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Abstract

Motivation: Structural variants are defined as genomic variants larger than 50 bp. They have been

shown to affect more bases in any given genome than single-nucleotide polymorphisms or small

insertions and deletions. Additionally, they have great impact on human phenotype and diversity

and have been linked to numerous diseases. Due to their size and association with repeats, they

are difficult to detect by shotgun sequencing, especially when based on short reads. Long read,

single-molecule sequencing technologies like those offered by Pacific Biosciences or Oxford

Nanopore Technologies produce reads with a length of several thousand base pairs. Despite the

higher error rate and sequencing cost, long-read sequencing offers many advantages for the detec-

tion of structural variants. Yet, available software tools still do not fully exploit the possibilities.

Results: We present SVIM, a tool for the sensitive detection and precise characterization of struc-

tural variants from long-read data. SVIM consists of three components for the collection, clustering

and combination of structural variant signatures from read alignments. It discriminates five differ-

ent variant classes including similar types, such as tandem and interspersed duplications and novel

element insertions. SVIM is unique in its capability of extracting both the genomic origin and des-

tination of duplications. It compares favorably with existing tools in evaluations on simulated data

and real datasets from Pacific Biosciences and Nanopore sequencing machines.

Availability and implementation: The source code and executables of SVIM are available on

Github: github.com/eldariont/svim. SVIM has been implemented in Python 3 and published on bio-

conda and the Python Package Index.

Contact: vingron@molgen.mpg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A typical human genome differs from the reference genome at �4–5

million sites amounting to �20 million altered bases (1000

Genomes Project Consortium, 2015). These variations can be cate-

gorized into single-nucleotide polymorphisms (SNPs), small inser-

tions and deletions (Indels) and structural variation (SV) affecting a

larger number of base pairs. Typically, differences larger than 50 bp

are considered SVs although definitions vary and sometimes overlap

with those of Indels.

Studies have shown that in human more base pairs are altered

due to SV than due to SNPs (Redon et al., 2006; Weischenfeldt

et al., 2013). Additionally, SVs are enriched 50-fold for expression

quantitative trait loci when compared to SNPs (Sudmant et al.,

2015). Unsurprisingly, SVs have a major influence on human diver-

sity and are implicated in a wide range of diseases from autism and

other neurological diseases to cancer and obesity (Sebat et al., 2007;

Weischenfeldt et al., 2013). Consequently, the characterization of

SVs is of major importance to human medicine and genetics alike.
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It can contribute to the early detection of disorders and can help to

elucidate their underlying genetic and molecular processes

(Gonzalez-Garay, 2014). In other organisms such as plants, SVs

play an equally important role by driving phenotypic variation and

adaptation to different environments (Saxena et al., 2014).

Next generation sequencing has enabled the identification of

SNPs and small Indels to a high resolution. SVs, however, are much

harder to detect. One reason is that SVs encompass a diverse range

of modifications. While SNPs are simple base pair substitutions, the

term ‘SV’ summarizes many different phenomena. Typically, differ-

ent classes of SVs are distinguished, such as deletions, inversions and

insertions. Definitions for some of these classes vary in the literature.

For the purpose of this work, we define six different SV classes

which are visualized in Figure 1: deletions, cut&paste insertions,

tandem and interspersed duplications, inversions and novel element

insertions. The main drivers behind interspersed duplications in

human are mobile element insertions, such as Alu, LINE1 and SVA

elements. They duplicate using retrotransposition and in total repre-

sent �25% of all human SV (Stewart et al., 2011; Sudmant et al.,

2015). DNA transposons, although now inactive in mammals

(excepts bats) are active in plants and lower-order animals (Huang

et al., 2012). They use a cut&paste mechanism to move in the gen-

ome and therefore motivated the inclusion of cut&paste insertions

as a separate SV class.

There exists a wide variety of tools for SV calling from short

reads (Pabinger et al., 2014) but despite ongoing efforts, the discov-

ery of SVs from short-read data remains challenging (English et al.,

2015). Studies have estimated that short-read methods suffer from

poor sensitivity down to 10% particularly for small SVs shorter

than 1 kbp (Chaisson et al., 2015; Huddleston et al., 2016). In con-

trast to SNPs where discovery and sequence resolution can be per-

formed simultaneously, SVs are discovered mainly indirectly using

short paired-end reads. Their alignments are examined for charac-

teristic signatures, such as inconsistently mapping read pairs, split

reads and changes in read depth (Alkan et al., 2011). These signa-

tures can only be indirect evidence in favor of certain SV classes but

are unable to fully characterize the SV. The main limitation here is

that most SVs are simply larger than the short reads. The accurate

detection of SVs is, besides their diversity, hampered by their associ-

ation with repeat regions, biases in the sequencing technology and

the additional complexity of diploidy (Carvalho and Lupski, 2016;

Huddleston and Eichler, 2016; Willems et al., 2014).

To characterize the full spectrum of human genetic variation,

long-read sequencing technologies that generate reads with an aver-

age length of tens of kilobases show many advantages. The long

reads can be mapped with greater accuracy which enables the

sequencing of repetitive and low-complexity regions (Chaisson and

Tesler, 2012; Loomis et al., 2013). Unlike with short reads, SVs are

often spanned by a single long read. This enables the direct detection

and full characterization of the SVs. Consequently, several studies

confirmed that a substantial number of SVs that are missed by

short-read approaches can be identified with long reads (English

et al., 2015; Huddleston et al., 2016; Merker et al., 2018). Two

commercial long-read sequencing solutions exist to date: single-

molecule real-time (SMRT) sequencing by Pacific Biosciences

(PacBio) and Nanopore sequencing by Oxford Nanopore

Technologies (ONT). Both technologies have the same drawbacks:

high error rates of �5–15% with dominating Indel errors and still

high costs compared to short-read sequencing.

Similarly to the detection of SVs from short-read data, the first

step toward SV detection from long reads is often the alignment of

the reads to a reference genome. Depending on the alignment tool

used to produce the alignments, SV detection results can vary sub-

stantially as Sedlazeck et al. showed for their tool Sniffles (Sedlazeck

et al., 2018a). In that study, SV-spanning long reads were aligned

with seven different aligners. Their results showed that one particu-

lar aligner, NGMLR, outperformed all the others (including BWA-

MEM, Minimap2, LAST and BLASR) on the task (Sedlazeck et al.,

2018a). In our study, we analyzed read alignments by NGMLR to

detect SVs. In the Supplementary Material, however, we include

results for Minimap2 which is an order of magnitude faster than

NGMLR (Li, 2018).

Read alignments alone are not sufficient to detect and character-

ize SVs. Dedicated SV callers are needed to collect and interpret evi-

dence from the read alignments. Recently, three methods have been

developed for calling SVs based on long reads (Sedlazeck et al.,

2018b). PBHoney and SMRT-SV are designed specifically for

PacBio reads while Sniffles supports PacBio and ONT reads (English

et al., 2014; Huddleston et al., 2016; Sedlazeck et al., 2018a).

PBHoney comprises two different variant identification

approaches (English et al., 2014). The first approach, PBHoney-Spots,

exploits the stochastic nature of the errors in PacBio reads. It scans

read alignments (usually produced by the read aligner BLASR) and

recognizes SVs by an increase in error and a subsequent decrease in

error along the reference sequence. The second approach, PBHoney-

Tails, analyzes the soft-clipped (i.e. unmapped) read tails from a

BLASR alignment. It extracts such tails from the BLASR output and

realigns them to the reference. Then, SVs are detected by clustering the

resulting piece-alignments based on their location and orientation.

SMRT-SV scans PacBio alignments for SV signatures, such as

spanned deletions, spanned insertions and soft-clipped read tails

(Huddleston et al., 2016). Clusters of such events are validated with

a local de-novo assembly of the reads overlapping the locus and sub-

sequent alignment of the assembly to the reference.

Sniffles uses signatures from split-read alignments, high-

mismatch regions and coverage analysis to identify SVs (Sedlazeck

et al., 2018a). To overcome the high error rate in the reads, it evalu-

ates candidate SVs based on features such as their size, position and

breakpoint consistency.

All three methods regard SV (i.e. deletions, insertions, inver-

sions) as rearrangements occurring in a single genomic locus.

Fig. 1. Schematic overview of different SV classes. SVs can be categorized

into deletions, cut&paste insertions, tandem and interspersed duplications,

inversions and novel element insertions. Each SV class is depicted in an indi-

vidual genome (lower line) when compared to the reference genome (upper

line). The region being rearranged is marked in red
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However, SV often involves multiple genomic loci, such as for a mo-

bile element which is reverse-transcribed from a source region and

inserted at another location. The higher read lengths of PacBio and

ONT reads allow to link both loci much more efficiently and confi-

dently than was possible with short paired-end reads. Nevertheless,

existing methods ignore this type of information and are only able

to detect the isolated destination location of the mobile element

insertion.

In this study, we introduce SVIM, a computational method for

the sensitive detection and accurate classification of five different

classes of SVs from long-read sequencing data. We describe the three

core components of the approach and our methodology for evalu-

ation on simulated and real datasets. Our results demonstrate that

SVIM reaches substantially higher recall and precision than existing

tools for SV detection from long reads. Unlike other methods, SVIM

has been specifically designed to distinguish three separate classes of

large insertions: interspersed duplications, tandem duplications and

insertions of novel elements. To our knowledge, it is the only tool

capable of identifying not only the insertion location of an inter-

spersed duplication but also its potential genomic origin using long

reads. We demonstrate this capability on a small number of high-

scoring interspersed duplications identified in the NA12878 individ-

ual. Furthermore, we compare SV callsets produced by SVIM on

reads from PacBio and Nanopore data. Finally, we compare the run-

times of different SV callers including SVIM.

2 Materials and methods

SVIM implements a pipeline of three consecutive components (see

Fig. 2). First, SV signatures are collected from each individual read

in the input Sequence Alignment Map (SAM)/Binary Alignment

Map (BAM) file (COLLECT). Secondly, the detected signatures are

clustered using a graph-based clustering approach and a novel dis-

tance metric for SV signatures (CLUSTER). Thirdly and lastly, mul-

tiple SV events are merged and classified into higher-order events

(i.e. events involving multiple regions in the genome) such as dupli-

cations (COMBINE). The three components are explained in the

following.

2.1 Collection of SV signatures from individual reads
SVIM analyzes read alignments in SAM/BAM format (Li et al.,

2009) from a read aligner. Modern aligners, such as NGMLR and

minimap2, try to find good linear alignments of entire reads.

Nevertheless, they will split a chimeric read if its different segments

can be better aligned separately. Due to these split alignments, the

SAM/BAM output from these aligners can contain multiple align-

ments for each read (one for each aligned read segment). SVIM

extracts signatures for SVs from the SAM/BAM file by analyzing

one read at a time. We define SV signatures as discordant alignments

of a read that point to the presence of one or several possible SVs in

the sequenced genome. SVIM searches for two types of signatures:

Intra-alignment signatures are large alignment gaps in the refer-

ence or in the read. They can be found in the CIGAR strings of indi-

vidual SAM/BAM entries.

Inter-alignment signatures are discordant relative alignment

positions and orientations of a read’s alignment segments. To illus-

trate this type of evidence, imagine an inversion that is spanned by a

single read. The aligner will split the read into three alignment seg-

ments: one segment upstream of the inversion, another segment for

the inverted region (INV), and a third segment downstream of the

inversion. Due to the inversion, the middle segment will have a

different mapping orientation than the other two pieces. This and

other types of inter-alignment signatures are detected by SVIM in a

heuristic fashion.

This analysis yields six different types of SV signatures: (i)

deleted regions (DEL), (ii) inserted regions (INS), (iii) INSs with

detected region of origin (DUP), (iv) INVs, (v) tandem duplicated

regions (TAN) and (vi) translocation breakpoints (BRK). Some of

these evidence types (e.g. INVs) indicate one particular SV class.

Others could indicate several possible SV classes. An INS, for in-

stance, can indicate both a duplication or a novel element insertion.

Fig. 2. The SVIM workflow. (1) Signatures for SVs are collected from the input

read alignments. SVIM collects them from within alignments (intra-alignment

signatures) and between alignments (inter-alignment signatures). (2)

Collected signatures are clustered based on their genomic position and span.

(3) Signature clusters from different parts of the genome are combined to dis-

tinguish five different classes of SVs: deletions, interspersed duplications,

novel insertions, inversions and tandem duplications

Structural variant identification using mapped long reads 2909

Deleted Text: structural variation
Deleted Text:  
Deleted Text: M
Deleted Text: 6
Deleted Text: 1
Deleted Text: 2
Deleted Text: 3
Deleted Text: inserted region
Deleted Text: 4
Deleted Text: inverted regions (
Deleted Text: )
Deleted Text: 5
Deleted Text: 6
Deleted Text: inverted region
Deleted Text: inserted region


2.2 Clustering of SV signatures
The collection of signatures from the alignments is only the first step

to accurately detect SVs. Subsequently, signatures from multiple

reads need to be merged and criteria have to be found to distinguish

correct signatures from multiple types of error artifacts (e.g.

sequencing error, alignment error). To achieve this, we combine a

graph-based clustering approach with a novel distance metric for SV

signatures. The aim is to merge signatures of the same SV even if

their positions vary slightly due to sequencing or alignment errors.

At the same time, signatures from separate SVs need to be kept sep-

arate even if the two SVs lie close to each other.

The collected SV signatures can be viewed as quadruples Si ¼
ðTi;Ci;Bi;EiÞ where T is one of the six different signature types

defined above, C is the chromosome and B and E are the genomic

start (begin) and end positions. One of the few distance metrics

defined for such genomic intervals is the Gowda–Diday distance

(Gowda and Diday, 1991). It combines (i) the distance between two

intervals, (ii) their span difference and (c) their degree of overlap

into a single numeric distance value. In our type of data (i.e. long-

read alignments), however, we often observe little to no overlap be-

tween signatures originating from the same SV but from different

long reads (see Supplementary Fig. S1). Nevertheless, signatures

from the same SV often possess similar positions and spans.

Therefore, we introduce span-position distance as a novel dis-

tance metric for SV signatures. For two SV signatures S1 and S2, the

span-position distance SPD consists of two components SD and PD:

SPD ¼ SDðS1; S2Þ þ PDðS1 ;S2Þ
N . SD is the difference in span between

both signatures [normalized to ½0; 1Þ] and is defined as
jðE1�B1Þ�ðE2�B2Þj
maxðE1�B1 ;E2�B2Þ. PD is the difference in position between both signa-

tures and is defined as minðjB1 � B2j; jE1 � E2j; j B1þE1

2 � B2þE2

2 jÞ. N

is a user-defined normalization constant which regulates the relative

importance of SD and PD. In our analyses, setting N ¼ 900 returned

the best results. Intuitively, this setting means that two signatures

that are 900 bp apart (PD ¼ 900) but have the same span (SD ¼ 0)

would have the same SPD as two signatures with extremely different

spans (SD � 1) but the same position (PD ¼ 0).

To perform clustering, we follow a graph-based approach simi-

lar to the one used by the variant finder CLEVER (Marschall

et al., 2012). Initially, we transform the set of collected SV signa-

tures into an undirected graph. While CLEVER identifies nodes

with alignments of short paired-end reads, each node in our graph

represents an SV signature. We draw an edge between two nodes

(i.e. signatures) if the span-position distance between the two sig-

natures is smaller than a user-defined threshold T. Systematic

evaluation of different settings for this parameter yielded T ¼ 0.7

as an optimal setting for our simulated human datasets (data not

shown). An edge between two nodes expresses our confidence that

the two signatures represented by the nodes express the same SV

allele. From the graph, we produce signature clusters by extracting

maximal cliques with an efficient implementation of the Bron–

Kerbosch algorithm (Bron and Kerbosch, 1973; Hagberg et al.,

2008). As a consequence, each signature cluster is a maximal

group of SV signatures that can be jointly assumed to express the

same SV in the donor genome.

Finally, SVIM computes a score for each cluster based on four

features:

1. The number n 2 ð0; 40� of signatures in the cluster where at

most 20 of each class (intra-alignment or inter-alignment) are

taken into account.

2. An additional bonus b 2 ½0; 30� for the existence of at least one

signature from each of the two classes. One or more intra-

alignment signatures earn a bonus of 10 while one or more inter-

alignment signatures earn an additional bonus of 20.

3. A score sp 2 ½0;10� based on the standard deviation spos of the

genomic positions of the signatures in the cluster normalized by

their average span.

sp ¼ 10 � ð1�minð1; spos=spanÞÞ
4. A score ss 2 ½0; 20� based on the standard deviation sspan of the

genomic spans of the signatures in the cluster normalized by

their average span.

ss ¼ 20 � ð1�minð1; sspan=spanÞÞ

By summing up these four components we obtain a score S 2
ð0;100� to discern trustworthy signature clusters from artifacts, such

as sequencing or alignment artifacts. Trustworthy events are charac-

terized by many intra- and inter-alignment signatures that exhibit

high concordance regarding their genomic position and span.

2.3 Combination and classification of SVs into five SV

classes
The third component in the workflow analyzes and combines the SV

signature clusters to classify events into five SV classes: deletions,

inversions, novel element insertions, tandem duplicaitons and inter-

spersed duplications. Because the confident distinction of inter-

spersed duplications and cut&paste insertions solely based on

sequencing reads is impossible, we classify both as interspersed

duplications. Nevertheless, we annotate duplications where the re-

gion of origin seems to be deleted in the sequenced individual (i.e. a

deletion overlaps the genomic origin) as potential cut&paste inser-

tions. While INV, DEL and TAN signature clusters can be directly

reported as inversions, deletions and tandem duplications, respect-

ively, the other three signature classes (INS, DUP and BRK) are

more complex. The reason is that interspersed duplications are not

characterized by only one genomic region but two—a genomic ori-

gin and a genomic destination. To capture and classify these higher-

order events, SVIM needs to combine multiple signature clusters and

therefore makes the following distinctions (see also Fig. 3):

• DUP signature clusters are called as interspersed duplications. If

the genomic origin overlaps a deletion call, the duplication is

marked as potential cut&paste insertion.
• INS signature clusters that are close to matching BRK are called

as interspersed duplications. If the genomic origin (as defined by

the BRK) overlaps a deletion call, the duplication is marked as

potential cut&paste insertion.
• The remaining INS signature clusters are called as novel element

insertions.

2.4 Implementation and usage
SVIM has been implemented in Python and is available at github.-

com/eldariont/svim. It can be easily installed via bioconda or the

Python Package Index. As input, SVIM expects either raw reads (in

FASTA or FASTQ format) and a reference genome (in FASTA for-

mat) or already aligned reads in BAM format. It outputs detected

SVs in five separate BED files (one for deletions, interspersed and

tandem duplications, inversions and novel insertions, respectively).

Additionally, a VCF file with all SV results is produced.

2.5 Evaluation methodology
In this study, we compared our tool, SVIM (v0.4.1), to three other

SV detection methods: PBHoney-Spots, PBHoney-Tails (both

PBSuite v15.8.24) and Sniffles (v1.0.8). All three tools are designed

for the application on long-read sequencing data. For Sniffles and
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SVIM, reads were aligned with NGMLR (v0.2.7) or minimap2

(v2.12-r836-dirty). For PBHoney, reads were aligned with BLASR

(v5.3.4323a52). We did not compare against short-read SV callers

because they have been shown to exhibit lower recall than methods

relying on long reads (Chaisson et al., 2015; Huddleston et al.,

2016; Sedlazeck et al., 2018a). We also did not compare against

SMRT-SV because it is not a stand-alone tool but a software pipeline

applying several alignment, detection and assembly steps with vari-

ous other tools. It detects only three SV classes and is computation-

ally more demanding than pure alignment-based tools.

We evaluated all tools on two types of data. Firstly, we generated

a simulated genome from which we sampled in-silico PacBio

sequencing reads with known SVs. This provided us with a complete

set of fully characterized SVs for evaluation. Secondly, we used pub-

licly available sequencing reads from PacBio and Nanopore

sequencers. We compared the precision and recall of the three meth-

ods. Precision is defined as the fraction of detected SVs that are cor-

rect (requiring 50% reciprocal overlap between detected and correct

SVs). Recall is defined as the fraction of correct SVs that have been

detected (with 50% reciprocal overlap). Results for a more lenient

and a more stringent overlap requirement of 1 and 90%, respective-

ly, can be found in the Supplementary Material. Both precision and

recall require a suitable gold standard set of high-confidence SVs for

the given genome (i.e. a set of correct SVs).

As expected, recall and precision reached by the different tools

depend heavily on tool parameters, particularly score or support

thresholds. More relaxed thresholds (i.e. yielding more SVs) increase

recall but decrease precision while stricter cutoffs achieve the oppos-

ite. Consequently, we ran all four tools with different settings of

their most important parameter: For SVIM we applied different

score cutoffs (0–100). Sniffles was run with different settings of the

min_support parameter (1–60). For PBHoney-Spots, we varied the

minErrReads parameter and for PBHoney-Tails we varied the

minBreads parameter (both 1–60). We visualized the performance

of the tools by plotting each parameter setting as a distinct point in

Figures 4–6. Besides that one parameter, we used the default settings

for all other tool parameters except PBHoney Spots’ spanMax par-

ameter which we set to 100 000 (100 kb).

2.5.1 Simulated data

We simulated 600 homozygous SVs by altering the sequence of

chromosomes 21 and 22 in the hg19 reference genome. More pre-

cisely, we implanted 200 deletions, 100 inversions, 100 tandem

duplications and 200 interspersed duplications with the R package

RSVSim (Bartenhagen and Dugas, 2013). The package estimates the

distribution of SV sizes from real datasets and simulates the associ-

ation of SVs to various kinds of repeats. The resulting genome con-

tained SVs between 50 bp and 10 kbp in size. Subsequently, reads

were simulated from this genome to generate 10 different datasets

with coverages between 6 and 60� with the tool SimLoRD (Stöcker

et al., 2016). SimLoRD imitates the error model of SMRT reads to

simulate realistic PacBio reads.

To simulate heterozygous SVs, we adapted the previously

described approach only slightly. Instead of sampling all reads from

the altered reference genome, half of the reads were sampled from

the original reference genome. Consequently, reads from the original

(wild-type) reference genome and the altered genome each

amounted to 50% of the total coverage.

The comparison between different tools was complicated by the

fact that each tool is designed to detect different SV classes.

PBHoney is able to detect deletions, INSs, inversions and BRKs.

Sniffles is additionally capable of identifying tandem duplications

and complex events. Because only SVIM distinguishes between

duplications and novel element insertions, we compared the tools on

four common basic SV classes in the simulated datasets: deletions,

INSs (i.e. inserted sequence from duplications and novel element

insertions), inversions and tandem duplications. Because Sniffles

tends to call intra-chromosomal duplications as very large deletions

or inversions (see github.com/fritzsedlazeck/Sniffles/issues/23), we

omitted deletion and inversion calls by Sniffles that were larger than

100 kbp to ensure a fair comparison. To obtain calls of INSs from

SVIM, we use the union of its interspersed duplication and novel

element insertion calls.

Fig. 4. Comparison of SV detection performance on a 6� coverage homozy-

gous simulated dataset. SVIM consistently yielded better recall (x-axis) and

precision (y-axis) than the other tools for the recovery of INSs and tandem

duplications. For the recovery of deletions and inversions, Sniffles reached

the same recall as SVIM. The different points for each tool represent multiple

settings of the tools’ most important parameters (see Section 2.5). PBHoney-

Spots only detects deletions and INSs and PBHoney-Tails does not detect

duplications. Recall and precision were calculated using a required reciprocal

overlap of 50% between variant calls and the original simulated variants

Fig. 3. Read signatures for an interspersed duplication and a novel element

insertion. A genomic segment (yellow arrow) has been copied from locus 1 to

locus 2a in an individual genome. Additionally, a novel genomic segment

(gray arrow) has been inserted in locus 2b. Two reads are generated from the

individual (top) and mapped to the reference genome (bottom). The first read

(blue-yellow) consists of three segments. They are mapped individually to the

reference genome. The two blue segments are mapped to locus 2a exhibiting

an insertion signature. The yellow segment is mapped to locus 1 indicating

the origin of the insertion. The second read (orange-gray) exhibits a similar

insertion signature at locus 2b but as the inserted gray segment is unmapped

its origin cannot be determined
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2.5.2 Real data

Simulation cannot reflect all aspects of biological data. Therefore,

we used real PacBio and Nanopore data for the second part of our

analysis. This part consisted of three separate experiments. For the

first two, we utilized a real 53� coverage dataset of the NA12878

individual from a PacBio RS II machine (Genome in a Bottle consor-

tium; Accession SRR3197748) (Zook et al., 2014). To assess the in-

fluence of sequencing coverage on SV detection performance, we

produced a corresponding low-coverage subset of the dataset by

sampling reads randomly to 6� coverage. With these two PacBio

datasets, we performed two separate analyses. Firstly, we evaluated

our method with a published benchmark sample of 2676 high-

confidence deletions and 68 high-confidence insertions (Parikh

et al., 2016). Secondly, we implanted SVs into the reference genome

and aligned the PacBio reads to this altered reference. Implanting an

SV into the reference genome causes the original reads to contain

the inverse of the SV that was implanted. With this approach, three

types of SVs were simulated: (i) 200 deletions were simulated by

inserting sequence into the reference genome; (ii) 100 inversions

were simulated by inverting regions in the reference and (iii) 200

insertions were simulated by deleting regions in the reference.

Unfortunately, duplications could not be simulated because this

would have required the identification and alteration of existing

duplications in the reference genome.

In a third experiment, we compared the 53� coverage PacBio

dataset of the NA12878 individual with a 26� coverage Nanopore

dataset of the same individual (Jain et al., 2018, release 5). We eval-

uated our method with the high-confidence callset described above

and analyzed the overlap between the three callsets (PacBio,

Nanopore and high-confidence callset).

The NA12878 datasets are more realistic than the simulated

dataset but impose the limitation that there exists no complete gold

standard set of SVs. As a consequence of using an incomplete gold

standard for evaluation, precision could not be accurately measured.

Putative ‘false positives’ could have been true but simply not con-

tained in the incomplete gold standard. Therefore, we compared the

tools only based on their recall in relation to the number of calls.

3 Results

3.1 Evaluation with simulated reads
As described in the Section 2, we implanted SVs from four different

classes into a reference genome. Reads sampled from this synthetic

genome were then analyzed with SVIM, PBHoney-Tails, PBHoney-

Spots and Sniffles. Results for the 6� coverage homozygous dataset

can be found in Figure 4. For a comparison of results across all cov-

erages from 6 to 60� see Supplementary Figure S2.

Regardless of coverage, SVIM achieved substantially better results

than all other tools in the recovery of INSs and tandem duplications.

With 6� coverage and homozygous SVs, SVIM reached average pre-

cisions (AP) of 86% (INSs), and 83% (tandem duplications) for the

two classes while the second best tools, PBHoney-Spots and Sniffles

respectively, reached 25 and 54%. In the recovery of deletions and

inversions, SVIM and Sniffles reached equal results with AP of 94%

(deletions) and 90% (inversions), respectively. In our experiments,

PBHoney-Tails performed very poorly across all settings. It did detect

only very few INSs, suffered from very low recall for inversions and

poor precision for deletions. All these trends remain true for higher

coverages as well (see Supplementary Fig. S2).

Fig. 6. Comparison of recall from NA12878 reads aligned to an altered refer-

ence genome. For each tool and different thresholds, the number of SV calls

with score above the threshold (log-scale) is plotted against the recall. The

upper and lower panels show performance on the full dataset and a randomly

sampled 6� coverage subset of the data, respectively. In all six panels, SVIM

outperformed all the other tools and reached substantially higher recall for

similar numbers of calls. The improvement was most prominent for inser-

tions. Recall was calculated using a required reciprocal overlap of 50% be-

tween variant calls and the original implanted variants

Fig. 5. Comparison of recall on a 53� coverage public PacBio dataset and a

6� coverage subset with 2676 high-confidence deletion and 68 insertion calls.

For each tool and different thresholds, the number of SV calls with score

above the threshold (log-scale) is plotted against the recall. The upper and

lower panels show performance on the full dataset and a randomly sampled

6� coverage subset of the data, respectively. SVIM reached the same recall

with fewer calls than other tools. The vertical dotted lines denote the average

number of deletions and insertions to expect in an individual as recently

reported using a de-novo assembly approach (Chaisson et al., 2018). Recall

was calculated using a required reciprocal overlap of 50% (deletion calls) and

1% (insertion calls), respectively, between variant calls and the gold standard

variants
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The simulated heterozygous dataset yielded similar results to

those of the homozygous dataset (see Supplementary Fig. S5). While

all tools reached slightly lower precision and recall, SVIM still out-

performed the others for INSs (AP ¼ 68% for 6� coverage) and tan-

dem duplications (AP ¼ 76%). In the detection of deletions and

inversions, however, Sniffles and SVIM reached nearly equal results

(AP ¼ 90% and AP ¼ 87%, respectively).

We explored whether more lenient (1%) or stringent (90%)

overlap requirements for the calls would change the results (see

Supplementary Figs S3, S4, S6 and S7). As it turned out, the overlap

requirement had little effect on Sniffles and SVIM. Only PBHoney-

Spots produced substantially worse results for more stringent over-

lap requirements suggesting that the tool has trouble finding accur-

ate SV breakpoints.

To measure the influence of the input read alignments on SV

calling, we also compared results for two long-read aligners,

NGMLR and minimap2 (see Supplementary Figs S8 and S9). The

results indicate that SVIM is relatively robust to the choice of the

aligner but benefits slightly from the more accurate alignment of

reads covering insertions and tandem duplications by NGMLR.

Sniffles, however, reaches considerably higher recall for insertions

when analyzing alignments by minimap2 compared to NGMLR.

Visual inspection of the alignments revealed a difference in the way

that reads covering insertions are aligned. While minimap2

expresses insertions mainly as long reference gaps in the CIGAR

string, NGMLR tends to split reads at insertions. Because Sniffles

does not call insertions of sequence existing somewhere else in the

genome (i.e. interspersed duplications) from split alignments, it

reaches higher recall with minimap2.

3.2 Evaluation with real reads and high-confidence calls
While simulated datasets enable the comprehensive comparison of

tools in a controlled and precise manner, they cannot reflect the full

complexity of real sequencing data. Therefore, we analyzed a pub-

licly available 53� coverage dataset of a human individual from a

PacBio RS II machine and a random 6� coverage subset (see Section

2). To evaluate the detection performance of our tool, we first used

a published benchmark set of 2676 high-confidence deletions and

68 high-confidence insertions.

Among all tools, SVIM was the most consistent across the differ-

ent settings (see Fig. 5). It recovered substantially more deletions

from the high-confidence call set than the other tools with the same

number of SV calls. To reach a recall of more than 50%, SVIM

needed 1932/2577 calls (53�/6� coverage) while Sniffles needed

4320/6333 calls. PBHoney-Spots needed even 5062 calls (53�
coverage) and PBHoney-Tails did not reach this level of recall at all.

A recent study by the Human Genome Structural Variation

Consortium (HGSVC) used a multi-platform de-novo assembly ap-

proach for SV detection and found an average of 12 680 deletions

per individual (Chaisson et al., 2018). When we select tool thresh-

olds closest to this mark, SVIM, Sniffles, PBHoney-Spots and

PBHoney-Tails recover 97, 97, 80 and 46% of the high-confidence

deletions from the full coverage dataset, respectively. All tools miss

high-confidence calls across the entire size range (50 bp–140 kb).

But while the false negatives of the first three tools are evenly distrib-

uted across the size spectrum, PBHoney-Tails particularly misses

small events. For instance, it misses all high-confidence calls smaller

than 100 bp and 69% of calls between 100 and 500 bp but only

24% of calls between 500 bp and 1 kb.

Although the results for insertions need to be considered with

greater caution due to the small size (n ¼ 68) of the high-confidence

call set, SVIM reached a higher recall than all other tools for small

numbers of calls. When we again select tool thresholds closest to the

estimate of 18 919 insertions per individual from the HGSVC study

(Chaisson et al., 2018), SVIM, Sniffles, PBHoney-Spots and

PBHoney-Tails recover 66, 72, 62 and 3% of high-confidence inser-

tions from the full coverage dataset, respectively. Again, all tools

miss high-confidence calls across the entire size range of the callset

(12–379 bp).

3.3 Evaluation with real reads and an altered reference

genome
As described in the Section 2, we obtained another reliable gold

standard set of SVs (deletions, inversions, insertions) by implanting

SVs into the reference genome and aligning the PacBio reads (53 and

6� coverage) to this altered reference. We evaluated all combina-

tions of the three SV types and the two coverages. SVIM outper-

formed the other tools (see Fig. 6) in all six of these settings. In the

recovery of deletions and inversions, SVIM reached a substantially

higher recall than PBHoney. It also needed fewer SV calls to reach

similar recall than Sniffles while the difference decreased for higher

recall. The most striking difference was observed for the detection of

insertions. While SVIM reached a recall of 84 and 43% with 20 000

calls (53 and 6� coverage, respectively), PBHoney-Spots reached 61

and 25% and Sniffles detected only 57 and 29% with the same num-

ber of calls. For full coverage, SVIM needed 2480 calls to reach a re-

call of 50% while Sniffles and PBHoney-Spots needed both more

than 10 000 calls.

3.4 Interspersed duplications in NA12878
SVIM’s ability to link the genomic origin and destination of an inter-

spersed duplication can yield interesting insights into the dynamics

of genomic rearrangements. Our analysis of the NA12878 PacBio

dataset with SVIM identified 27 high-confidence interspersed dupli-

cations with a score >30 (Supplementary Table S1). The genomic

origin of 19 of them overlapped annotated retrotransposons.

Among those, 10 and 2 represented complete and incomplete Alu

insertions, respectively; 2 and 2 represented insertions of complete

and incomplete LINE1 elements, respectively; 2 represented com-

plete SVA elements and another one represented human endogenous

retrovirus HERVK14. Strikingly, six duplications occurred from

regions of the genome without annotated repeat elements indicating

other formation mechanisms. Finally, we observed two duplications

in the untranslated regions of three genes, BAZ2A, RBMS2 and

PCMTD1.

3.5 Comparison of PacBio and Nanopore sequencing

data
SVIM can detect SVs from both PacBio and Nanopore data. An

evaluation with real reads and high-confidence calls demonstrated

that SVIM’s performance on a 26� coverage Nanopore dataset is

comparable to its performance on the 53� coverage PacBio dataset

(see Supplementary Fig. S14). When we compared both SVIM call-

sets with the high-confidence callset, we found that all three callsets

together yielded a total of 45 729 SVs (score cutoff of 40; see Fig. 7).

A total of 22 461 or 49% of the calls were unique to one of the call-

sets with 13 385 and 9017 SVs detected exclusively from the PacBio

and Nanopore reads, respectively. However, 23 248 or 51% of the

calls were made on both PacBio and Nanopore reads. It is reassuring

that the vast majority (97%) of high-confidence calls were detected

by both sequencing technologies.
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PacBio and Nanopore sequencing exhibit similar error rates but

slightly different error modes. While PacBio produces more insertion

than deletion errors (Ross et al., 2013), Nanopore shows the oppos-

ite tendency (Jain et al., 2015). In concordance to these biases,

SVIM detected 17 292 deletions from the Nanopore reads but only

12 782 deletions from the PacBio data (see Supplementary Fig. S15).

Conversely, it detected 23 858 insertions from PacBio but only

14 986 insertions from Nanopore data (see Supplementary Fig.

S16). Consequently, the majority of PacBio-only calls were inser-

tions (90%) and the majority of Nanopore-only calls were deletions

(65%). We could confirm the finding by Sedlazeck et al. that a large

fraction (80%) of Nanopore-only calls lay in simple tandem repeats

in contrast to only 35% of Pacbio-only calls (Sedlazeck et al.,

2018a).

3.6 Runtime evaluation
We compared the runtimes of PBHoney-Spots, PBHoney-Tails,

Sniffles and SVIM on the same NA12878 dataset (53� coverage).

Sniffles and SVIM were given input alignments produced by

NGMLR while PBHoney-Spots and PBHoney-Tails were given

BLASR alignments. The runtime was measured on an AMD EPYC

7601 (128 cores, 2.7 GHz, 1 TB memory). Only the runtime of SV

detection was measured, excluding the time required for producing

the alignments. All four tools analyzed the entire dataset in under

3 h (see Table 1). PBHoney-Tails, Sniffles and SVIM use only a sin-

gle core and took 57 160, and 156 min, respectively. PBHoney-

Spots is the only tool benefiting from multiple cores and took

145 min on 4 cores (608 min on only 1 core).

4 Discussion

SV is, besides single-nucleotide variation and small Indels, one of the

main classes of genetic variation. The influence of SVs on human

phenotype and disease makes them an important research target

but their unique properties complicate their detection and

characterization. Particularly SV detection methods using short-read

technology suffer from low sensitivity. Long-read sequencing tech-

nologies such as PacBio SMRT sequencing and ONT Nanopore

sequencing have the potential to alleviate these problems. In this

study, we introduced the novel SV detection method SVIM. It

employs a three-step pipeline to collect, cluster and combine SV sig-

natures from long reads.

A comparison of SVIM with three competing tools on simulated

and real data demonstrated that our method combines high sensitiv-

ity with high precision. Across all tools, deletions were the easiest to

detect. Consequently, Sniffles and SVIM reached almost perfect pre-

cision and recall on the simulated data. On the real datasets, both

tools still reached a recall of over 90% when setting thresholds using

the HGSVC estimate of 12 680 deletions per individual (Chaisson

et al., 2018). This level of recall was maintained regardless of

sequencing technology and evaluation method (high-confidence call-

set or altered reference). SVIM generally required fewer calls to

reach the same recall as the other tools indicating that the best-

scoring SVIM calls are more enriched in true variants than the other

tools’ callsets of similar size. For the identification of inversions,

Sniffles and SVIM exhibited equally strong performance although

SVIM showed a slightly higher recall in the evaluation with an

altered reference. It needs to be noted, however, that the evaluation

of inversions had to rely fully on simulation due to the lack of a suit-

able gold standard set.

Differences between SVIM and the other tools were most prom-

inent for INSs (i.e. interspersed duplications and novel element

insertions). Across all simulations and real data evaluations, SVIM

outperformed the other tools by a wide margin. The difference to

Sniffles can be largely explained by their approach of analyzing split

alignments. From such alignments, Sniffles only calls insertions of

novel elements but does not detect insertions of sequence existing

somewhere else in the genome (e.g. from mobile elements). The de-

tection performance of tandem duplications could only be evaluated

in the simulated dataset again due to the lack of a gold standard.

What we observed is a big difference in precision between SVIM

and Sniffles due to a large number of erroneous duplication calls by

Sniffles.

What sets SVIM apart from existing SV callers is not only its

improved detection performance but also its ability to distinguish

three different classes of insertions purely based on alignment infor-

mation. SVIM enables researchers to determine whether an insertion

event is due to a tandem duplication, an interspersed duplication or

the insertion of a novel element. Moreover, SVIM identifies the gen-

omic origin of duplications which facilitates their functional annota-

tion, e.g. into different classes of mobile elements.

Because SVIM, similar to other SV callers, analyzes read align-

ments it depends on the correctness of these alignments and inherits

Fig. 7. Venn diagram of three SV callsets for NA12878: SVIM calls on a 53�
coverage PacBio dataset, SVIM calls on a 26� coverage Nanopore dataset

and high-confidence calls from Parikh et al. (2016). Callsets were produced by

merging SVIM calls with a score � 40 for deletions, interspersed duplications

and novel element insertions. Subsequently, the diagram was generated

using pybedtools (Dale et al., 2011) and matplotlib_venn

Table 1. Runtime comparison on the 53� coverage NA12878

PacBio dataset

Tool Threads CPU time (min) Wall clock time (min)

PBHoney-Spots 1 601 608

PBHoney-Spots 2 561 284

PBHoney-Spots 4 558 145

PBHoney-Tails 1 56 57

Sniffles 1 159 160

SVIM 1 155 156

Note: Only the runtime of each tool is measured excluding the prior read

alignment.
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the limitations of the used read alignment method. One of these limi-

tations originates from the repetitive nature of many genomes which

keeps repetitive read segments from being mapped confidently. This

can affect SVIM’s sensitivity but might also cause SVIM to classify an

interspersed duplication as a novel insertion if the inserted segment

cannot be uniquely mapped. This might particularly affect mobile

element insertions whose individual copies are highly similar.

Currently, SVIM is unable to detect chromosomal translocations and

nested structural variants. We intend to add this functionality in the

future. Additionally, we plan to implement genotyping capabilities

for the detected variants in an upcoming release of SVIM.
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