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Abstract: Background: Glioblastoma (GBM) remains a major clinical challenge due to its invasive
capacity, resistance to treatment, and recurrence. We have previously shown that ODZ1 contributes
to glioblastoma invasion and that ODZ1 mRNA levels can be upregulated by epigenetic mechanisms
in response to hypoxia. Herein, we have further studied the transcriptional regulation of ODZ1 in
GBM stem cells (GSCs) under hypoxic conditions and analyzed whether HIF2α has any role in this
regulation. Methods: We performed the experiments in three primary GSC cell lines established
from tumor specimens. GSCs were cultured under hypoxia, treated with HIF regulators (DMOG,
chetomin), or transfected with specific siRNAs, and the expression levels of ODZ1 and HIF2α were
analyzed. In addition, the response of the ODZ1 promoter cloned into a luciferase reporter plasmid
to the activation of HIF was also studied. Results: The upregulation of both mRNA and protein
levels of HIF2α under hypoxia conditions correlated with the expression of ODZ1 mRNA. Moreover,
the knockdown of HIF2α by siRNAs downregulated the expression of ODZ1. We found, in the ODZ1
promoter, a HIF consensus binding site (GCGTG) 1358 bp from the transcription start site (TSS) and
a HIF-like site (CCGTG) 826 bp from the TSS. Luciferase assays revealed that the stabilization of
HIF by DMOG resulted in the increased activity of the ODZ1 promoter. Conclusions: Our data
indicate that the HIF2α-mediated upregulation of ODZ1 helps strengthen the transcriptional control
of this migration factor under hypoxia in glioblastoma stem cells. The discovery of this novel
transcriptional pathway identifies new targets to develop strategies that may avoid GBM tumor
invasion and recurrence.
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1. Introduction

Glioblastoma (GBM), a grade IV glioma according to the WHO 2021 classification [1], is
responsible for approximately 50% of all malignant primary tumors of the brain [2]. Despite
multidisciplinary therapeutic approaches such as surgery, chemo- and radiotherapy, and
combined therapies, the patients have a median survival of 14–15 months from diagnosis [3].
Its dismal prognosis makes it an essential public health problem and highlights the need to
identify new therapeutic targets.

It is widely accepted that, in addition to the high intra- and intertumoral heterogene-
ity [4–7] and the relevance of tumor microenvironment [6], glioblastoma stem cells (GSCs)
have a fundamental role in the pathogenesis and recurrence of GBM [4,6]. GSCs have similar
properties to stem cells, such as high plasticity, proliferation, and self-renewal [4,7,8], and,
despite being only a slight proportion of total tumor cells, they have been recognized as key
players in tumor angiogenesis and in the response to hypoxic microenvironments [9–11].
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To this end, hypoxia enhances the migration of GSCs towards the peritumoral parenchyma
and may contribute to the acquisition of chemoresistant mechanisms. Moreover, both
hypoxia and GSCs contribute to generating an immunosuppressive state in the tumor
microenvironment [10].

The infiltration of the surrounding parenchyma by tumor cells is responsible for recur-
rence in gliomas, and it is present in almost 100% of cases of GBM [5,11]. The processes
of migration and invasion are dynamic and include adhesion to components of the ex-
tracellular matrix, the reorganization of the cytoskeleton, and the degradation of matrix
proteins by tumor-secreted enzymes [8]. These processes are regulated by several pathways
including PI3K/Akt, NFkB, Wnt/β-catenin, Rho GTPases, and some transcription factors,
including STAT3 and C/EBPβ [12]. Nevertheless, despite that multiple inhibitors of these
pathways have been developed [9], clinical trials have not yet yielded reliable and clinically
significant results.

Previous studies from our group showed that ODZ1 (also known as teneurin-1,
TENM1), which plays a key role in central nervous system ontogenesis [13], contributes
to promoting the migration and invasion of GBM cells by inducing actin cytoskeletal re-
modeling through RhoA/ROCK activation [12]. We also showed that ODZ1 is upregulated
in GBM cells through a Stat3-mediated pathway activated by IL-6, which is released by
tumor-associated monocytes [10]. In addition, a hypoxic microenvironment regulates GBM
tumor cell migration in part by inducing ODZ1 through hypomethylation of a CpG island
in the ODZ1 promoter [14].

Taking into consideration that the main and best known elements that mediate the
response of cells to hypoxia are the hypoxia-inducible factors (HIF) [15], we wanted to
investigate if they have any role in the transcriptional regulation of ODZ1. Here, we present
novel results showing the increased expression of ODZ1 by the transcription factor HIF2α
in GSCs cultured under hypoxia.

2. Results
2.1. Upregulation of ODZ1 mRNA in Response to Hypoxia Correlates with Increased Protein
Levels of HIF2α

It has been described that HIF2α can be induced in GSCs and is associated with
the maintenance of stem-like properties [16]. The gene silencing of HIF2α compromises
GSC phenotype, induces apoptosis, and inhibits cell growth and angiogenesis [16,17].
Based on this, we studied the role of HIF2α in the expression of ODZ1 in three GSC
cell lines established from the tumor specimens of patients with GBM (G63, G178, and
G196). We cultured GSCs under hypoxia (1% oxygen) or in the presence of HIF regulators
DMOG (a stabilizer of the HIFα protein) and chetomin (a blocker of the HIF pathway).
HIF2α protein levels were upregulated under hypoxia and decreased when cells were
treated with chetomin (Figure 1). In addition, HIF2α protein increased in the presence of
DMOG in normoxia.

The same experimental conditions were used to analyze the mRNA expression of
ODZ1 in all three GSC cell lines (Figure 2A). In all cases, DMOG increased more than
10-fold the levels of ODZ1 in normoxic cells. Similar ODZ1 upregulation was obtained in
GSCs cultured under hypoxia, which was drastically reduced in the presence of chetomin
(Figure 2A). Interestingly, there was a good positive correlation between the protein levels
of HIF2α and the expression of ODZ1 mRNA (Figure 2B).

2.2. Positive Correlation between the Relative mRNA Expression of ODZ1 and HIF2α in GSCs

Classically, it has been considered that hypoxia increases the protein levels of HIFα,
and only a few studies have observed the regulation of HIFα at the mRNA level. Similar to
our previous experiments, GSC cell lines were cultured under hypoxia conditions. In all cell
lines, hypoxia increased HIF2α mRNA more than 3-fold when compared with normoxic
cells (Figure 3A). Consistent with our previous results with HIF2α protein, there was a
positive correlation between the mRNA levels of ODZ1 and those of HIF2α (Figure 3B).
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Figure 1. Expression of HIF2α protein is increased under hypoxic conditions. (A) GSCs were cul-
tured under different conditions, and the HIF2α expression was analyzed by Western blot in total 
cell lysates (a representative image is shown). 1: normoxia; 2: normoxia + DMOG; 3: hypoxia; 4: 
hypoxia + chetomin. (B) Image band quantification by using ImageJ analysis software. Nx: 
normoxia; Hx: hypoxia. Data were normalized to α-tubulin levels. ** p < 0.01. Bars represent mean 
± SEM of three independent experiments. 
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Figure 2. GSCs expressed ODZ1 in response to hypoxia and HIF regulators. (A) GSC cell lines were 
cultured in normoxia (Nx, 21% O2) or hypoxia (Hx, 1% O2) and treated or not with 250 nM chetomin 
or 0.5 µM DMOG. ODZ1 expression was analyzed by qPCR. Data were normalized to G6PD levels. 
* p < 0.05, ** p < 0.01, *** p < 0.001. Bars represent mean ± SEM of three independent experiments. (B) 
Correlation between ODZ1 mRNA and HIF2α protein. Pearson’s coefficient (r); p < 0.001. 

Figure 1. Expression of HIF2α protein is increased under hypoxic conditions. (A) GSCs were
cultured under different conditions, and the HIF2α expression was analyzed by Western blot in
total cell lysates (a representative image is shown). 1: normoxia; 2: normoxia + DMOG; 3: hy-
poxia; 4: hypoxia + chetomin. (B) Image band quantification by using ImageJ analysis software.
Nx: normoxia; Hx: hypoxia. Data were normalized to α-tubulin levels. ** p < 0.01. Bars represent
mean ± SEM of three independent experiments.
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Figure 2. GSCs expressed ODZ1 in response to hypoxia and HIF regulators. (A) GSC cell lines were
cultured in normoxia (Nx, 21% O2) or hypoxia (Hx, 1% O2) and treated or not with 250 nM chetomin
or 0.5 µM DMOG. ODZ1 expression was analyzed by qPCR. Data were normalized to G6PD levels.
* p < 0.05, ** p < 0.01, *** p < 0.001. Bars represent mean ± SEM of three independent experiments.
(B) Correlation between ODZ1 mRNA and HIF2α protein. Pearson’s coefficient (r); p < 0.001.
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Figure 3. Expression of HIF2a mRNA correlates with ODZ1 mRNA levels. (A) GSC cell lines were
cultured under hypoxia, and the expression of HIF2α mRNA was analyzed by qPCR. Data were
normalized to G6PD levels. * p < 0.05, ** p < 0.01, *** p < 0.001. Bars represent mean ± SEM of
three independent experiments. (B) Correlation between ODZ1 mRNA and HIF2α mRNA. Pearson’s
coefficient (r); p < 0.001.

2.3. Knocking Down HIF2α Reduces the Expression of ODZ1 in GSCs

Given the positive correlation between HIF2α and ODZ1 in GSCs, we performed
a gene silencing experiment. The transfection of GSCs with siRNAs specific for HIF2α
reduced at least 2-fold both the mRNA (Figure 4A) and protein (Figure 4B) levels of
HIF2α under hypoxia. Interestingly, the downregulation of HIF2α decreased the mRNA
expression of ODZ1 (more than 2-fold) in hypoxic GSCs (Figure 4C).

To further confirm the transcriptional association between HIF2α and ODZ1 expres-
sion, we analyzed the ODZ1 promoter sequence and found a HIF consensus binding site
(GCGTG) 1358 bp from the transcription start site (TSS) and a HIF-like site (CCGTG) 826 bp
from the TSS. A promoter fragment of 1.4 kb cloned in a luciferase reporter plasmid was
transfected into GSCs, and cells were cultured in the presence or in the absence of HIFα
stabilizer DMOG. As shown in Figure 4D, DMOG increased more than 2-fold the promoter
activity of ODZ1 in normoxic GSCs as determined by luciferase assays.
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Figure 4. Knockdown of HIF2α decreased the expression of ODZ1. (A,B) GSCs were transfected with
siHIF2α or siRNA control and cultured in normoxia (Nx, 21% O2) or hypoxia (Hx, 1% O2) for 48 h.
The expression of HIF2α at the mRNA (A) and protein (B) level was analyzed. 1: negative control
siRNA in normoxia; 2: siHIF2α in normoxia; 3: negative control siRNA in hypoxia; 4: siHIF2α in
hypoxia. Data were normalized to G6PD levels (mRNA) and α-tubulin (protein). * p < 0.05, ** p < 0.01.
(C) Under the same experimental conditions, the mRNA levels of ODZ1 were also quantitated by
qPCR. (D) GSCs were transfected with ODZ1 promoter cloned into a luciferase reporter plasmid
and luciferase activity was analyzed after 48 h in the presence or in the absence of DMOG under
normoxia. pGL2: empty plasmid (control). * p < 0.05. Bars represent the mean ± SEM of three
independent experiments.

3. Discussion

It has been extensively described that hypoxia stimulates the growth and migration of
GSCs. This point may be critical for recurrence since GSCs that remain in the infiltrated
parenchyma after surgery are able to interact with their microenvironment to form a new
tumor. Therefore, the identification of molecular pathways involved in GSC migration
and invasion remains crucial in order to find new therapeutic targets. Based on in vitro
and in vivo experiments, we previously showed that ODZ1 greatly contributes to the
migration and invasion of glioblastoma cells, including GSCs [12]. We also described how
ODZ1 mediates, at least in part, the hypoxia-dependent tumor migration of these cells [14].
We hypothesized that the expression of a gene involved in promoting migration might be
tightly controlled by cancer cells taking advantage of different transcriptional mechanisms.
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Herein, we showed that ODZ1 is transcriptionally regulated by HIF2α, a member
of a family of transcription factors widely known to mediate the response to hypoxia by
inducing the expression of a number of target genes [15]. GSCs cultured under hypoxia
conditions or treated with a stabilizer of the HIFα protein upregulated the expression
of ODZ1. Of note, the expression of ODZ1 mRNA positively correlated with both the
mRNA and protein levels of HIF2α. The classical view of HIF signaling describes the
post-translational stabilization of the alpha subunit and its translocation to the nucleus
and binding to the beta subunit. However, consistent with our result, some authors have
described an increased transcription of alpha subunits under hypoxia [17,18].

The functional relationship between ODZ1 and HIF2α was further studied by knock-
ing down HIF2α. The downregulation of this transcription factor led to decreased mRNA
levels of ODZ1. Taking into account previous work showing that HIF2α promotes the
expression of stem cell markers, including nestin and CD133 [16], it is likely that this
transcription factor might contribute to maintaining the stem cell phenotype of GSCs
and providing a mechanism to allow GSCs to migrate out of hypoxic microenvironments.
We have identified two potential HIF binding sites within the promoter of ODZ1. Luciferase
assays confirmed that ODZ1 promoter was activated in the presence of an HIFα protein
stabilizer. In addition to this HIF2α-mediated transcriptional regulation of ODZ1, we
previously described another mechanism that upregulates ODZ1 in GSCs in response to
hypoxia. Hypoxic microenvironments induced the hypomethylation of a CpG island in the
ODZ1 promoter, resulting in higher levels of ODZ1. Moreover, the mutation of this CpG
island decreased the effect of hypoxia on ODZ1 expression [14]. Interestingly, some authors
have previously described the epigenetic regulation of chromatin as another important
regulatory mechanism of response to hypoxia [19].

The role of HIF1α in regulating several signaling pathways that result in tumor cell
migration has been extensively described in previous reports, and it is widely accepted [20].
Nevertheless, the role of HIF2α in GBM cell migration has been scarcely reported [21]. It is
widely accepted that HIF1α and HIF2α play partially overlapping roles in different types
of cancer cells [22]. However, several reports point out the predominant role of HIF2α in
pathogenic mechanisms in GCSs [17,23].

In conclusion, our results identify HIF2α as a transcriptional regulator of the migration
factor ODZ1 in response to hypoxia, unraveling a novel signaling pathway as a potential
target to avoid GSC migration towards non-hypoxic microenvironments, which may lead
to tumor recurrence. This is in line with the main goals in GBM treatment that include ap-
proaches to overcoming the hypoxia-mediated radio- and chemoresistance and recurrence
of GBM tumors and consequently, the dismal survival of GBM patients. Potential strategies
include decreasing HIF protein expression and stabilization and preventing the binding
of HIF to its consensus sites in the genome, thus inhibiting the expression of target genes.
Whether strategies to block or reduce the expression of ODZ1 have a significant contri-
bution to avoid recurrence of GBM needs further in vitro and in vivo studies. This and
other similar approaches will pave the way towards more personalized management of
this aggressive tumor.

4. Materials and Methods

Primary cell cultures: We used three primary GSC cultures, G63, G178, and G196,
previously established in our laboratory [12,24]. Cells were maintained as stem-like neuro-
spheres in a serum-free DMEM/F12 medium (Invitrogen, Carlsbad, CA, USA) and used
within 10–20 passages. Cells were incubated under hypoxia (1% O2) in a Hypoxia Incubator
Chamber (StemCell Technologies, Vancouver, Canada). When indicated, GSCs were treated
with 0.5 mM DMOG or 250 nM chetomin (both from Sigma-Aldrich, St. Louis, MO, USA).

qPCR analysis: Quantitative RT-PCR was performed, in a 7000-sequence detection
system (Applied Biosystems, Foster City, CA, USA), from total cellular RNA as previously
described [12] We used the following primers: G6PD (5′-ATCGACCACTACCTGGGCAA-
3′; 5′-TTCTGCATCACGTCCCGGA-3′), ODZ1 (5′-ACTCAAGAGATGGAATTCTGTG-3′;
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5′-CTTAGTGCATGGTCAGGTG-3′) and HIF2α (5′-ATGACAGCTGACAAGGAGAAGA-3′;
5′-TGGGCCAGCTCATAGAACAC-3′).

Western blot analysis: Total protein lysates were obtained from GBM cells as de-
scribed [18]. Blots were incubated with antibodies against HIF2α (BL-95-1A2, Bethyl
laboratories, Montgomery, AB, USA) and α-tubulin (sc-23948, Santa Cruz Biotechnology,
Dallas, TX, USA). Anti-rabbit and anti-mouse IgG antibodies conjugated to horseradish per-
oxidase (sc-2357 and sc-51610, Santa Cruz Biotechnology) were used as secondary antibodies.

Luciferase and gene silencing assays: Cells were transfected with ODZ1 promoter
cloned into pGL2-luciferase reporter plasmid and pRSV-β-gal by using nucleofection [14].
After 48 h of transfection, the relative luciferase activity was evaluated by a dual-light re-
porter gene assay (Applied Biosystems). Results were normalized with the values obtained
with pRSV-β-gal.

Cells were transfected with HIF2α siRNA or negative control siRNA (mission siRNA,
Sigma-Aldrich) by using Lipofectamine RNAiMAX Transfection Reagent (Invitrogen,
Waltham, MA, USA).

Stadistical Analysis: Data are presented as mean ± SEM of three independent exper-
iments. Differences between groups were tested by unpaired two-tailed Student’s t-test.
The significance level was set at p < 0.05. All statistical analyses were performed using
GraphPad Prism 5.0 (GraphPad Software, Inc., San Diego, CA, USA).
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