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Unsupervised‑learning‑based 
method for chest MRI–CT 
transformation using structure 
constrained unsupervised 
generative attention networks
Hidetoshi Matsuo1*, Mizuho Nishio1, Munenobu Nogami1, Feibi Zeng1, Takako Kurimoto2, 
Sandeep Kaushik3, Florian Wiesinger3, Atsushi K. Kono1 & Takamichi Murakami1

The integrated positron emission tomography/magnetic resonance imaging (PET/MRI) scanner 
simultaneously acquires metabolic information via PET and morphological information using MRI. 
However, attenuation correction, which is necessary for quantitative PET evaluation, is difficult as it 
requires the generation of attenuation‑correction maps from MRI, which has no direct relationship 
with the gamma‑ray attenuation information. MRI‑based bone tissue segmentation is potentially 
available for attenuation correction in relatively rigid and fixed organs such as the head and pelvis 
regions. However, this is challenging for the chest region because of respiratory and cardiac motions in 
the chest, its anatomically complicated structure, and the thin bone cortex. We propose a new method 
using unsupervised generative attentional networks with adaptive layer‑instance normalisation for 
image‑to‑image translation (U‑GAT‑IT), which specialised in unpaired image transformation based 
on attention maps for image transformation. We added the modality‑independent neighbourhood 
descriptor (MIND) to the loss of U‑GAT‑IT to guarantee anatomical consistency in the image 
transformation between different domains. Our proposed method obtained a synthesised computed 
tomography of the chest. Experimental results showed that our method outperforms current 
approaches. The study findings suggest the possibility of synthesising clinically acceptable computed 
tomography images from chest MRI with minimal changes in anatomical structures without human 
annotation.

Abbreviations
DCNNs  Deep convolutional neural networks
GANs  Generative adversarial networks
ZTE  Zero echo time
MIND  Modality-independent neighbourhood descriptor
PET/MRI  Positron emission tomography/magnetic resonance imaging

Background. New methods of machine learning, such as deep convolutional neural networks (DCNNs), 
have been recently developed because of easy access to large datasets and computational resources, and DCNN 
has made remarkable progress in various fields. The performance of DCNNs has significantly improved in the 
field of image recognition research. Generative adversarial networks (GANs) have received considerable atten-
tion in neural networks. For example, Zhu et al.1 developed an unsupervised learning method that enables the 
transformation of images between two types of domains using GANs called  CycleGAN2. They showed that it is 
possible to transform images between horse and zebra and between day and night.

An integrated positron emission tomography/magnetic resonance imaging (PET/MRI) scanner is the only 
modality that can obtain metabolic information with PET and morphological information with high soft-tissue 
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contrast using MRI by simultaneous acquisition. Although the advantage of PET/MRI is the accuracy of the 
fusion images, a major drawback of PET/MRI is the difficulty in attenuation correction for PET reconstruction, 
which is necessary for the quantitative evaluation of PET. X-ray-based attenuation correction, which is a method 
of translating CT images from the effective X-ray energy to attenuation coefficients at the PET energy (511 keV), 
is widely employed for attenuation correction of PET/CT. However, the generation of attenuation-correction 
maps from MRI (a synthesised CT) is necessary for PET/MRI because no direct relationship exists between 
gamma-ray attenuation information and MRIs. Moreover, only four-tissue segmentations (air, lung, fat, and soft 
tissue) other than bone are used for synthesised CT generation because of the difficulties in extracting signals 
from tissues with low proton density, such as bone tissue, on conventional MR  sequences3.

The zero echo time (ZTE) MR sequence enables imaging of tissues with short T2 relaxation time and is uti-
lised for bone and lung  imaging4–9. For the head region, ZTE-based attenuation correction is already available in 
commercial PET/MRI scanners because delineation and segmentation of bone tissue on simultaneously acquired 
ZTE is relatively easy for rigid and fixed  organs10–13. A deep learning approach based on the use of paired training 
data for generating synthesised CT from MRI is now applicable to the head and pelvis  regions14–16. In the chest, 
however, bone segmentation from ZTE remains difficult to perform for accurately synthesised CT generation due 
to its respiratory and cardiac motion, anatomically complicated structure, and relatively thin cortex of the bone.

CycleGAN has been successfully used for medical image analysis, such as cone-beam-CT-CT  conversion17 
and MRI–CT conversion of the  head18. In addition to CycleGAN, other unsupervised learning methods for inter-
domain image transformations have been proposed and used in medical image  analysis19. Image transformation 
using GANs faces a problem in that anatomical consistency cannot be guaranteed.

In the current study, to generate synthesised CT from the ZTE of PET/MRI, we utilised a new unsupervised 
method called Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalisation 
for Image-to-Image Translation (U-GAT-IT), which is specialised in unpaired image transformation based on 
attention maps for image  transformation20. To guarantee anatomical consistency in the image transformation 
between different domains (synthesised CT and ZTE), the modality-independent neighbourhood descriptor 
(MIND)21 was added to the loss of U-GAT-IT. Using our proposed method, the ZTE of PET/MRI of the chest 
can be converted to synthesised CT. The U-GAT-IT and CycleGAN models were not originally developed for 
use in medical image analysis. The anatomical structure might differ significantly in the ZTE and synthesised 
CT images obtained using the U-GAT-IT or CycleGAN methods. However, to use the synthesised CT as an 
attenuation correction map for PET/MRI, differences in anatomical structures such as bone, body, and upper 
arm contour are critical. Our proposed method with U-GAT-IT and MIND successfully prevented anatomical 
inconsistencies between ZTE and synthesised CT.

Related work. Transformation in medical images is required in numerous clinical fields, and several appli-
cations have been reported, such as noise reduction, MRI–CT transformation, and segmentation tasks. In medi-
cal images, however, assembling numerous labelled images for training is challenging. In addition, obtaining an 
exactly aligned pair of images for inter-modality transformation is difficult. Paired training data for the head 
and pelvis can be prepared by matching the shapes of CT and MRI using nonlinear image registration, whereas 
prepared such data for the chest is difficult. Although there have been reports on MRI–CT transformation in 
the head and pelvis, which are relatively unchanged by body  posture22,23, it is difficult to obtain an aligned pair 
of corresponding images of the chest and other regions because of breathing and differences in body posture 
between MRI and CT. Thus, inter-modality image conversion in the chest has been considered challenging to 
accomplish.

CycleGAN, which enables unpaired image conversion without the need for directly corresponding images, has 
attracted attention. It has performed well in various fields, such as the generation of synthesised CT from cone-
beam  CT17, CT  segmentation24, and X-ray angiography image  generation25. Generally, CycleGAN is employed 
to perform transformations between two types of image domains. However, no direct constraint exists on the 
structure of the input and output images, and the structural alignment between the input and output images is 
not guaranteed. In medical images, the transforms of the anatomical structures are critical. To overcome this 
problem, several studies have been performed; CycleGAN has been extended to three-dimensional medical 
 images26–28, and loss of CycleGAN was changed to set constraints on anatomical structural  change27,29,30. In 
addition, various approaches have been attempted such as a deformation-invariant CycleGAN (DicycleGAN)29, 
an extension of CycleGAN by adding the gradient consistency loss to improve the accuracy at the  boundaries31, 
and the use of CycleGAN for the paired  data32.

Contributions. The contributions of this study are summarised as follows. First, this paper presents a method 
for performing chest MRI–CT (ZTE to synthesised CT) transformation using unsupervised learning methods 
such as U-GAT-IT and CycleGAN, which enable unpaired image transformations. Second, the proposed allows 
constraints to be applied to U-GAT-IT and CycleGAN to overcome the effect of changes in anatomical struc-
tures when transforming chest MRI–CT images. For this purpose, we added MIND to the losses of U-GAT-IT 
and CycleGAN and attempted to suppress the irregular changes in anatomical structures. Third, the combined 
use of U-GAT-IT and MIND made it possible to generate clinically acceptable synthesised CT images with less 
structural changes compared with CycleGAN with and without MIND. Fourth, without using any human anno-
tations, the unsupervised learning methods of U-GAT-IT and CycleGAN allowed us to generate synthesised CT.

The remainder of this paper proceeds as follows. “Materials and methods” describes the details of Cycle 
GAN and U-GAT-IT and the loss of these networks using MIND. “Experiments” describes the details of PET/
MRI and CT imaging and experimental studies used for the performance comparison. “Results” describes the 
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experimental results. “Discussion” discusses the results and compares them with previous studies; finally, the 
study is concluded in “Conclusions”.

Materials and methods
In this study, CycleGAN and U-GAT-IT were used to perform MRI–CT conversion using unpaired data. In 
addition, we applied MIND, which was proposed in a previous study, to these networks to prevent misalignment 
between MRI and synthesised CT images. Please refer to Fig. 1 for an outline of the proposed U-GAT-IT + MIND 
process.

To compare the performance of U-GAT-IT + MIND loss, we evaluated the performance of CycleGAN alone, 
U-GAT-IT alone, and the CycleGAN + MIND loss.

CycleGAN. CycleGAN, developed in 2016, is a method that allows transformations between two different 
image domains. CycleGAN involves competing networks of an image generator (generator) and an adversarial 
network (discriminator) that attempt to distinguish the generated synthetic image from the real image. Taking 
the transformation between MRI and CT images as an example, there is a loss (G loss) to make the synthesised 
CT image closer to the real CT image for the generator, and a loss (D loss) to distinguish the synthesised CT 
image from the real CT image for the discriminator. In addition, there are two types of losses in CycleGAN: cycle 
loss and identity loss. Cycle loss is the difference between the original image and the double-synthesised MRI, 
which is further synthesised from the synthesised CT based on MRI. Identity loss is the difference between the 
output image and the input image (CT image and synthesised CT image) when the CT image is input to the CT 
generator. The same four types of losses are calculated for CT-MRI conversion (when synthesised MRI is gener-
ated from real CT). Please refer to the original paper on the conceptual diagram. The three types of losses are as 
follows—Eqs. (1)–(4).

Generator and discriminator loss (Generator and discriminator losses are employed to match the distribution 
of the translated images to the distribution of the target image):

Cycle loss (To alleviate the mode collapse problem, we applied a cycle consistency constraint to the generator):

Identity loss (To ensure that the distributions of input image and output image are similar, we applied an 
identity consistency constraint to the generator):

Sum of losses (finally, we jointly trained the generators, and discriminators to optimize the final objective):

(1)
LGAN (GMRI→CT ,DCT , IMRI , ICT ) = Ect∼pdata(ICT )[logDCT (ct)] + Emri∼p(data)(IMRI )

[log(1− DCT (GMRI→CT (mri))]]

(2)
Lcyc(GMRI→CT ,GCT→MRI , IMRI , ICT ) = Emri∼p(data)(IMRI )

[� GCT→MRI(GMRI→CT (mri))−mri �1]

+ Ect∼p(data)(ICT )
[� GMRI→CT (GCT→MRI(ct))− ct �1]

(3)
Lidentitiy(GMRI→CT ,GCT→MRI , IMRI , ICT ) = Ect∼p(data)(ICT )

[� GMRI→CT (ct)− ct �1]

+ Emri∼p(data)(IMRI )
[� GCT→MRI (mri)−mri �1]

(4)

LCycleGAN (GMRI→CT ,GCT→MRI ,DMRI ,DCT , IMRI , ICT ) = LGAN (GMRI→CT ,DCT , IMRI , ICT )

+ LGAN (GCT→MRI ,DMRI , ICT , IMRI )+ �1Lcyc(GMRI→CT ,GCT→MRI , IMRI , ICT )

+ �2Lidentity(GMRI→CT ,GCT→MRI , IMRI , ICT )

Figure 1.  Outline of proposed U-GAT-IT + MIND process (G, D, and η denote generator, discriminator, and 
auxiliary classifier, respectively). We introduce Cycle loss, which is a comparison within the same domain 
after two rounds of transformation; this is in addition to MIND loss, which is a comparison between different 
domains after one round of transformation.
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where ICT denotes the CT image, IMRI denotes the MRI image, GCT→MRI denotes the generator that generates 
MRI from CT, GMRI→CT denotes the generator that generates CT from MRI, DCT denotes the discriminator 
that discriminates between GMRI→CT (mri) and ct , DMRI denotes the discriminator that discriminates between 
GCT→MRI(ct) and mri , and LGAN denotes the loss that includes G loss and D loss. Lcyc is the cycle loss, and Lidentitiy 
is the identity loss. �1 and �2 denote coefficients of losses.

Finally, the model was trained by reducing the losses using Eq. (5):

U‑GAT‑IT. U-GAT-IT is an unsupervised generative attentional network with adaptive layer-instance nor-
malisation for image-to-image translation, which was developed in 2019. Similar to CycleGAN, U-GAT-IT uses 
the encoder–decoder method for image generation but incorporates the attention module in the discriminator 
and generator and combines them with the adaptive layer-instance normalisation function (AdaLIN) to focus on 
the more important parts of the image. AdaLIN is a normalization method introduced along with U-GAT-IT. It 
allows adaptive selection of the ratio between the commonly used Layer Normalization and Instance Normali-
zation, which is known to be more effective in removing style changes. Combined with the attention-guided 
module, AdaLIN enables flexible control of the amount of change in shape and  texture20.

Generator loss and discriminator loss (Generator and discriminator losses are employed to match the distribu-
tion of the translated images to the distribution of the target images.):

CAM loss represents the loss that is important for the conversion from MRI and CT based on the information 
of auxiliary classifiers ηMRI and ηCT.

CAM losses (By exploiting the information from the auxiliary classifiers ηCT, ηMRI, ηDCT, and ηDMRI, given 
an image from ICT IMRI. GMRI→CT and DCT identify where they need to improve in terms of what makes the 
most difference between two domains.) :

Sum of losses Finally, we jointly trained the encoders, decoders, discriminators, and auxiliary classifiers to 
optimize the final objective:

where L′

GAN denotes the loss that includes G loss and D loss. LGMRI→CT
cam  is the CAM loss of GMRI→CT , LDCT

cam is the 
CAM loss of DCT , Lcyc is the cycle loss, and Lidentitiy is the identity loss. �1, �2, and�3 denote coefficients of losses. 
Finally, the model was trained by reducing the losses using Eq. (10):

MIND. MIND is a modality-independent neighbourhood descriptor for multi-modal deformable registra-
tion reported by Heinrich et al. in  201221. MIND can extract numerical descriptors preserved across modalities 
by extracting local feature structures.

where I denotes the image, n denotes the normalisation constant (so that the maximum value equals 1), and r 
ϵ R defines the region to be calculated; Dp(I , x, x + r) denotes the distance metric between the positions x and 
x + r ; it is expressed by Eq. (12). In this study, we considered r = 9. Calculations were performed by convolution, 
as in previous  studies30. P represents a collection of quantities that shifts the image. In this case, there exist 81 
sets that shift the image from −4 to 4 along the X- and Y-axis directions.

(5)arg min
GMRI→CT ,GCT→MRI

max
DMRI ,DCT

LCycleGAN

(6)
L
′

GAN (GMRI→CT ,DCT , IMRI , ICT ) = Ect∼pdata(ICT )[
(

DCT(ct)
2
]

+Emri∼pdata(IMRI )[
(

1− DCT(GMRI→CT (mri)))2
]

(7)
LGMRI→CT
cam (GMRI→CT , IMRI , ICT ,ηMRI,ηCT) = −(Emri∼p(data)(IMRI )

[

log(ηMRI(mri))
]

+ Ect∼p(data)(ICT )
[log(1− ηCT(ct))])

(8)
LDCT
cam (GMRI→CT , IMRI , ICT ,ηDMRI,ηDCT) = Ect∼p(data)(ICT )

[

(ηDCT(ct))
2
]

+ Emri∼p(data)(IMRI )
[(1− ηDCT(GMRI→CT(mri)))2]

(9)

LU−GAT−IT (GMRI→CT ,GCT→MRI ,DMRI ,DCT , IMRI , ICT ,ηMRI,ηCT,ηDMRI,ηDCT)

= L
′

GAN (GMRI→CT ,DCT , IMRI , ICT )+ L
′

GAN (GCT→MRI ,DMRI , ICT , IMRI )

+�1Lcyc(GMRI→CT ,GCT→MRI , IMRI , ICT )+ �2Lidentity(GMRI→CT ,GCT→MRI , IMRI , ICT )

+�3L
GMRI→CT
cam (GMRI→CT ,GCT→MRI , IMRI , ICT ,ηMRI,ηCT)+ �3L

GCT→MRI
cam (GCT→MRI ,GMRI→CT , ICT , IMRI ,ηCT,ηMRI)

+�3L
DCT
cam (GMRI→CT , IMRI , ICT ,ηDMRI,ηDCT)

+�3L
DMRI
cam (GCT→MRI , ICT , IMRI ,ηDCT,ηDMRI)

(10)arg min
GMRI→CT ,GCT→MRI ,ηMRI,ηCT

max
DMRI ,DCT ,ηDMRI,ηDCT

LU−GAT−IT

(11)IMIND(I , x, r) =
1
n exp

(

−
Dp(I ,x,x+r)

V(I ,x)

)

rǫR,

(12)Dp(I , x, x + r) =
∑

pǫP

(

I
(

x + p
)

− I
(

x + r + p
))2
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The denominator V(I , x) represents an estimation of the local variance, and it can be expressed as

where N denotes the 3-neighbourhood of voxel x. The left image in Fig. 2 presents the original ZTE MRI while 
the corresponding right image presents MIND. The outlines of the body surface, lungs, bones, and blood vessels 
in the lungs were extracted.

MIND loss. By calculating the MIND on two different images and taking the difference between them, MIND 
can be used as a loss that adds constraints to the change in position between them. For CycleGAN and U-GAT-
IT, the difference between the MIND of the image before and after conversion is used as the loss. The MIND loss 
is represented by Eq. (14). In the equation, IMIND(CT , r) is the result of adapting MIND to a CT image pixel by 
pixel.

By incorporating LMIND into the loss of CycleGAN and U-GAT-IT, constraints can be added to the change 
in structure can be added. The loss of CycleGAN and U-GAT-IT with the addition of MIND is expressed by 
Eqs. (15) and (16):

where �MIND denotes a coefficient of MIND loss. Finally, the models were trained by reducing the loss in Eqs. 
(17) and (18):

Experiments
This study conformed to the Declaration of Helsinki and the Ethical Guidelines for Medical and Health Research 
Involving Human Subjects in Japan (https:// www. mhlw. go. jp/ file/ 06- Seisa kujou hou- 10600 000- Daiji nkanb oukou 
seika gakuka/ 00000 80278. pdf). This study was approved by The Ethics Committee at Kobe University Graduate 
School of Medicine (Approval number: 170032) and was carried out according to the guidelines of the commit-
tee. The Ethics Committee at Kobe University Graduate School of Medicine has waived the need for an informed 
consent.

In‑phase ZTE acquisition on PET/MRI. All PET/MRI examinations (n = 150; mean age, 65.9 ± 13.0 years 
; range 19 to 90 years) were performed on an integrated PET/MRI scanner (SIGNA PET/MR, GE Healthcare, 

(13)V(I , x) =
∑

nǫN Dp(I , x, x + n),

(14)

LMIND(GMRI→CT ,GCT→MRI , IMRI , ICT ) = Ect∼p(data)(ICT )
[� IMIND(GCT→MRI(ct), r)− IMIND(ct, r) �1]

+ Emri∼p(data)(IMRI )
[� IMIND(GMRI→CT (mri), r)− IMIND(mri, r) �1]

(15)
LCycleGAN+MIND(GMRI→CT ,GCT→MRI ,DMRI ,DCT , IMRI , ICT )
= LCYCLEGAN + �MINDLMIND(GMRI→CT ,GCT→MRI , IMRI , ICT )

(16)
LU−GAT−IT+MIND(GMRI→CT ,GCT→MRI ,DMRI ,DCT , IMRI , ICT ,ηMRI,ηCT,ηDMRI,ηDCT)

= LU−GAT−IT + �MINDLMIND(GMRI→CT ,GCT→MRI , IMRI , ICT )

(17)arg min
GMRI→CT ,GCT→MRI

max
DMRI ,DCT

LCycleGAN+MIND

(18)arg min
GMRI→CT ,GCT→MRI ,ηMRI,ηCT

max
DMRI ,DCT ,ηDMRI,ηDCT

LU−GAT−IT+MIND

Figure 2.  MRI and the corresponding MIND image.

https://www.mhlw.go.jp/file/06-Seisakujouhou-10600000-Daijinkanboukouseikagakuka/0000080278.pdf
https://www.mhlw.go.jp/file/06-Seisakujouhou-10600000-Daijinkanboukouseikagakuka/0000080278.pdf
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Waukesha, WI, USA) at 3.0 T magnetic field strength. MR imaging of the thoracic bed position was performed 
with the ZTE sequence and was simultaneously acquired with a PET emission scan. No contrast-enhancing 
material was used. Free-breathing ZTE was acquired by three-dimensional (3D) centre-out radial sampling to 
provide an isotropic resolution of 2  mm3, large field of view of 50  cm3, and a minimal TE of zero with the fol-
lowing parameters: TR, ~ 1.4 ms; FA, 1°; 250,000 radial centre-out spokes; matrix size, 250 × 250; FOV, 50.0  cm3; 
resolution, 2  mm3; number of spokes per segment, 512; and approximate acquisition time, 5 min. To minimise 
fat–water chemical shift effects (i.e. destructive interference at fat–water tissue boundaries), a high imaging 
bandwidth of ± 62.5 kHz was used. Furthermore, the imaging centre frequency was adjusted to be between fat 
and water resulting in clean in-phase ZTE images with uniform soft-tissue signal response and minimal fat–
water interference  disturbances33,34.

CT component of PET/CT. The CT component of PET/CT (Discovery PET/CT 690 (GE Healthcare), 
number of scans = 150; mean age, 64.4 ± 13.9 years; range, 12–86 years) was utilised for training the CT data. 
The training data of ZTE and CT were acquired from different patients (unpaired datasets); however, ZTE and 
CT were performed in the same body position (arms down) on the respective scanners. CT was acquired dur-
ing shallow expiratory breath-holding for attenuation correction of PET and acquisition of anatomical details 
with the following parameters: X-ray tube peak voltage (kVp), 120 kV; tube current, 20 mA; section thickness, 
3.27 mm; reconstructed diameter, 500 mm; reconstructed convolutional kernel, soft.

Dataset splitting. Data of thirty cases (20%) were used as the validation dataset, and data of the remain-
ing 120 cases (80%) were used as the training dataset. For each case, unpaired CT and ZTE were used, and no 
manual annotations were performed.

Image postprocessing. ZTE images were semi-automatically processed to remove the background signals 
by using a thresholding and filling-in technique on a commercially available workstation (Advantage worksta-
tion, GE Healthcare) and converted into a matrix size of 640 × 400. To correct the variations in sensitivity and 
normalise the images of ZTE to the median tissue value, the nonparametric N4ITK method was  applied35,36. CT 
images were also modified to remove the scanner beds on the workstation and were converted into the same 
matrix size. The MRI was maintained at the window width and window level stored in DICOM images, whereas 
the CT image was adjusted to a window width of 2000 Hounsfield Unit (HU) and a window level of 350 HU. The 
CT images were then scaled down to an image resolution of 256 × 256 pixels owing to GPU memory limitations.

Model training. All processing was performed using a workstation (CPU: Core i7-9800X at 3.80 GHz, RAM 
64 GB, GPU: TITAN RTX) in all cases of CycleGAN, CycleGAN + MIND, U-GAT-IT, and U-GAT-IT + MIND.

CycleGAN/CycleGAN + MIND. We used a program based on the PyTorch implementation of  CycleGAN37, 
which was modified for DICOM images and MIND calculations. We used values of 10, 0.5, and 20 for �1 , �2 , and 
�MIND , respectively, in CycleGAN + MIND with Adam as the optimiser and a learning rate of 0.0002 up to 1000 
epochs. A radiologist (4 years of experience) visually evaluated the results when the loss reached equilibrium. If 
no corruption of synthesised CT was confirmed for the training and validation datasets, the trained network was 
used for the main visual evaluation described below. Except for �MIND , the hyperparameters of CycleGAN and 
CycleGAN + MIND were the same.

U‑GAT‑IT/U‑GAT‑IT + MIND. We used a program based on the PyTorch implementation of U-GAT-IT20, 
which was modified for DICOM images and MIND calculations. We used 100 for �1 , 100 for �2 , 100 for �3 , 
and 5000 for �MIND in U-GAT-IT + MIND, with Adam as the optimiser and a learning rate of 0.0001 up to 100 
epochs. The results when the loss reached equilibrium and the training data were not corrupted by visual con-
firmation by the radiologist were used for evaluation. Except for �MIND , the hyperparameters of U-GAT-IT and 
U-GAT-IT + MIND were the same.

Visual evaluation. Twenty-one cases of chest ZTE unused for the training and validation datasets were 
prepared as the test dataset. The test dataset did not contain any CT images. The synthesised CTs were calculated 
using CycleGAN, CycleGAN + MIND, U-GAT-IT, and U-GAT-IT + MIND based on axial cross-sectional ZTE 
images of the supraclavicular fossa, central humeral head, sternoclavicular joint, aortic arch, tracheal bifurca-
tion, and right pulmonary vein levels in each case. In this study, the main purpose was the application of PET/
MRI attenuation-correction maps; therefore, it was particularly important to suppress the difference in anatomi-
cal structure during the conversion. For this purpose, four radiologists evaluated the synthesised CT visually, as 
shown below. Before evaluation by the four radiologists, a radiologist (15-year experiments) evaluated the syn-
thesised CT images, and almost all of them were rated as CT-like for CycleGAN, CycleGAN + MIND, U-GAT-
IT, and U-GAT-IT + MIND.

Evaluation of image misalignment after conversion. Visual evaluation was performed by four radiologists (Dr 
A, B, C, and D with 4, 22, 15, and 4 years of experience, respectively). The alignment between the synthesised 
CTs and the original images of the ZTE was visually evaluated for bone structures. When a relatively large defect, 
large displacement, or large deformation of the shape of the bone structures was observed, they were classified 
as having a severe misalignment. When a relatively small defect, small displacement, or small deformation of the 
shape of the bone structures was observed, they were classified as having a minor misalignment. One point was 
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given when a total of 10 or more major misalignments were found in six images; two points when a total of five 
or more major misalignments were found; 3 points when a total of three or more major misalignments or 15 or 
more minor misalignments were found; 4 points when a total of 1 or more major misalignments or 10 or more 
minor misalignments were found; and 5 points for the others.

Statistics. The U-GAT-IT + MIND and other groups were compared using the Wilcoxon signed-rank test to 
evaluate the visual evaluation scores of the four radiologists. The Bonferroni method was used to correct multi-
ple comparisons, and statistical significance was set at p < 0.001.

Results
Synthesised CT. In Figs. 3 and 4, the top images are MRI images, and those in the second to fifth rows are 
the synthesised CTs. Figures 3b and 4b show the fused images obtained from MRI and synthesised CT. The origi-
nal ZTE images were synthesised in grey, and the synthesised CT image was in colour. Figures 3c and 4c show 
cropped images around the humerus in the original MR and fused images obtained from MR and synthesised 
CT. The displacement between the original ZTE images and the synthesised CT, especially in the body contour 
and the bone area, is improved by U-GAT-IT + MIND.

Figure 5 shows the 3D VR bone images of the front and side views composited from the synthesised CT. In 
general, it is extremely difficult or impossible to synthesise these kinds of VR images of bone from MR images.

The upper row of Fig. 6 shows the synthesised CT based on the combination of the proposed method and 
conventional four-tissue segmentation, and the lower row shows the synthesised CT based on conventional 
four-tissue segmentation. The lower row images are clinically used for attenuation correction of PET/MRI. The 
upper row shows bone structures, which could not be synthesised using the conventional synthetic method (the 
lower row).

The upper row shows the combination of U-GAT-IT + MIND and conventional four-tissue segmentation. 
The lower row shows the synthesised CT based on the conventional four-tissue segmentation.

Visual evaluation. The results of the visual evaluation scores are summarised as follows.

• CycleGAN: maximum = 4, minimum = 1, and median = 2 by Dr. A and maximum = 4, minimum = 2, and 
median = 3 by Dr. B, maximum = 2, minimum = 1, and median = 2 by Dr. C, and maximum = 3, minimum = 2, 
and median = 2 by Dr. D

• CycleGAN + MIND: maximum = 4, minimum = 1, and median = 2 by Dr. A and maximum = 4, minimum = 2, 
and median = 3 by Dr. B, maximum = 2, minimum = 2, and median = 2 by Dr. C, and maximum = 3, mini-
mum = 1, and median = 2 by Dr. D

• U-GAT-IT: maximum = 3, minimum = 1, and median = 1 by Dr. A and maximum = 4, minimum = 1, and 
median = 3 by Dr. B, maximum = 2, minimum = 1, and median = 1 by Dr. C, and maximum = 3, minimum = 1, 
and median = 2 by Dr. D

• U-GAT-IT + MIND: maximum = 5, minimum = 3, and median = 5 by Dr. A and maximum = 5, minimum = 3, 
and median = 5 by Dr. B, maximum = 5, minimum = 4, and median = 2 by Dr. C, and maximum = 5, mini-
mum = 4, and median = 5 by Dr. D

Figures 7, 8, 9 and 10 show the distribution of visual evaluation scores by radiologists for CycleGAN, Cycle-
GAN + MIND, U-GAT-IT, and U-GAT-IT + MIND. The boxplot of the scores of the four groups is shown in 
Fig. 11, and the pair-plot is shown in Sup. Figs. 1–4.

The results of the Wilcoxon signed-rank test show that U-GAT-IT + MIND was significantly better than 
CycleGAN, CycleGAN + MIND, and U-GAT-IT. (Dr. A, p < 0.00001, p < 0.00001, p < 0.00001; Dr. B, p = 0.00008, 
p = 0.00008, p < 0.00001; Dr. C, p < 0.00001, p = 0.00008, p = 0.00008; Dr. D, p < 0.00001, p < 0.00001, p < 0.00001, 
respectively). The square indicates the median score. U-GAT-IT + MIND shows a tendency of higher scores 
from all radiologists.

CycleGAN + MIND with high coefficient of MIND loss. The larger the coefficient of MIND loss in 
CycleGAN + MIND, the more collapsed the synthesised CT became, thus distorting its contrast. Figure 12 shows 
the synthesised CTs from CycleGAN + MIND with a high coefficient of MIND loss ( �MIND = 60), which were 
apparently different from those of a normal CT. Thus, the coefficients of MIND loss of CycleGAN + MIND could 
not be increased to the same value as the coefficients of MIND loss of U-GAT-IT + MIND.

Discussion
The combination of U-GAT-IT and MIND can help in image conversion between MRI and CT images with 
smaller misregistration compared to conventional unpaired image transfer (CycleGAN) using unpaired datasets. 
The generation of paired datasets for training is simple for the head, neck, and pelvis regions because changes 
in body position and deformation of organs between different scans are anatomically small, which allows sim-
ple non-rigid registrations to adjust the paired data in the hand, neck, or pelvis regions. However, in the chest 
region, manual annotations or registrations are required to generate the paired datasets, which makes the process 
extremely time-consuming; furthermore, such models lack robustness because of the anatomically complicated 
structures of the chest and significant changes and deformation of the images between scans due to different 
respiratory motions, different scanner-bed shapes, and different body positions, which were the strong motiva-
tors to develop an unsupervised method for image conversion with unpaired datasets in this study. Because the 
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Figure 3.  Original MR and synthesised CT images along with visual evaluation scores for Patient 1. (a) 
Original MR and synthesised CT images. (b) Original MR and fused images obtained from MR and synthesised 
CT. (c) Cropped images around the humerus in the original MR and fused images obtained from MR and 
synthesised CT.
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Figure 4.  Original MR and synthesised CT images along with visual evaluation scores for Patient 2. (a) 
Original MR and synthesised CT images. (b) Original MR and fused images obtained from MR and synthesised 
CT. (c) Cropped images around the humerus in the original MR and fused images obtained from MR and 
synthesised CT.
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annotation of bone structures is not practically possible for the chest region, it is difficult to perform quantitative 
evaluation; hence, visual evaluations were performed.

In this work, we also tried the combination of CycleGAN and MIND; however, the generated images were 
apparently different in contrast to a normal CT when the coefficient of loss by MIND ( �MIND ) was increased to 
the same range as that used for U-GAT-IT + MIND. the CAM loss introduced in U-GAT-IT prevents inconsist-
encies caused by the increase in MIND loss. When the coefficients of CAM loss were reduced without changing 
the other coefficients, the generated images seemed not to be CT-like in contrast, suggesting that the effect of 
CAM loss on the conversion between images was important.

There are some limitations to our study. First, we did not evaluate the effect of the synthesised CT on PET 
accumulation (e.g., changes in SUV) in this study. Further studies are required to confirm this hypothesis. Second, 
our study was conducted with a single PET/MRI scanner at a single institution, and external validation was not 
performed. Because the number of distributed PET/MRI scanners is limited, external validation with multiple 
PET/MRI scanners is difficult. Because both CycleGAN and U-GAT-IT are image conversion techniques based 
on unsupervised learning, the effect of overfitting is expected to be low. Fourth, it was difficult to obtain the 
ground truth after conversion due to the different positions and breathing conditions during PET/MRI and CT 
imaging, and therefore it was difficult to quantitatively evaluate the effect of the synthesised CT on PET. Further 
studies are required to confirm this hypothesis.

Figure 5.  Three-dimensional VR images of bones obtained via synthesised CT; in general, it is extremely 
difficult or almost impossible to synthesise these kinds of VR images of bone from MR images. The 3D 
animation movie is attached as the Supplementary material.

Figure 6.  Synthesised CTs using U-GAT-IT + MIND and the conventional method.
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Figure 7.  Distribution of evaluation scores for four groups by Dr. A.

Figure 8.  Distribution of evaluation scores for four groups by Dr. B.
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Figure 9.  Distribution of evaluation scores for four groups by Dr. C.

Figure 10.  Distribution of evaluation scores for four groups by Dr. D.
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Conclusions
The combination of U-GAT-IT and MIND was effective in preventing anatomical inconsistencies between ZTE 
and synthesised CT and enabled the generation of clinically acceptable synthesised CT images. Our method also 
enables inter-modality image conversion in the chest region, which has been challenging to accomplish up until 
now without using human annotations.

Data availability
Japanese privacy protection laws and related regulations prohibit us from revealing any health-related private 
information such as medical images to the public without written consent, although the laws and related regu-
lations allow researchers to use such health-related private information for research purpose under opt-out 
consent. We utilized the images under acceptance of the ethical committee of Kobe University Hospital under 
opt-out consent. It is almost impossible to take written consent to open the data to the public from all patients. 
For data access of our de-identified health-related private information, please contact Kobe University Hospital. 

Figure 11.  Boxplot of visual evaluation scores (note: small squares indicate the median score). As can be seen, 
the U-GAT-IT + MIND approach demonstrates higher scores by all Drs.

Figure 12.  CT images synthesised using CycleGAN + MIND with high MIND loss coefficient.
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The request for data access can be sent to the following e-mail addresses : hidetoshi.matsuo@bear.kobe-u.ac.jp. 
The other data are available from the corresponding author.
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