) Cargo recruitment and completion. Autophagy is a highly
selective process that requires a variety of receptor
proteins to recruit ubiquitinated (Ub)-cargoes to
the forming autophagosomes, such as p62/SQSTM1,
HDAC6 (Leyk et al., 2015) and NBR1 (Kirkin et al.,
2009). P62 is a ubiquitin-binding protein that interacts
with (Ub)-proteins and LC3 (Richter-Landsberg and
Leyk, 2013), acting as a bridge between Ub-protein
aggregates/autophagosomes and as a regulator of
membrane formation around the sequestered cargoes
(Tan and Wong, 2017a). HDAC6 mediates the transport
of Ub-proteins along microtubules (Leyk et al., 2015)
and the maturation of the autophagosome (Richter-
Landsberg and Leyk, 2013). NBR1 also recruits Ub-protein
aggregates and is degraded by autophagy depending
on LC3 (Kirkin et al., 2009). Co-localization between
aggregates and receptors like p62 or NBR1 is an indicator
of selective autophagy (Tan and Wong, 2017b). Taking
together the actions of the receptors and the role of
Atg9 in lipid delivery, the loading and closure of
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FIGURE 1 | The mammalian autophagy-lysosomal pathway (ALP). Under glucose starvation, AMP activated protein kinase (AMPK) promotes autophagy by directly
activating uncoordinated 51-like kinase 1 (ULK1) and transcription factor EB (TFEB) translocates to the nucleus to induce the transcription of several lysosomal
genes. Under nutrient sufficiency, high mammalian target of rapamycin (mTOR) activity prevents ULK1 activation and phosphorylates TFEB that remains in the
cytoplasm. The ULK1 activation leads to the formation of ULK1-ATG13-FIP200-ATG101 complex, which in turn triggers the class III phosphatidylinositol 3-kinase
(PI3K) complex formation. Both complexes participate in the formation of the endoplasmic reticulum cradle, from which the IM (isolation membrane) grows. Two
ubiquitin-like conjugating systems are responsible for autophagosome formation: the ATG12-ATG5-ATG16L1 system and the microtubule-associated protein 1 light
chain 3 (LC3) system, while ATG9 transmembrane protein collaborates in the delivery of lipids, and in the elongation and closure of the autophagosome. The ATG
complex is recruited to the pre-autophagosomal membrane by Eva1a/TMEM166. Cargo recruitment is achieved thanks to a variety of receptor proteins for
ubiquitinated proteins such as p62/SQSTM1, histone deacetylase 6 (HDAC6) and NBR1. Finally, the proteins LAMPs, RAB7 and HDAC6 regulate autophagosome
fusion with lysosomes, and the lysosomal acidic hydrolases are responsible for degrading the autophagy cargo. Autophagy proteins whose function has been
analyzed in relation to adult neurogenesis are highlighted in red (see also Table 1). β-catenin and Notch1 (signaling pathway components) are degraded through
autophagy during embryonic neurogenesis and are shown in green. This figure was produced using images from Servier Medical Art, licensed under a Creative
Commons Attribution 3.0 Unported License. http://smart.servier.com.

the autophagosome is achieved (Hurley and Young,
2017).

(5) Autophagolysosome formation and cargo degradation are
controlled by regulators of autophagosome fusion with
lysosomes, such as LAMPs, SNAREs, RAB7, HDAC6
and by lysosomal acidic hydrolases (Moreau et al.,
2013; Boya et al., 2018). The fusion of the mature
autophagosome’s outer membrane with the lysosome’s
one leads to the degradation of the autophagosome’s
inner membrane as well as its contents, generating
building blocks recycled by the cell (Rodolfo et al.,
2016). This final step can be modulated by bafilomycin
A1, a disruptor of autophagosome-lysosome fusion and
autophagolysosome acidification (Mauvezin and Neufeld,
2015).

In the following sections, we will review the consequences of
deleting autophagy-related genes or pharmacologically blocking
autophagy in embryonic and adult NSPCs.

BASAL AUTOPHAGY AND
NEUROGENESIS DURING
DEVELOPMENT

Today we can safely say that constitutive autophagy is required
for embryonic neurogenesis. The first evidences came from
work showing that autophagic proteins increase during neuronal
differentiation of fetal NSPCs. For instance, in NSPCs derived
from the forebrain, Atg9a levels and the LC3-II/LC3-I ratio
(a readout of autophagy) raised during neurogenesis (Morgado
et al., 2015). A similar upregulation in the expression of other
autophagy-related genes (coding for Atg7, Beclin1, Ambra1
and LC3) was described for the OB (Vázquez et al., 2012).
The pattern was recapitulated in cultured OB-NSPCs and
occurred concomitantly with an increase in the autophagic
flux (Vázquez et al., 2012). Similarly, Atg5, Eva1a and LC3-
II proteins raised in the mouse cerebral cortex during the
neurogenic period (Lv et al., 2014; Li et al., 2016). Atg5
is highly expressed both in the cortical plate, where mature
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neurons reside, and in the VZ/SVZ, where it co-localizes with
the NSPC marker Sox2 (Lv et al., 2014), pointing to a role
of autophagy in these two cell compartments. In line with
this observation, Atg5 silencing impaired cortical neuronal
differentiation while increasing proliferation of VZ/SVZ NSPCs
(Lv et al., 2014).

Acute silencing of Class III PI3K (Vps34) during
corticogenesis by in utero electroporation also affected
neurogenesis, decreasing excitatory neuron migration and
axonal growth without influencing the cell cycle of NSPCs at the
VZ/SVZ (Inaguma et al., 2016). Pharmacological disruption of
autophagy with PI3K inhibitors such as Wortmaninn or 3-MA
impaired neuronal differentiation of OB-NSPCs by reducing
newborn neuron numbers and their maturation. Moreover,
neurogenesis was decreased in OB-NSPCs from Ambra1+/gt

haploinsufficient mice and Atg5−/− mice, but supplementation
with methylpyruvate (an analog for the citric acid cycle that
restores ATP availability) rescued the phenotype, indicating
that OB-NSPCs require autophagy as an energy source to
differentiate into neurons (Vázquez et al., 2012). Wortmaninn,
3-MA or bafilomycin A1 also prevented neuronal differentiation
of fetal forebrain NSPC cultures (Morgado et al., 2015) while
overexpression of a microRNA (miR-34a) that downregulates
Atg9 markedly affected neuronal differentiation and rapamycin-
induced autophagy partly recovered the defect (Morgado et al.,
2015).

Genetic manipulations of ALP selectively in NSPCs
have also yielded interesting results. In Nestin-Cre driven
Eva1a conditional knockout (cKO) embryos, the number of
proliferative NSPCs and TuJ1+BrdU+ newly generated neurons
was greatly reduced (Li et al., 2016). This cortical phenotype
correlated with an impaired autophagy, shown by a decrease
in LC3-II levels, LC3 puncta and an increase in p62 and
ubiquitin. In vitro neurosphere assays revealed a defect in NSC
self-renewal with no change in apoptosis, while differentiation
assays uncovered a reduction both in neurogenesis and neurite
length (Li et al., 2016).

A few studies have addressed a more specific function
of ALP in regulating components of signaling pathways that
are key for brain development. For instance, Atg7 regulates
the β-catenin-dependent branch of Wnt signaling (Petherick
et al., 2013). Under normal physiological conditions, β-catenin
limits basal autophagy in mammalian cell lines and functions
as a transcriptional co-repressor of p62, but during nutrient
deprivation, β-catenin is targeted for autophagic degradation
and p62 is de-repressed (Petherick et al., 2013). In the
embryonic brain, loss of Atg5 function decreases cortical
neuronal differentiation and enhances progenitor proliferation
through the stabilization of β-catenin, while Atg5 overexpression
accelerates its degradation. Furthermore, the cortical phenotype
observed following Atg5 silencing is fully rescued by β-catenin
knockdown (Lv et al., 2014). On the other hand, it has been
reported that Wnt3A decreases autophagy in mature neurons
after traumatic brain injury while increasing hippocampal
neurogenesis (Zhang et al., 2018a). In contrast, Wnt3A increases
autophagy in embryonic rat hippocampal neuronal cultures
through the activation of AMPK (Ríos et al., 2018). This effect

is β-catenin-independent, uncovering an interesting connection
between Wnt signaling, neuronal metabolism and autophagy that
deserves further exploration.

Another key pathway regulated by autophagy is Notch
signaling. Notch1 receptor is degraded via its uptake into pre-
autophagosome vesicles in an Atg16L1-dependent manner (Wu
et al., 2016). Atg7 and Atg16L1 knockdown increase Notch1
levels on the plasma membrane and Notch signaling, while
Beclin1 overexpression has the opposite effect. Notch1 levels
are increased in Atg16L1 hypomorphs (Wu et al., 2016) and
in embryonic cortical primary cultures from these mice, there
is an increase in the proportion of NSCs that is reversed with
Notch inhibitors. In vivo, the VZ/SVZ of Atg16L1 hypomorphs
is larger while the cortical plate is smaller compared to wild-type
mice. Thus, increased Notch1 resulting from defective autophagy
impairs neuronal differentiation and expands the NSC pool (Wu
et al., 2016).

Altogether, the above studies combining pharmacological
approaches and autophagy-deficient mouse models demonstrate
that basal autophagy is required during embryonic neurogenesis
and this is partly due to the regulation of key morphogen
signaling pathways. In the next section, we will review the
main findings regarding the role of ALP in neurogenesis during
adulthood.

BASAL AUTOPHAGY AND ADULT
NEUROGENESIS

Adult neurogenesis has been analyzed in animals deficient
for ALP genes, with divergent results depending on which
complex is targeted. Both direct (cell autonomous) effects on
stem/progenitor cells and indirect (non-cell autonomous) niche-
mediated effects have been identified. For the most part, the
genetic strategies employed delete autophagy genes already at
embryonic stages and the phenotype in the two adult neurogenic
regions (the subependymal zone, SEZ, and the subgranular zone,
SGZ) is analyzed in postnatal or young adults. Studies knocking
out autophagy genes in stem or progenitor cells in adult mice are
scarce.

Yu and co-workers first reported that insulin withdrawal
induced an autophagic AMPK-dependent cell death in adult
hippocampal NSPCs in vitro (Yu et al., 2008; Ha et al., 2017).
The death correlated with the upregulation of Beclin1, LC3-II
and the accumulation of autophagosomes, was partly rescued
by Atg7 silencing and was enhanced with rapamycin. Later on,
Chung and colleagues showed that low calpain activity underlied
the switch from apoptosis to autophagic cell death (Chung
et al., 2015). More recently it has been reported that oxygen-
glucose deprivation (a cellular model of ischemia) also induces
autophagic cell death in adult hippocampal NSPCs (Chung et al.,
2018). These results suggest that blocking autophagy may be
cytoprotective for insulin or oxygen-glucose deprived NSPCs.

In 2013, a seminal in vivo study demonstrated that FIP200-
mediated autophagy is required for the maintenance and function
of postnatal and adult NSPCs via the regulation of their oxidative
state (Wang et al., 2013). Conditional deletion of FIP200 in
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radial glia during development depleted postnatal SEZ and SGZ
progenitors and decreased neurogenesis. The adult neurogenic
niches appeared normal at postnatal day (P) 0, but at P28, the
dentate gyrus shrunk, the number of radial NSCs was reduced
and astrocytes populated the SGZ, forming a dense ribbon. At this
stage, the SEZ appeared thinner and was depleted of both NSPCs
and PSA-NCAM+ neuroblasts. SEZ/SGZ proliferation became
compromised and apoptosis was increased. In vitro neurosphere
assays uncovered a reduced survival capacity of the NSCs and
possibly a self-renewal defect. At P56, FIP200 deficiency raised
mitochondrial mass and heterogeneity in the SEZ, increasing
ROS and p53, a master regulator of cell cycle arrest and
apoptosis in response to DNA damage (Ou and Schumacher,
2018). In double FIP200/p53 cKO animals, the apoptosis and
proliferative defects were rescued yet differentiation was still
affected, suggesting that the role of autophagy in the regulation
of NSCs is uncoupled from its role in newborn neurons (Wang
et al., 2013).

Neural stem cell maintenance, self-renewal and differentiation
was unaffected in Atg5 and Atg16L1 cKO mice generated
using the same mouse driver line employed for the FIP200
cKO (hGFAP-Cre) (Wang et al., 2016). This divergent result
might be due to FIP200 functions beyond autophagy or to
compensations for Atg5/Atg16L1 loss. Reinforcing the latter, p62
aggregates accumulated in the SEZ/SGZ of FIP200 cKO but
not in Atg5 or Atg16L1 cKO mice; moreover, the decrease in
NSPCs and proliferation was fully restored in double FIP200
and p62 cKO mice (Wang et al., 2016). At a mechanistic
level, p62 aggregates reduced the activity of the superoxide
dismutase SOD1, leading to oxidative stress and consequently
to NSPC dysfunction. In addition, FIP200 indirectly regulated
postnatal SEZ neurogenesis via microglia. Wang and colleagues
demonstrated that p62 aggregates in FIP200-null NSPCs activate
NF-κB and promote the production of Ccl5 and Cxcl110
chemokines, leading to microglia activation, niche infiltration
and interference with NSPC differentiation (Wang et al.,
2017a).

The role of the Beclin1-Atg14L1-Vps34 complex in the adult
SEZ has been also analyzed (Yazdankhah et al., 2014). Ambra1
and Beclin1 are expressed in SEZ Nestin+ NSPCs and DCX+
neuroblasts and high levels of GFP-LC3 are detected in the SEZ
of transgenic mice. In Beclin1+/− heterozygotes, proliferative
cells and TuJ1+ neurons decrease, while active caspase-3+
cells increase throughout the SEZ (some co-localizing with
TuJ1), evidencing a raise in apoptosis of the newly generated
neurons. No in vivo analysis of the NSCs or intermediate
progenitors using specific markers is so far available in these mice.
Nevertheless, SEZ NSPC cultures from Beclin1+/− mutants were
defective in neurosphere formation, neuronal differentiation and
showed an increase in active caspase-3. NSPCs from Ambra1+/−

mutants displayed a similar phenotype. Moreover, autophagy
is required for radial migration of the SEZ newborn neurons
upon their arrival to the OB. Lentiviral-mediated knockdown
in migrating neuroblasts of a microRNA (let-7) targeting amino
acid transporters [thus involved in ALP regulation (Nicklin et al.,
2009)], impaired migration and autophagy, whilst overexpression
of Beclin1 or TFEB restored both defects (Petri et al., 2017).

Together, the data indicate that basal autophagy has a pro-
survival role in adult SEZ newborn neurons in vitro and in vivo
and point to an additional function in the maintenance of adult
NSC pools and in the final migration of the adult-born neurons
within the OB.

A recent report has knocked out an autophagy gene directly in
actively proliferating NSPCs of the SGZ employing a retroviral
(RV) strategy (Xi et al., 2016). Xi et al. (2016) injected a RV
carrying an mCherry-EGFP-LC3 autophagy-sensing cassette in
the dentate gyrus of young adult mice, traced the progeny
of the transduced cells and found autolysosomes (mCherry+
puncta) in progenitors and immature neurons at all stages of
development, being the most prominent accumulation in the
developing processes of young neurons (<30 days post RV
injection). Next, they simultaneously tracked the autophagy flux
and knocked out Atg5 in dividing NSCPs of Atg5flox/flox mice,
by co-injecting a second RV directing the GFP-Cre expression.
As expected, Atg5-null NSPCs had less autolysosomes and
their survival was markedly compromised. Atg5-null neurons
experienced a transient maturation delay, with a reduction in
spine density and prolonged expression of the immature marker
DCX at 30 days post injection. Dendritic arborization seemed
normal, although subtle defects could have been missed. This
phenotype is reminiscent of the age-related maturation delay
of newborn neurons (Trinchero et al., 2017), suggesting that a
cell-autonomous failure in autophagy could partly contribute to
maturation impairments during aging. Of note, the survival and
the maturation timing defects were rescued in mice lacking the
pro-apoptotic protein Bax (Xi et al., 2016).

More recently, Leeman et al. (2018) found protein aggregates
in quiescent NSCs from the SEZ of young adult mice. The
aggregates were stored in large lysosomes and the expression
of lysosome-associated genes with TFEB motifs was increased.
Detection of LAMPs and autophagy-sensing constructs indicated
that quiescent NCS contained more and larger lysosomes
than actively dividing NSCs. Nutrient deprivation (a pro-ALP
stimulus) improved quiescent NSC activation in vitro, and this
was blocked by bafilomycin A1, suggesting that ALP provides
a burst of energy for NSC division. With age, a subset of
old quiescent NSCs had defects in their lysosomes and in
ALP, accumulating higher levels of protein aggregates. This was
counteracted by overexpression of a constitutive active TFEB,
leading to quiescent NSC activation. In vivo administration of
rapamycin also increased the frequency of active SEZ NSPCs
expressing the epidermal growth factor receptor (EGFR) in
old animals, as analyzed by FACS. Although the active NSC
and progenitor populations were not clearly segregated in the
analysis, since they are both EGFR+, the finding suggests that
clearing protein aggregates through ALP enhances NSC activity
in the aged brain.

FUTURE PERSPECTIVES

Collectively, the above findings show a prevalent function
for autophagy-related genes in embryonic neurogenesis and
place autophagy at the crossroads between proteostasis and
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developmental signaling pathways. During development,
basal autophagy is mainly required for adequate neuronal
differentiation and possibly to limit the expansion of the NSC
population through the downregulation of the β-catenin/Wnt
and Notch pathways. Commonalities and distinct features of
ALP in adult vs. embryonic neurogenesis are also starting to
emerge. The available data in the adult, summarized in Table 1,
point to a distinctive role of ALP in the exit of NSCs from their
predominant quiescent state (a property of adult NSCs that is
not shared by their embryonic counterparts) and possibly to a
shared role in the differentiation/maturation of the adult and
embryonic newly born neurons. Basal autophagy has also a
pro-survival role in adult neurogenesis. Nevertheless, to gain
further insight into the function of ALP in adult neurogenesis,
future studies using tamoxifen-inducible Cre/LoxP systems are
required to delete autophagy genes during adulthood, bypassing
confounding embryonic and postnatal effects.

A remaining challenge in the field is to solve whether ALP
regulation is cell intrinsic/extrinsic and further refine its coupling
to sequential cellular transitions of the neurogenic cascade.
Moreover, little is known regarding the role of autophagy in the
adult neurogenic response to external stimuli. Running increases
autophagy in the brain (He et al., 2012) and Xi et al. (2016)
showed that running could not rescue the survival deficits of
Atg5-null newborn neurons, but further research in this direction
is warranted. Exploring in the adult the interesting connections
found in the embryo between niche signals such as Notch or
Wnt, NSC expansion, neuronal metabolism and autophagy will
also likely expand our knowledge on the coordination between
extrinsic/intrinsic mechanisms regulating neurogenesis in the
mature brain.

Finally, the activation of autophagy facilitates the clearing
of intracellular protein aggregates and consequently the
pharmacological enhancement of ALP is viewed as a promising
neuroprotective approach for a variety of neurodegenerative
proteinopathies (Menzies et al., 2017; Thellung et al., 2018). On
the other hand, autophagy is involved in the pathophysiological

changes induced in the brain upon ischemic stroke (Zhang
et al., 2018b) and possibly in NSPC cell death following
radiotherapy in malignant childhood brain tumors, including
high-grade gliomas (Wang et al., 2017b). The potential impact of
autophagy modulators on the regulation of either endogenous
NSPCs/neurogenesis [controversial in humans at this point,
see Kempermann et al. (2018) and references therein] or the
possible outcome of modulating autophagy in combination
with NSPC transplantation strategies for the treatment of
some of these diseases has received little attention. Autophagy
may play a dual role in NSPCs and immature neurons, being
adaptive and cytoprotective in basal conditions, or detrimental
following exposure to ischemic environments or irradiation.
On the other hand, the neurogenesis studies performed in
animal models predict that inducing autophagy would favor
the survival and maturation of the newly generated neurons
in grafts. Thus, it is tempting to speculate that enhancing
autophagy in neurodegenerative pathologies could be beneficial
both for the damaged neurons and to improve the efficacy of cell
replacement strategies, so we anticipate that future research in
this convergence zone may yield promising results.
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