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Abstract

Background: Single-cell RNA-sequencing (scRNA-seq) experiments typically analyze hundreds or thousands of cells after
amplification of the cDNA. The high throughput is made possible by the early introduction of sample-specific bar codes
(BCs), and the amplification bias is alleviated by unique molecular identifiers (UMIs). Thus, the ideal analysis pipeline for
scRNA-seq data needs to efficiently tabulate reads according to both BC and UMI. Findings: zUMIs is a pipeline that can
handle both known and random BCs and also efficiently collapse UMIs, either just for exon mapping reads or for both exon
and intron mapping reads. If BC annotation is missing, zUMIs can accurately detect intact cells from the distribution of
sequencing reads. Another unique feature of zUMIs is the adaptive downsampling function that facilitates dealing with
hugely varying library sizes but also allows the user to evaluate whether the library has been sequenced to saturation. To
illustrate the utility of zUMIs, we analyzed a single-nucleus RNA-seq dataset and show that more than 35% of all reads map
to introns. Also, we show that these intronic reads are informative about expression levels, significantly increasing the
number of detected genes and improving the cluster resolution. Conclusions: zUMIs flexibility makes if possible to
accommodate data generated with any of the major scRNA-seq protocols that use BCs and UMIs and is the most
feature-rich, fast, and user-friendly pipeline to process such scRNA-seq data.
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Introduction

The recent development of increasingly sensitive protocols al-
lows for the generation of RNA-sequencing (RNA-seq) libraries
of single cells [1]. The throughput of such single-cell RNA-seq
(scRNA-seq) protocols is rapidly increasing, enabling the pro-
filing of tens of thousands of cells [2, 3] and opening exciting
possibilities to analyze cellular identities [4, 5]. As the required
amplification from such small starting amounts introduces sub-
stantial amounts of noise [6], many scRNA-seq protocols incor-

porate unique molecular identifiers (UMIs) to label individual
cDNA molecules with a random nucleotide sequence before am-
plification [7]. This enables the computational removal of am-
plification noise and thus increases the power to detect expres-
sion differences between cells [8, 9]. To increase the throughput,
many protocols also incorporate sample-specific bar codes (BCs)
to label all cDNA molecules of a single cell with a nucleotide se-
quence before library generation [10]. This allows for early pool-
ing, which further decreases amplification noise [6]. Addition-
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Table 1: Features of available UMI pipelines for the quantification of gene expression data.

Name Reference
Open

source
Quality

filter
UMI

collapsing Mapper
BC

detection Intron
Down-

sampling

Compatible
UMI library
protocols

Cell Ranger [2] yes BC+UMI Hamming
distance

STAR A no yes [2]

CEL-seq [15] yes BC+UMI Identity
only

bowtie2 WL no no [15, 46]

dropEst [16] yes BC Frequency-
based

TopHat2 or
Kallisto

WL,top-
n,EM

yes no [2, 13, 19]

Drop-seq-
tools

[13] no BC+UMI Hamming
distance

STAR WL,top-n no no [13, 15, 17]

scPipe [47] yes BC+UMI Hamming
distance

subread WL,top-n no no [13, 17, 18, 46]

umis [14] yes BC Frequency-
based

Kallisto WL,top-
n,EM

no no [2, 13, 17–19,
46, 48]

UMI-tools [25] yes BC+UMI Network-
based

BWA WL no no [17, 19]

zUMIs This work yes BC+UMI Hamming
distance

STAR A,WL,top-n yes yes [2, 3, 12, 13,
15, 17, 18, 21,

46, 48]

We consider whether the pipeline is open source, has sequence quality filters for cell BCs and UMIs, mappers, UMI-collapsing options, options for BC detection (A,

automatically infer intact BCs; WL, extract only the given list of known BCs; top-n, order BCs according the number of reads and keep the top n BCs; EM, merge BCs
with given edit distance), whether it can count intron mapping reads, whether it offers a utility to make varying library sizes more comparable via downsampling,
and finally with which RNA-seq library preparation protocols is it compatible

ally, for cell types such as primary neurons, it has been proven
to be more feasible to isolate RNA from single nuclei rather than
whole cells [11, 12]. This decreases mRNA amounts further so
that it has been suggested to count intron mapping reads origi-
nating from nascent RNAs as part of single-cell expression pro-
files [11]. However, the few bioinformatic tools that process RNA-
seq data with UMIs and BCs have limitations (Table 1). For ex-
ample, the Drop-seq-tools is not an open source [13]. While Cell
Ranger is open, it is exceedingly difficult to adapt the code to
new or unknown sample BCs and other library types. Other tools
are specifically designed to work with one mapping algorithm
and focus mainly on transcriptome references [14, 15]. Further-
more, the only other UMI-RNA-seq pipeline providing the utility
to also consider intron mapping reads, dropEst [16], is only appli-
cable to droplet-based protocols. Here, we present zUMIs, a fast
and flexible pipeline that overcomes these limitations.

Findings

zUMIs is a pipeline to process RNA-seq data that were mul-
tiplexed using cell BCs and also contain UMIs. Read-pairs are
filtered to remove reads with low-quality BCs or UMIs based
on sequence and then mapped to a reference genome (Fig.1).
Next, zUMIs generates UMI and read count tables for exon and
exon+intron counting. We reason that very low input material
such as from single nuclei sequencing might profit from in-
cluding reads that potentially originate from nascent RNAs. An-
other unique feature of zUMIs is that it allows for downsampling
of reads before collapsing UMIs, thus enabling the user to as-
sess whether a library was sequenced to saturation or whether
deeper sequencing is necessary to depict the full mRNA com-
plexity. Furthermore, zUMIs is flexible with respect to the length
and sequences of the BCs and UMIs, supporting protocols that
have both sequences in one read [2, 3, 12, 13, 15, 17, 18] as well
as protocols that provide UMI and BC in separate reads [19–21].
This makes zUMIs the only tool that is easily compatible with all
major UMI-based scRNA-seq protocols.

Implementation and Operation
Filtering and mapping

The first step in our pipeline is to filter reads that have low-
quality BCs according to a user-defined threshold (Fig.1). This
step eliminates the majority of spurious BCs and thus greatly
reduces the number of BCs that need to be considered for count-
ing. Similarly, we also filter low-quality UMIs.

The remaining reads are then mapped to the genome using
the splice-aware aligner STAR [22]. The user is free to customize
mapping by using the options of STAR. Furthermore, if the user
wishes to use a different mapper, it is also possible to provide
zUMIs with an aligned bam file instead of the fastq file with the
cDNA sequence, with the sole requirement that only one map-
ping position per read is reported in the bam file.

Transcript counting

Next, reads are assigned to genes. In order to distinguish exon
and intron counts, we generate two mutually exclusive an-
notation files from the provided gtf, one detailing exon posi-
tions, the other introns. Based on those annotations, Rsubread
featureCounts [23] is used to first assign reads to exons and af-
terward to check whether the remaining reads fall into introns,
in other words, if a read is overlapping with intronic and ex-
onic sequences, it will be assigned to the exon only. The output
is then read into R using data.table [24], generating count ta-
bles for UMIs and reads per gene per BC. We then collapse UMIs
that were mapped either to the exon or intron of the same gene.
Note that only the processing of intron and exon reads together
allows for properly collapse of UMIs that can be sampled from
the intronic as well as from the exonic part of the same nascent
mRNA molecule.

Per default, we only collapse UMIs by sequence identity. If
there is a risk that a large proportion of UMIs remains under-
collapsed due to sequence errors, zUMIs provides the option to
collapse UMIs within a given Hamming distance. We compare
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Figure 1: Schematic of the zUMIs pipeline. Each of the gray panels from left to right depicts a step of the zUMIs pipeline. First, fastq files are filtered according to
user-defined bar code (BC) and unique molecular identifier (UMI) quality thresholds. Next, the remaining cDNA reads are mapped to the reference genome using STAR.

Gene-wise read and UMI count tables are generated for exon, intron, and exon+intron overlapping reads. To obtain comparable library sizes, reads can be downsampled
to a desired range during the counting step. In addition, zUMIs also generates data and plots for several quality measures, such as the number of detected genes/UMIs
per BCe and distribution of reads into mapping feature categories.
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Figure 2: Comparison of different UMI collapsing methods. We compared Drop-seq-tools and UMI-tools with zUMIs using our HEK dataset (227 mio reads). (A) Run time

to count exonic UMIs using zUMIs (hamming distance = 0), UMI-tools (”unique” mode) and Drop-seq-tools (edit distance = 0). (B) Box plots of correlation coefficients
of gene-wise UMI counts of the same cell generated with different methods. UMI counts generated using zUMIs (quality filter “1 base under phred 17” or hamming
distance = 1) were correlated to UMI counts generated using Drop-seq-tools (quality filter “1 base under phred 17” ) and UMI-tools (“directional adjacency” mode). (C)
Comparison of the total number of UMIs per cell derived from different counting methods to “unfiltered” counts. (D) Violin plots of gene-wise dispersion estimates
with different quality filtering and UMI collapsing methods.
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the two zUMIs UMI-collapsing options to the recommended di-
rectional adjacency approach implemented in UMI-tools [25] us-
ing our in-house example dataset (see Methods section). zUMIs
identity collapsing yields nearly identical UMI counts per cell
as UMI-tools, while Hamming distance yields increasingly fewer
UMIs per cell with increasing sequencing depth (Fig.2C). Smith
et al [25] suggest that edit distance collapsing without consid-
ering the relative frequencies of UMIs might indeed overreach
and overcollapse the UMIs. We suspect that this is indeed what
happens in our example data, where we find that gene-wise dis-
persion estimates appear suspiciously truncated as expected if
several counts are unduly reduce to one, the minimal number
after collapsing (Fig.2D).

However, note that the above-described differences are mi-
nor. By and large, there is good agreement between UMI counts
obtained by UMI-tools [25], the Drop-seq pipeline [13], and zU-
MIs. The correlation between gene-wise counts of the same cell
is >0.99 for all comparisons (Fig. 2B). In light of this, we consider
the >3 times higher processing speed of zUMIs to be a decisive
advantage (Fig.2A).

Cell BC selection

In order to be compatible with well-based and droplet-based
scRNA-seq methods, zUMIs needs to be able to deal with known
as well as random BCs. As default behavior, zUMIs infers which
BCs mark good cells from the data (Fig.3A, 3B). To this end, we
fit a k-dimensional multivariate normal distribution using the
R-package mclust [26, 27] for the number of reads/BC, where k
is empirically determined by mclust via the Bayesian informa-
tion criterion. We reason that only the kth normal distribution
with the largest mean contains BCs that identify reads originat-
ing from intact cells. We exclude all BCs that fall in the lower
1% tail of this kth normal distribution to exclude spurious BCs.
The HEK dataset used here contains 96 cells with known BCs
and zUMIs identifies 99 BCs as intact, including all the 96 known
BCs. Also, for the single-nucleus RNA-seq from Habib et al. [12],
zUMIs identified a reasonable number of cells; Habib et al. report
10,877 nuclei and zUMIs identified 11,013 intact nuclei. However,
we recommend to always check the elbow plot generated by zU-
MIs (Fig.3B) to confirm that the cutoff used by zUMIs is valid for a
given dataset. In cases where the number of BCs or BC sequences
are known, it is preferable to use this information. If zUMIs is ei-
ther given the number of expected BCs or is provided with a list
of BC sequences, it will use this information and forgo automatic
inference.

Downsampling

scRNA-seq library sizes can vary by orders of magnitude, which
complicates normalization [28, 29]. A straight-forward solution
for this issue is to downsample overrepresented libraries [30].
zUMIs has an built-in function for downsampling datasets to a
user-specified number of reads or a range of reads. By default,
zUMIs downsamples all selected BCs to be within three absolute
deviations from the median number of reads per BC (Fig.3C). Al-
ternatively, the user can provide a target sequencing depth, and
zUMIs will downsample to the specified read number or omit
the cell from the downsampled count table if fewer reads were
present. Furthermore, zUMIs also allows the user to specify a
multiple target read number at once for downsampling. This
feature is helpful if the user wishes to determine whether the
RNA-seq library was sequenced to saturation or whether fur-
ther sequencing would increase the number of detected genes

or UMIs enough to justify the extra cost. In our HEK-cell exam-
ple dataset, the number of detected genes starts leveling off at
1 million reads. Sequencing double that amount would only in-
crease the number of detected genes from 9,000 to 10,600 when
counting exon reads (Fig.3D). In line with previous findings [8,
14], the saturation curve of exon+intron counting runs parallel
to the one for exon counting, both indicating that a sequencing
depth of 1 million reads per cell is sufficient for these libraries.

Output and statistics

zUMIs outputs three UMI and three read count tables: gene-wise
counts for traditional exon counting, one for intron and one for
exon+intron counts. If a user chooses the downsampling option,
six additional count tables per target read count are provided. To
evaluate library quality, zUMIs summarizes the mapping statis-
tics of the reads. While exon and intron mapping reads likely
represent mRNA quantities, a high fraction of intergenic and un-
mapped reads indicates low-quality libraries. Another measure
of RNA-seq library quality is the complexity of the library, for
which the number of detected genes and the number of iden-
tified UMIs are good measures (Fig.1). We processed 227 mil-
lion reads with zUMIs and quantified expression levels for exon
and intron counts on a Unix machine using up to 16 threads,
which took less than 3 hours. Increasing the number of reads
increases the processing time approximately linearly, where fil-
tering, mapping, and counting each take up roughly one third of
the total time (Fig.3E). We also observed that the peak random
access memory usage for processing datasets of 227, 500, and
1,000 million pairs was 42 Gb, 89 Gb, and 172 Gb, respectively.
Finally, zUMIs could process the largest scRNA-seq dataset re-
ported to date with around 1.3 million brain cells and 30 billion
read-pairs generated with 10xGenomics Chromium (see Meth-
ods section) on a 22-core processor in only 7 days.

Intron counting

Recently, it has been shown that intron mapping reads in RNA-
seq likely originate from nascent mRNAs and are useful for gene
expression estimates [31, 32]. Additionally, novel approaches
leverage the ratios of intron and exon mapping reads to infer
information on transcription dynamics and cell states [33]. To
address this new aspect of analysis, zUMIs also counts and col-
lapses intron-only mapping reads as well as intron and exon
mapping reads from the same gene with the same UMI. To as-
sess the information gain from intronic reads to estimate gene
expression levels, we analyzed a publicly available DroNc-seq
dataset from mouse brain ([12]; see Methods section). For the
∼11,000 single nuclei of this dataset, the fraction of intron map-
ping reads of all reads goes up to 61%. Thus, if intronic reads
are considered, the mean number of detected genes per cell
increases from 1,041 for exon counts to 1,995 for exon+intron
counts. Next, we used the resulting UMI count tables to investi-
gate whether exon+intron counting improves the identification
of cell types, as suggested by Lake et al. [11]. The validity and ac-
curacy of counting introns for single-nucleus sequencing meth-
ods has recently been demonstrated [34]. Following the Seurat
pipeline to cluster cells [35, 36], we find that using exon+intron
counts discriminates 28 clusters, while we could only discrimi-
nate 19 clusters using exon counts (Fig.4A, 4B). The larger num-
ber of clusters is not simply due to the increase in the counted
UMIs and genes. When we permute the intron counts across
cells and add them to the exon counts, the added noise actu-
ally reduces the number of identifiable clusters (Fig.4E).
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Figure 3: Utilities of zUMIs. Each of the panels shows the utilities of zUMIs pipeline. The plots from A–D show the results from the example HEK dataset used here.

(A) The plot shows a density distribution of reads per BC. Cell BCs with reads right of the blue line are selected. (B) The plot shows the cumulative read distribution in
the example HEK dataset where the BCs in light blue are the selected cells. (C) The bar plot shows the number of reads per selected cell BC with the red lines showing
upper and lower median absolute deviation (MAD) cutoffs for adaptive downsampling. Here, the cells below the lower MAD have very low coverage and are discarded
in downsampled count tables. (D) Cells were downsampled to six depths from 100,000 to 3,000,000 reads. For each sequencing depth, the genes detected per cell are

shown. (E) Runtime for three datasets with 227, 500, and 1,000 million read-pairs. The runtime is divided in the main steps of the zUMIs pipeline as follows: filtering,
mapping, counting, and summarizing. Each dataset was processed using 16 threads (“-p 16”).

We continue to further characterize the seven clusters that
were subdivided by the addition of intron counts (Fig.4D). First,
we identify DE genes between the newly formed clusters. If we
count only exon reads, there appear to be, on average, only 10
DE genes between the subgroups, while exon+intron counting
yields ∼10 times more DE genes, thus corroborating the signal
found with clustering. The log2-fold changes of those additional
DE genes estimated with either counting strategy are generally
in good agreement; especially large log2-fold changes are de-
tected with both exon and exon+intron counting (Fig.4F). Genes
that are detected as DE in only one of our counting strategies
have small log2-fold changes, and there are more of these small
changes detected using exon+intron counting.

Detecting more genes naturally increases the chance to also
detect more informative genes. Here, we cross-reference the
gene list with marker genes for transcriptomic subtypes de-
tected for major cell types of the mouse brain [37] and find that
∼5% of the additional genes are also marker genes, which cor-
responds well to the general frequency of marker genes among
the detected genes (4%). In the same vein, we also detect propor-
tionally more DE genes with exon+intron counting compared to
exon counting. Thus, including introns simply allows us to bet-
ter detect present transcripts, while leaving the proportions of
interest unaltered. Having a closer look at cluster 7, it was split
into a bigger (7) and a smaller cluster (24) using exon+intron
counting (Fig.4A-C), we find one marker gene (Il1rapl2) to be
DE between the subclusters using exon+intron counting, while
Il1rapl2 had only spurious counts using exon counts. Il1rapl2 is
a marker for transcriptomic subtypes of GABAergic Pvalb-type

neurons [37], suggesting that the split of cluster 7 might be bio-
logically meaningful (Fig.4E).

In order to evaluate the power gained by exon+intron count-
ing in a more systematic way, we perform power simulations us-
ing empirical mean and dispersion distributions from the largest
and most uniform cluster (∼1,500 cells) [9]. For a fair comparison,
we include all detected genes, which is equivalent to the num-
ber of genes detected with exon+intron counting. Also, since we
call a gene detected as soon as one count is associated, exon
counting is necessarily a subset of exon+intron. Thus, there are,
on average, 4 times more genes in the lowest expression quan-
tile for exon counting than for exon+intron counting (Fig.4H). For
those genes, expression is too spurious to be used for differen-
tial expression analysis; for exon+intron counting, we have, on
average, 60% power to detect a DE gene in the first mean expres-
sion bin with a well-controlled false discovery rate (FDR) (Fig.4G).
In summary, the increased power for exon+intron counting and
probably also the larger number of clusters are due to better de-
tection of lowly expressed genes. Furthermore, we think that al-
though potentially noisy, the large number of additionally de-
tected genes makes exon+intron counting worthwhile, espe-
cially for single-nuclei sequencing techniques that are enriched
for nuclear nascent RNA transcripts, such as DroNc-seq [12]. Ad-
ditionally, exon+intron counting may help in extracting as much
information as possible from low coverage data as generated
in the context of high-throughput cell atlas efforts (e.g., 10,000–
20,000 reads/cell [38, 39]. Last, users should always exclude the
possibility of intronic reads stemming from genomic DNA con-
tamination in the library preparation by confirming low inter-
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Figure 4: Contribution of intron reads to biological insights. We analyzed published single-nucleus RNA-seq data from mouse prefrontal cortex (PFC) and hippocampus
[12] to assess the utility of counting intron in addition to exon reads. We processed the raw data with zUMIs to obtain expression tables with exon reads as well as
exon+intron reads and then used the R-package Seurat [35, 36] to cluster cells. With exon counts, we identified 19 clusters (A), and with exon+intron counts we identified

27 clusters (B). Clusters are represented as t-SNE plots and colored according to the most frequent cell-type assignment in the original article [12]: glutamatergic neurons
from the prefrontal cortex (exPFC), GABAergic interneurons (GABA), pyramidal neurons from the hippocampal CA region (CA), granule neurons from the hippocampal
dentate gyrus region (DG), astrocytes (ASC), microglia (MG), oligodendrocytes (ODC), oligodendrocyte precursor cells (OPC), neuronal stem cells (NSC), smooth muscle
cells (SMC) and endothelial cells (END). Different shades of those clusters indicate that multiple clusters had the same major cell type assigned. If we randomly sample

counts from the intron data and add them to the exon counting, the noise reduces the number of clusters and the Seurat pipeline can only identify 9–11 clusters (E).
The composition of each cluster based on exon+intron is detailed in panel (C), and cells that were not assigned a cell type in [12] are displayed as empty. The boxes
mark the clusters that were not split when using exon data only. For example, cluster 7 from exon counting, which mainly consists of GABAergic neurons, was split
into clusters 7, 24 (506, 66 cells) when using exon+intron counting. In (D), we show the numbers of genes that were differentially expressed (DE) (limma p-adj <0.05)

between the clusters found only with exon+intron counts. The panel numbers represent the exon counting cluster numbers and the y-axis the exon+intron counting
cluster number. The log2-fold changes corresponding to these contrasts are also used in (G). Among the genes that were additionally detected to be DE by exon+intron
counting was the marker gene Il1rapl2 (limma p-adj = 10−5). In (F), we present a violin plot of the normalized counts for Il1rapl2 in cells of the GABAergic subclusters
7 and 24. Log2-fold changes calculated with exon+intron counts correlate well with exon counts (G). Note that for exon counting only, half as many genes could be

evaluated as for exon+intron counting and thus only half of the exon+intron genes are depicted in (G). Large log2 fold changes (LFCs) are found to be significant with
both counting strategies (purple points are close to the bisecting line). We conducted simulations based on mean and dispersion measured using exon cluster 0 (1,616
cells, ∼90% exPFC). In (I) we show the expected true positive rate and the false discovery rate for a scenario comparing 300 vs 300 cells. Results for exon and exon+intron
counting were stratified into five quantiles according to the mean expression of genes, where stratum 1 contains lowly expressed genes and stratum 5 the most highly

expressed genes. The numbers of genes falling into each of the bins using exon+intron and exon counting are depicted in (H).

genic mapping fractions using the statistics output provided by
zUMIs.

Conclusion

zUMIs is a fast and flexible pipeline for processing raw reads to
obtain count tables for RNA-seq data using UMIs. To our knowl-
edge, it is the only open source pipeline that has a BC and
UMI quality filter, allows intron counting, and has an integrated
downsampling functionality. These features ensure that zUMIs
is applicable to most experimental designs of RNA-seq data,
including single-nucleus sequencing techniques, droplet-based
methods where the BC is unknown, as well as plate-based UMI-
methods with known BCs. Finally, zUMIs is computationally ef-
ficient, user-friendly, and easy to install.

Methods

Analyzed RNA-seq datasets

HEK293T cells were cultured in DMEM high glucose with L-
glutamine (Biowest) supplemented with 10% fetal bovine serum
(Thermo Fisher) and 1% penicillin/streptomycin (Sigma-Aldrich)
in a 37◦C incubator with 5% carbon dioxide. Cells were passaged
and split every 2 or 3 days. For single-cell RNA-seq, HEK293T
cells were dissociated by incubation with 0.25% Trypsin (Sigma-
Aldrich) for 5 minutes at 37◦C. The single-cell suspension was
washed twice with phosphate-buffered saline, and dead cells
were stained with Zombie Yellow (Biolegend) according to the
manufacturer’s protocol. Single cells were sorted into DNA
LoBind 96-well polymerase chain reaction (PCR) plates (Eppen-
dorf) containing lysis buffer with a Sony SH-800 cell sorter in 3-
drop purity mode using a 100-μmnozzle. Next, single-cell RNA-
seq libraries were constructed from one 96-well plate using a
slightly modified version of the mcSCRB-seq protocol. Reverse
transcription was performed as described previously [40], with
the only change being the use of KAPA HiFi HotStart enzyme for
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PCR amplification of cDNA. Resulting libraries were sequenced
using an Illumina HiSeq1500 with 16 cycles in Read 1 to decode
cell BCs (6 bases) and UMIs (10 bases) and 50 cycles in Read 2 to
sequence into the cDNA fragment, obtaining ∼227 million reads.
Raw fastq files were processed using zUMIs, mapping to the hu-
man genome (hg38) and Ensembl gene models (GRCh38.84).

In addition, we analyzed data from 1.3 million mouse brain
cells generated on the 10xGenomics Chromium platform [2]. Se-
quences were downloaded from the National Center for Biotech-
nology Information Sequence Read Archive under accession
number SRP096558. The data consist of 30 billion read-pairs
from 133 individual samples. In these data, read 1 contains 16 bp
for the cell BC and 10 bp for the UMI and read 2 contains 114 bp
of cDNA. zUMIs was run using default settings, and we allowed
7 threads per job for a total of up to 42 threads on an Intel Xeon
E5-2699 22-core processor.

Finally, we obtained mouse brain DroNc-seq read data [12]
from the Broad Institute Single Cell Portal [41]. This dataset con-
sists of ∼1,615 million read-pairs from ∼11,000 single nuclei.
Read 1 contains a 12 bpcell BC and a 8 bpUMI and read 2 60 bpof
cDNA.

The two mouse datasets were mapped to genome version
mm10 and applying Ensembl gene models (GRCm38.75).

Power simulations and DE analysis

We evaluated the power to detect differential expression with
the help of the powsimR package [9]. For the DroNc-seq dataset,
we estimated the parameters of the negative binomial dis-
tribution from one of the identified clusters, namely, cluster
0, compromising 1,500 glutamatergic neuronal cells from the
prefrontal cortex (Fig.4D). Since we detect more genes with
exon+intron counting (4,433 compared to 1,782), we included
this phenomenon in our read count simulation by drawing mean
expression values for a total of 4,433 genes. This means that
the table includes sparse counts for the exon counting. Log2-
fold changes were drawn from a gamma distribution with shape
equal to 1 and scale equal to 2. In each of the 25 simulation it-
erations, we draw an equal sample size of 300 cells per group
and test for differential expression using limma-trend [42] on
log2 counts per million (CPM) values with scran [43] library size
correction. The true positive rate and FDR are stratified over the
empirical mean expression quantile bins.

For the differential expression analysis between clusters, we
use the same DE estimation procedure as in the simulations:
scran normalization followed by limma-trend DE-analysis (c.f.
[44]).

Cluster identification

After processing the DroNc-seq data [12] with zUMIs as de-
scribed above, we cluster cells based on UMI counts derived from
exons only and exons+introns reads using the Seurat pipeline
[35, 36]. First, cells with fewer than 200 detected genes were fil-
tered out. The filtered data were normalized using the LogNor-
malize function. We then scale the data by regressing out the
effects of the number of transcripts and genes detected per cell
using the ScaleData function. The normalized and scaled data
are then used to identify the most variable genes by fitting a
relationship between mean expression (ExpMean) and disper-
sion (LogVMR) using the FindVariableGenes function. The iden-
tified variable genes are used for principle component analysis,
and the top 20 principle components are then used to find clus-
ters using graph-based clustering as implemented in FindClus-

ters. To illustrate that the additional clusters found by count-
ing exon+intron reads are not spurious, we use intron-only UMI
counts from the same data to add to the observed exon-only
counts. More specifically, to each gene we add scran-size factor-
corrected intron counts from the same gene after permuting
them across cells. We assessed the cluster numbers from 100
such permutations.

Comparison of UMI collapsing strategies

In order to validate zUMIs and compare different UMI collaps-
ing methods, we used the HEK dataset described above. We ran
zUMIs (1) without quality filtering, (2) filtering for onebase un-
der Phred 17, and (3) collapsing similar UMI sequences within a
hamming distance of 1. To compare with other available tools,
we ran the same dataset using the Drop-seq-tools version 1.13
[13] and quality filter “1 base under Phred 17” without edit dis-
tance collapsing. Last, the HEK dataset was used with UMI tools
[25] in (1) “unique” and (2) “directional adjacency” mode with
edit distance set to 1. Also, we compared the output of zU-
MIs from the DroNc-seq dataset when using default parame-
ters (“1 base under Phred 20”) to UMI-tools in (1) “unique,” (2)
“directional adjacency,” and (3) “cluster” settings. For each set-
ting and tool combination, we compared per-cell/per-nuclei UMI
contents in a linear model fit.

Availability of source code and requirements
� Project name: zUMIs
� Project home page: https://github.com/sdparekh/zUMIs
� Operating system(s): UNIX
� Programming language: shell, R, perl
� Other requirements: STAR >= 2.5.3a, R >= 3.4, Rsubread >=

1.26.1, pigz >= 2.3 & samtools >= 1.1
� License: GNU GPLv3.0
� Research Resource Identification Initiative ID: SCR 016139

Availability of supporting data

All data that were generated for this project were submitted to
GEO under accession GSE99822. An archival copy of the source
code and test data are available via the GigaScience repository
GigaDB [45].
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