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Common to several allergic diseases is the generation of immunoglobulin E (IgE) by

plasma cells, when exposed to an innocuous antigen. Asthma and chronic obstructive

pulmonary disease (COPD) are two prevalent chronic airway inflammatory diseases.

Asthma is mediated in some patients through eosinophilic inflammatory mechanisms

that include allergic sensitization and Th2-mediated immune airway response. COPD,

on the other hand is mainly considered a Th1-mediated inflammatory process with

neutrophilic predominance or a non-Th2 inflammation, occasionally associated with the

presence of airway bacteria or viruses. IgE production appears to play an important role

in the development of both COPD and asthma, as it has been associated to respiratory

symptoms, lung function, bacterial and viral infections, airway remodeling and bronchial

hyperreactivity in both diseases. The aim of this review is to summarize all current data

concerning the role of specific and total IgE in COPD and asthma and to highlight

similarities and differences in view of possible therapeutic interventions.
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IMMUNOLOGY OF ASTHMA AND COPD

T lymphocytes are distinguished by the presence of cell membrane molecules known as cluster of
differentiation 4 (CD4) and CD8. The CD4 T-lymphocytes are also known as helper T cells and can
be further subdivided into Th1 and Th2, producing, respectively, Th1- and Th2-type cytokines
(1). Th1-type cytokines induce the proinflammatory response that leads to the elimination
of intracellular parasites and to the propagation of autoimmune responses (1). The Th2-type
cytokines, such as interleukins (IL)- 4, 5, and 13 are associated with the production of IgE and
with the promotion of eosinophilic responses in atopy (1).

Common to several allergic diseases is the generation of immunoglobulin E (IgE) by plasma
cells, when exposed to an innocuous antigen (2). Upon initial allergen exposure, antigen presenting
cells capture, process and present allergen peptides to T-cells. In presence of IL-4 or IL-13, T-cells
acquire the Th2-phenotype, proliferate and engage B-cells to differentiate into plasma cells, which
produce IgEs (3) (Figure 1). IgEs bind almost irreversibly to the high affinity IgE receptor (FcεRI)
on the surface of mast cells or basophils to create “allergen receptors” (2, 3). A subsequent exposure
to the same antigen leads to cross-linking of the IgE:FcεRI complex, degranulation of the cells and
release of inflammatory mediators, leading to the early phase response (EPR) (2, 3). EPR occurs
immediately after exposure and is accompanied by symptoms such as rhinorrhea, sneezing, nasal
congestion and itching (4). The ensuing effector cell infiltration into the tissue encompasses the
late-phase response (LPR), along with the continuing production of IgE (4) (Figure 2).

Asthma and chronic obstructive pulmonary disease (COPD) are two common
chronic airway inflammatory diseases. Asthma is often mediated through an eosinophilic
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FIGURE 1 | The generation of immunoglobulin E (IgE) by plasma cells. Upon initial allergen exposure, antigen presenting cells (APC) capture, process and present

allergen peptides to T-cells. In the presence of interleukin (IL)-4 or IL-13, T-cells acquire the Th2 phenotype, proliferate and stimulate B-cells to differentiate into plasma

cells that produce IgE. Viral infections induce the production of the T cell chemoattractant chemokine ligand 28 (CCL28) by dendritic cells and consequently recruit

Th2 cells that lead to IgE production.

FIGURE 2 | The effects of IgE in the respiratory system. IgE binds almost irreversibly to the high affinity IgE receptor (FcεRI) on the surface of mast cells or basophils to

create allergen receptors. A subsequent exposure to the antigen leads to cross-linking of the IgE:FcεRI complex, degranulation of the cells and release of inflammatory

mediators, leading to symptoms such as rhinorrhea, sneezing, nasal congestion and itching. Interleukin (IL)-1β is a very important pro-inflammatory cytokine that

mediates the inflammatory response, and its expression may be induced in monocytes, as a response to increased IgE levels. This leads to airway inflammation and

obstruction, an important determinant in COPD. Moreover, IgEs increase airway remodeling by increasing deposition of pro-inflammatory collagens and fibronectin by

airway smooth muscle cells (ASMC) and stimulating their proliferation.

inflammatory mechanism that includes allergic sensitization and
Th2-mediated immune airway responses (5). COPD, on the other
hand is mainly considered a Th1-mediated inflammatory process

with neutrophilic predominance or a non-Th2 inflammation that
is occasionally associated with the presence of airway bacteria or
viruses (6) (Table 1).
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ATOPY IN ASTHMA AND COPD

IgE-mediated sensitivity of inhaled allergens is strongly
associated with asthma (9), but this is not true for all asthma cases
(8). Allergic asthma is the most common asthma phenotype,
which is defined by the presence of allergic sensitization (25),
or by a correlation between allergen exposure and asthmatic
symptoms (26) but may overlap with other phenotypes (27).
Patients with allergic asthma are more likely to report seasonal
variations of their symptoms (25). Although it might present at
any age, patients with allergic asthma are usually younger than
those with non-allergic asthma (25, 26, 28, 29). In school-age
children, aeroallergen sensitization is more frequent in children
with severe asthma, rather than in children with mild-to-
moderate asthma (30). In adults, allergic asthma has been
associated with a greater FEV1 reversibility, a higher sputum
eosinophil count, higher FENO levels and more exacerbations in
the past year (31). Moreover, exercise-induced bronchospasm is
more frequent and severe in allergic rather than in non-allergic
asthma (32). Conversely, some studies suggest that allergic
asthma is less severe than non-allergic (25, 26, 33–37), or cast
doubt on the association between asthma severity and atopic
status (38–41). Indeed, the different phenotypes of asthma
are an important determinant in that matter, as the role of
allergy differs in early onset asthma when compared to late
onset asthma (42, 43). Accordingly, young asthmatics mostly
present with allergic asthma, while late onset asthma is usually
severe, steroid resistant and not related to allergy (42–44).
Total serum IgE, peripheral eosinophilia levels, as well as
Th2-type responses are usually higher in allergic vs. non-allergic
asthma (27, 32, 45).

In a study of Bafadhel et al., atopy was defined as a positive
skin prick test and/or elevated allergen specific IgEs and it showed
a prevalence of 34% among COPD patients (46). Jin et al.
showed that even among 273 COPD patients without obvious
atopy, the prevalence of elevated total IgE was 47.3% (47). A
meta-analysis by Putcha et al. indicated that 35% of the COPD
patients (N = 403) from the SPIROMICS cohort and 36% of
the COPD patients (N = 696) from the COPDGene cohort
presented with atopy, defined as positive sensitization to any of
the 10 indoor and outdoor allergens measured in the study (48).
There was an almost 50% overlap between atopic status with
COPD with asthmatic characteristics (defined as self-report of
doctor diagnosed asthma in patients with COPD) in both cohorts
(48). Moreover, COPD individuals with non-atopic asthmatic
characteristics had the most impaired symptom scores (SGRQ=

4.2, 95% CI: 0.4–7.9; CAT score = 2.8, 95% CI: 0.089–5.4) and
highest risk of exacerbations (incidence rate ratio = 1.41, 95%
CI: 1.05–1.88), compared to the group without atopy or asthma,
while COPD individuals with atopy and atopic asthma were not
at increased risk of adverse outcomes (48).

A recent study in an Asian cohort recruited across three
countries demonstrated that specific IgEs produced against a
broad range of allergens (pollens, house dust mite, cockroach,
and fungi) were increased in COPD (n = 466) when compared
to controls (n = 51) (49). House dust mite (B. tropicalis,
D. pteronyssinus, D. farinae) and grass pollens (pooids and

TABLE 1 | Comparison of IgE production and the allergic profile in asthma and

COPD patients.

Asthma COPD

DIFFERENCES

Mediated through eosinophilic

inflammation and Th2-mediated

inflammatory responses (5)

Mediated through neutrophilic

inflammation and Th1-mediated

inflammatory responses (6)

Total IgE levels were higher in 541

patients with self-report of doctor’s

diagnosis of asthma before the age of

40, compared to 598 controls without

any airflow obstruction (7)

Total IgE levels among 899 patients

with COPD were not significantly

different when compared to the total

IgE levels of 598 controls without any

airflow obstruction (7)

Asthma patients tested for six specific

IgEs against indoor aeroallergens were

found to be more frequently positive at

least to one specific IgE when

compared to controls (49.9% of asthma

patients vs. 30.3% of controls, p <

0.05) (7)

COPD patients tested for the six

specific IgEs against indoor

aeroallergens were not found to be

more frequently positive at least to

one specific IgE when compared to

the controls (24.5% of COPD patients

vs. 30.3% of controls, p > 0.05) (7)

SIMILARITIES

Prevalence and profile of IgE-dependent sensitization to inhaled allergens is not

different between asthma and COPD (8)

Similar cytokine profiles in both asthma and COPD might indicate that both Th2

and Th1 cells are involved in the immunopathology of these diseases (8)

Atopy and IgE-mediated sensitization to environmental allergens is strongly

associated with asthma (9) and it increases the risk for COPD development

(10, 11)

Th2- inflammatory gene expression signature in COPD individuals without clinical

history of asthma suggests shared mechanisms with asthma (12)

Both allergic asthma and COPD are characterized by an overexpression of FcεRI

on DCs (13–15)

SE-IgE is associated with asthma severity, exacerbations, control and age of

onset (16–21), as well as with COPD exacerbations and control (22)

Airway hyperreactivity, a feature of asthma, can be an independent predictor of

COPD development in the general population (23) and also a risk factor for rapid

progression of airway obstruction in patients with mild COPD (24)

COPD, chronic obstructive pulmonary disease; S. aureus, Staphylococcus aureus; SE-

IgE, staphylococcal enterotoxin IgE; ASMCs, airway smooth muscle cells; FcεRI, high

affinity IgE receptor; DCs, dendritic cells.

panicoids) presented the highest specific IgE-binding intensities
in COPD (49). A significant number of COPD patients
demonstrated sensitization to fungi (n = 249, 55.8%) and
house dust mites (n = 229, 51.3%) (49). Frequent exacerbators
showed significantly increased specific IgE-binding to crude
fungal allergens (Curvularia, Penicillium, A. fumigatus) and the
cockroach allergen Bl. germanica, but no significant specific
IgE-binding to pollens, house dust mites or the cockroach
allergen Pr. americana (49). On the other hand, no association
between sensitization status and the COPD GOLD stage
(lung function) or GOLD group (ABCD) was detected, but
a highly sensitized, fungal predominant subgroup of COPD
patients demonstrated the worse clinical outcome, with greatest
symptoms (median CAT score = 16, IQR = 10–22, P < 0.01),
poorest lung function (FEV1 = 41.1% predicted, IQR = 32.5–
57.0%, p < 0.01) and increased exacerbation rate (IRR 2.01,
95%CI = 1.44–2.81, p < 0.001) (49). Additionally, there was
a significantly increased systemic IgE response to a number of
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FIGURE 3 | Graphic abstract of the review.

outdoor air fungi (Schizophyllum, p < 0.01; Aspergillus, p <

0.001; Penicillium, p < 0.001; Byssochlamys, p < 0.001; and
Cladosporium, p < 0.01) in COPD patients when compared to
controls and an increased number of exacerbations was detected
in the COPD patients that were sensitized against air-fungi (IRR
= 2.29, 95%CI = 1.12–4.68, p < 0.01) (49). The study indicated
that the abundance of indoor air and surface allergens positively
correlates with COPD symptoms (r = 0.75, p < 0.01) and
negatively with lung function (r = −0.61, p < 0.01), suggesting
that indoor air and surfaces represent a potential source of
fungal allergen exposure (49). However, blood eosinophil counts
were not different among the high, moderate and low-sensitized
patients (49). Notably, in this study patients were enrolled from
Singapore, Hong Kong, and Malaysia (49). All these countries
are located in South Asia where the temperature and humidity
differ dramatically from other Asian and Western countries. It
is important to note here that the prevalence and role of fungal
sensitization in tropical climate countries may not be the same
in temperate climate ones and further studies elucidating this
difference should be conducted.

Total IgE serum levels have been previously associated with a
longitudinal decline of lung function (FEV1/FVC), independent
of smoking and asthma status (50) and therefore atopy is
potentially associated with the risk for COPD (50). Several studies
suggest that in COPD patients, IgE-mediated sensitization
to environmental allergens plays an important role to the
pathogenesis of the disease, as it has been associated with severe
symptoms or deteriorating lung function (10, 11, 47, 51, 52).
Fattahi et al. demonstrated that atopy in COPD was associated
with a higher prevalence of cough and phlegm, but not with
FEV1 decline (10). When compared to non-allergic controls,
patients with increased serum total IgE have a more severe or
longer history of respiratory symptoms, such as dyspnoea and
a greater impairment of lung function (47, 51). Additionally,

COPD individuals with allergic sensitization have been shown to
have increased respiratory symptoms and exacerbation rates (52).

Another study indicated that in COPD, IL-1β and IgE serum
levels correlate with clinical aspects of disease severity and
suggested that the production of both IgE and IL-1β may be
related to smoking, which affects airway obstruction (53). IL-
1β is a very important pro-inflammatory cytokine that mediates
the inflammatory response and its expression may be induced
in monocytes, as a result of increased IgE levels (53) (Figure 3).
However, in that study, no correlation between IL-1β and IgE
was observed, probably due to the small sample size (30 COPD
patients, 30 healthy controls) (53).

The Dutch hypothesis proposed in 1,961 states that there
are common risk host factors for asthma and COPD, including
airway hyperresponsiveness and atopy and that disease
manifestations also depend on external factors, such as
exposures (54). Indeed, the finding of a bronchial epithelial
Th2- inflammatory gene expression signature in some COPD
individuals suggests shared mechanisms with asthma (12). This
implies that Th2-mediated airway responses may be important
in COPD patients without clinical history of asthma (12). Bozek
et al. demonstrated that neither the prevalence nor the profile
of IgE-dependent sensitization to inhaled allergens differed
between asthma and COPD (8). They pointed out that there
are similar cytokine profiles in asthma and COPD and this
could indicate that both Th2 and Th1 cells are involved in the
immunopathology of these diseases (8).

Additionally, severe COPD and allergic asthma were
characterized by a similar overexpression of FcεRI on
plasmacytoid dendritic cells (DC) and this was in turn
related to the reduction of asthma and COPD with asthmatic
characteristics exacerbations following omalizumab treatment,
as omalizumab suppresses this receptor (13–15). In view of
the effect of anti-IgE therapies on asthma exacerbations, trials
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investigating the effect of anti-IgE on exacerbations of COPD
without asthmatic characteristics are warranted. It appears
that COPD patients display an overexpression of the FcεRI
receptor on DC and this highlights the important role of IgE
in the development and progression of COPD (55). Current
smokers display an increased expression of the FcεRI receptor on
myeloid and plasmacytoid DC, when compared to never smokers
(55). Moreover, the overexpression of the FcεRI receptor on
plasmacytoid DC is similar between patients with severe COPD
and patients with allergic asthma, while in COPD patients it is
associated with increased serum levels of total IgE, worse GOLD
stage and worse lung function (55).

Hersh et al. reported that total IgE levels were higher in
541 patients with self-report of doctor’s diagnosis of asthma
before the age of 40, compared to 598 controls without any
airflow obstruction (7). Moreover, when the asthma patients
of that study were tested for six specific IgEs against indoor
aeroallergens [cat and dog dander, dust mite (D. farinae and
D. pteronyssinus), German cockroach and mold mix] they were
found to be more frequently positive at least to one specific IgE
when compared to controls (49.9% of asthma patients vs. 30.3%
of controls, p < 0.05) (7). However, total IgE levels among 899
patients with COPD were not significantly different from total
IgE levels of 598 controls without any airflow obstruction (7).
Moreover, when COPD patients were tested for the same six
specific IgEs against indoor aeroallergens, they were not found
more frequently positive with regard to any IgE when compared
to controls (24.5% of COPD patients vs. 30.3% of controls, p >

0.05). A higher proportion of current smokers had elevated total
IgE levels and at least one positive specific IgE, when compared
to former smokers (7). This is in agreement with the study of
Omenaas et al., who reported potential effects of smoking on IgE
levels (56).

INTERPLAY BETWEEN ATOPY AND VIRAL
INFECTIONS IN ASTHMA AND COPD

Several observational studies have associated allergic
sensitization by 1 year of age with respiratory viral infections
in infancy (57–59), and severe respiratory infections in early
age have been associated with a higher prevalence of asthma in
later childhood (60, 61). The association between viral infections
and allergic disease is not unreasonable, because the immune
response against many viral infections includes the production
of specific IgEs against viral pathogens (62–65). Therefore,
anti-IgE therapy was shown to prevent viral exacerbations of
asthma (66) and the exacerbation number was reduced even
when omalizumab was given 4–6 weeks before children return to
school in fall, especially in those who had recently experienced
an asthma attack (67).

A viral infection can attract several cell types, such as Th1
cells, CD8 cells, neutrophils and DC, to the site of inflammation,
and they can all participate in the allergic response of the
patient (68) (Figure 1). Moreover, viral infections affect the
expression of receptors involved in the allergic response (68) and
can induce several inflammatory mediators, including TGF-β,

neutrophilic elastase and several cytokines, which have an effect
in the remodeling process of the lung (68). Thereby, they might
produce long term effects on the structure of the developing lung,
leading to suboptimal lung growth and function and increasing
the risk of airway narrowing and the development of clinical
asthma (68). That is why respiratory viral infections have similar
symptoms with allergic diseases, like allergic rhinitis, and they
clearly exacerbate asthma (69).

The etiology of IgE production during viral infections is not
yet clearly understood, as IgE production is normally a result of
Th2-biased responses (70). In severe viral infections, however,
an antiviral Th1-biased response may lead to a proatopic Th2
response and the link between virus and atopy appears to be
through the production of IgEs (71, 72). It has been demonstrated
that IgEs are produced against a large number of human viral
pathogens (73–80). Results from mouse model studies indicate
that severe viral infections induce the production of antiviral IgEs
that bind to the FcεRI receptor of DCs (71, 81–84). The receptor
is then crosslinked by an antigen, the DCs produce the T cell
chemoattractant chemokine ligand 28 (CCL28) and recruit IL-
13-producing Th2 cells that can contribute to asthma (71, 81–84).
CCL28 was found elevated in the lungs of patients with asthma
(71, 85) (Figure 1).

Specifically, the Respiratory Syncytial Virus (RSV) was
suggested to enhance Th2 sensitization to aeroallergens (86).
Some studies have demonstrated that there is a correlation
between the titer of antiviral IgEs and the severity of RSV
symptoms, such as wheezing in infants and recurrent wheezing or
development of asthma in older children (62, 64, 87). Moreover,
infants requiring hospitalization for severe RSV infection in the
first 6 months of life, have a nearly 20-fold increased risk of
developing asthma (88).

Human rhinovirus (HRV) is also known to be a major cause
of asthma exacerbations in infants and infection with HRV is
associated with a higher incidence of asthma onset (61, 89–91).
The prevalence of virus detection in adult asthma exacerbations
was demonstrated in the range of 41–78% (92), and HRV appears
to be a frequent cause of those exacerbations (93). Accordingly,
in suburban children, from birth up to 3 years of age, who were
at risk of asthma (one parent with asthma or allergy) and showed
that the most important risk factor for development of wheeze by
the third year of life was a symptomatic rhinovirus infection (94).

Children with parainfluenza infection in the first year of life
had higher odds of developing asthma in their second year
of life (95). In another study, infants younger than 3 months,
infected with RSV, influenza or parainfluenza had comparable
increases in their Th2 cytokine profiles, implicating that there are
similarities between RNA respiratory viruses in their ability to
push forward an atopic predisposition (96). A cohort of 90,000
children was examined and an increased risk of asthma was
found in children with episodes of bronchiolitis during non-
wintermonths (97). It was also found that patients born 4months
before the winter virus peak, had an increased risk of developing
asthma, suggesting that the timing of the viral infection plays an
important role in the development of early onset asthma (98).

A growing body of evidence implicates viral respiratory
tract infections as the predominant risk factor associated with
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exacerbations of COPD and the development of chronic airway
disease (99, 100). Most exacerbations of COPD are triggered
by either bacterial or viral infections or a combination of
both (101), since 40–80% of acute exacerbations of COPD
(AECOPD) that frequently require hospitalization are attributed
to viral respiratory tract infections (99). AECOPD associated with
symptoms of a common cold have been shown to have a more
sudden onset and longer recovery times than AECOPD without
cold symptoms (102). Additionally, COPD patients having more
frequent exacerbations experience nearly double the number of
colds compared to patients experiencing fewer exacerbations
(103) and the presence of cold symptoms is associated with a 15%
risk of AECOPD (104). On the other hand, in a recent study, Stolz
et al. have shown that the prevalence of viral infections during a
stable period of COPD is low and that the risk of exacerbations
following the onset of common cold symptoms depends on the
particular virus associated with the event and is significant only
for parainfluenza 3 (105).

INTERPLAY BETWEEN ATOPY AND
BACTERIAL INFECTION IN ASTHMA AND
COPD

There are a few reports regarding the relationship between
asthma attacks and bacterial infections (106–109). Viral and
bacterial infections were observed in 70% of inpatients with
an asthma exacerbation in clinical practice, and infection with
Streptococcus pneumoniae has been related to adult asthma
exacerbation (110).

Staphylococcous aureus is a Gram+ coccus that colonizes
humans, as well as domestic animals and is a common
opportunistic pathogen (111). At least 20 serologically distinct
staphylococcal superantigens have been described that include
staphylococcal enterotoxins (SEs) A through V and toxic shock
syndrome toxin-1 (TSST-1) (112, 113). Of the more than
20 staphylococcal enterotoxins, SEA and SEB are the best
characterized and are also regarded as superantigens, because
they are capable of binding to multiple types of the variable
region on the beta chain of the T-cell receptor and stimulate
large populations of T cells (polyclonal activation of T cells)
(112, 114). The result of this massive T cell activation is a cytokine
bolus leading to an acute toxic shock (115). Moreover, SEA and
SEB induce polyclonal IgE formation (SEA-IgE and SEB-IgE),
associated with allergic multi-morbidity in adolescents (116) and
they may also activate B-cells, eosinophils, epithelial cells and
others, resulting in a cytokine storm locally in the tissue and the
generation of a strong inflammatory response (117).

Staphylococcous aureus is frequently found colonizing patients
with Th2-biased diseases, such as atopic dermatitis and chronic
rhinosinusitis with nasal polyps (118–122). It releases proteins
that facilitate bacterial invasion and colonization and that
exert immunosuppressive action on the mucosal environment
(123–126). Asthmatic patients have increased IgE reactivity
specific to various secreted S. aureus proteins (117). There is
evidence that S. aureus is persistently colonizing the nasal mucosa
of patients, protected by a biofilm or hiding inside immune cells

(121) and is constantly producing a panel of factors that could
initiate and aggravate a Th2-biased immune response (127).
Chronic exposure to S. aureus secreted proteins could also hinder
the resolution of inflammation, fostering chronification (127).

A number of studies have demonstrated in the past that
sensitization to staphylococcal enterotoxins is associated with
asthma severity (16–19), asthma exacerbations (17), asthma
control and age of asthma onset (20, 21). There is only one
study that associates increased SE-IgE to COPD exacerbations
and COPD control but without defining the allergic profile of
those COPD patients (22) (Table 1).

Haemophilus influenzae (NTHi) triggers histamine release
through both IgE- and non-IgE-dependent mechanisms (128)
from cells of the respiratory mucosa sensitized to the bacterium
(129, 130). Specific anti-NTHi IgEs occur at a low level in healthy
subjects, and patients with chronic bronchitis and moderate-
severe COPD have elevated specific anti-NTHi IgEs compared to
healthy controls, with higher anti-NTHi IgE levels in those with
most severe disease. Additionally, specific anti-NTHi IgE levels
are greater in those with moderate-severe COPD than in those
with chronic bronchitis (131).

ATOPY AND AIRWAY REMODELING,
INFLAMMATION AND BRONCHIAL
HYPERREACTIVITY IN ASTHMA AND
COPD

In allergic asthma, IgE increases airway remodeling by increasing
deposition of pro-inflammatory collagens and fibronectin by
airway smooth muscle cells (ASMC), as well as by stimulating
their proliferation (132) (Figure 2). When ASMC are exposed
in vitro to serum from allergic patients, their proliferation, as
well as the deposition of collagen type-I (48 h) and of fibronectin
(24 h) are stimulated (133). All these can be prevented by
exposure of ASMC to allergic serum that is pre-incubated for 1 h
with anti-IgE antibodies (omalizumab) (133).

Fang et al. have investigated the effect of IgE on human
primary ASMC remodeling in the absence of allergens (non-
immune IgE) in vitro (134). They reported that non-immune
IgE (produced in vitro from a monoclonal hybridoma cell
line and not induced by allergens) was sufficient to stimulate
ASMC remodeling by upregulating microRNA-21-5p, which in
turn downregulated phosphatase and tensin homolog (PTEN)
expression and supported mammalian target of rapamycin
(mTOR) signaling (134). Interestingly, they pointed out that
the inhibition of microRNA-21-5p increased PTEN and
reduced ASMC remodeling (134). Therefore, the suppression
of microRNA-21-5p may present a therapeutic target to reduce
airway wall remodeling (134).

Airway hyperreactivity is a general term to describe the
increased response of the airways to bronchoconstricting
agonists, such as methacholine or histamine, a hallmark of
asthma (135). In COPD, the response to bronchoconstrictors
is related to the degree of baseline airflow obstruction
(136), in contrast to patients with asthma, without fixed
airflow obstruction (23, 137, 138). There is an evident
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heterogeneity of remodeling in COPD patients in that the
pathology may involve large or small airways (inflammation and
increased wall-thickness), loss of small airways and emphysema
(135). It is also recognized that COPD patients who have
increased airway responsiveness are most commonly atopic
and present with a higher degree of reversibility, as well
as with eosinophilic airway inflammation, higher response to
corticosteroids and faster decline in FEV1 (135). Moreover,
airway hyperreactivity, can be an independent predictor of
COPD development in the general population (139) and also a
risk factor for rapid progression of airway obstruction in patients
with mild COPD (24). However, it decreases after smoking
cessation (140) (Table 1).

Remodeling of the airways is a well-recognized feature
of COPD, depended on COPD severity based on post-
bronchodilator FEV1 (141). There are several pathological
changes in the lungs of COPD patients including: thickness
of the airway wall and the airway smooth muscle layer
(although not to the extent seen in asthma), increased blood
vessel density, hypersecretion of mucus, metaplasia of the
epithelial cells, enlargement of the submucosal glands, loss
of terminal and respiratory bronchioles and enlargement and
destruction of the alveoli, as well as neutrophilic inflammation
and infiltration of CD8 T-lymphocytes (142–144). However,
the effect of atopy on airway remodeling in COPD patients
has not been studied yet. Understanding better this issue
is of clinical importance, as it may assist us to apply
the proper medical intervention for atopic and non-atopic
COPD patients.

INTERPLAY BETWEEN IGG AND
IGE-MEDIATED INFLAMMATORY
RESPONSES

A recent study demonstrated that IgG antibodies play a
key role in controlling IgE-mediated inflammatory responses
in patients with nasal polyps, by interfering with allergens
potentially binding to cell-bound IgEs (145). Depletion of
IgG from nasal polyp tissue homogenates resulted in an
increase in IgE-facilitated allergen binding to B cells but also
enhanced FcεRI-mediated allergen-driven basophil activation
and histamine release (145). A similar response was observed
in relation to SE-IgEs (145). In fact, IgG repertoires share
extensively the same antigen targets with IgE repertoires in
both allergic and non-allergic subjects and nasal polyps are

characterized by abundant clonally related IgG- and IgE-
secreting plasma cells (145).

Allergen-specific IgGs are competing with IgEs for allergen
binding, thereby decreasing the allergen-induced effector cell
activation (3). This suggests that augmenting the allergen
specific IgG/IgE ratio could be effective in preventing immediate
hypersensitivity responses and reducing allergic symptoms
(3, 146).

CONCLUSIONS AND FUTURE
PERSPECTIVES

In this review we summarized current data concerning the
role of IgE in COPD and asthma (Figure 3). It appears that
IgE production plays an important role in the development
of both diseases. Interestingly, allergic sensitization and viral
infections in infancy have been associated with a higher
prevalence of asthma later in life, as well as with the most
important determinant for COPD, namely the level of airflow
limitation in late adulthood. Anti-IgE therapy (omalizumab)
prevents viral exacerbations of asthma and COPDwith asthmatic
characteristics. Moreover, allergen-specific IgGs are competing
with IgEs for allergen binding and augmenting the allergen
specific IgG/IgE ratio could be effective in preventing immediate
hypersensitivity responses and reducing allergic symptoms.
Additionally, the suppression of microRNA-21-5p may present
a therapeutic target to reduce airway wall remodeling induced
by IgE. Further studies that will analyze the allergic profile of
COPDpatients in associationwith lung function, disease severity,
outcome, exacerbations and airway remodeling are warranted,
in order to examine a potential use of anti-IgE treatment for
COPD patients.
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