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Abstract

Background: Systematic Reviews (SR), studies of studies, use a formal process to evaluate the quality of scientific
literature and determine ensuing effectiveness from qualifying articles to establish consensus findings around a
hypothesis. Their value is increasing as the conduct and publication of research and evaluation has expanded and
the process of identifying key insights becomes more time consuming. Text analytics and machine learning (ML)
techniques may help overcome this problem of scale while still maintaining the level of rigor expected of SRs.

Methods: In this article, we discuss an approach that uses existing examples of SRs to build and test a method for
assisting the SR title and abstract pre-screening by reducing the initial pool of potential articles down to articles
that meet inclusion criteria. Our approach differs from previous approaches to using ML as a SR tool in that it
incorporates ML configurations guided by previously conducted SRs, and human confirmation on ML predictions of
relevant articles during multiple iterative reviews on smaller tranches of citations. We applied the tailored method
to a new SR review effort to validate performance.

Results: The case study test of the approach proved a sensitivity (recall) in finding relevant articles during down
selection that may rival many traditional processes and show ability to overcome most type II errors. The study
achieved a sensitivity of 99.5% (213 out of 214) of total relevant articles while only conducting a human review of
31% of total articles available for review.

Conclusions: We believe this iterative method can help overcome bias in initial ML model training by having
humans reinforce ML models with new and relevant information, and is an applied step towards transfer learning
for ML in SR.

Keywords: Machine learning, Systematic review screening, Natural language processing, Transfer learning, Machine
learning configurations, Applied case study
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Background
Systematic reviews (SR), studies of studies, use a formal
process to evaluate the quality of scientific literature and
determine ensuing effectiveness from qualifying articles
to establish consensus findings around a hypothesis.
Because SRs involve pooling information, conducting a
SR can result in increased power and reduced bias in
determining effectiveness, increased generalizability of
findings, and can help identify publication trends,
research gaps, and other indicators of importance [1].
Their value is increasing as the conduct and publication
of research and evaluation has expanded and the process
of identifying key insights becomes more time consuming
[2]. Text analytics and machine learning (ML) techniques
may help overcome this problem of scale while still
maintaining the level of rigor expected of SRs.
Where SR methods historically depend on human

resources for each stage of the process. ML is a
computer-based technique that uses statistics and pat-
tern recognition to create models to make predictions
from data to automate processes. One area of SRs that
has seen application of ML is pre-screening title and ab-
stracts for final inclusion in the quality scoring step [3].
In this article, we discuss an approach that uses existing
examples of SRs to build and test a method for assisting
the SR title and abstract pre-screening by reducing the
initial pool of potential articles down to articles that
meet inclusion criteria. This iterative and guided method
is aimed at maintaining sensitivity in finding relevant ar-
ticles during pre-screening, while reducing the number
of articles reviewed compared to traditional SR methods.
We incorporate many of the features of other ML ap-
proaches for SRs to our approach including reinforcing
training data with human reviews of select articles, using
only a small number (< 200) of articles for initial ML
training, and feature engineering of data for improved
performance in selecting articles [4–9]. Our approach
differs from previous approaches to using ML as a SR
tool in that it incorporates testing the proposed process
on previously conducted SRs to guide ML parameters
and configurations, and attempts to optimize the process
of human confirmation on ML predictions of relevant
articles during multiple iterative reviews by selecting
only articles that will ensure sensitivity is reached. We
also incorporate a quality checkpoint and initial deter-
mination of when to stop iterations of ML in the process
to build confidence that a desired sensitivity has been
reached without trusting only the ML effort or reviewing
all articles. This guided method is also meant to be
portable to new SR topics, and not just the ones that
configurations were built upon. To test this, we used
our guided configurations on a new SR need as a case
study to see how our guided configurations perform
on a previously untested topic.

Methods
Common features of the SR process include developing a
research question, developing inclusion criteria, conducting
a literature search, article title and abstract pre-screening,
abstracting articles for analysis, and aggregating results to
generate summary findings [2]. Our ML application efforts
focused on creating efficiency in article title and abstract
pre-screening. We refer to this step as “down selection” -
reducing the initial pool of potential articles that meet in-
clusion criteria. To develop a generalizable ML approach to
down selection, we (1) created a theoretical ML “down se-
lection” process based on goals and constraints of including
ML in a down selection process, (2) established ML config-
uration guides by testing settings with experiment SRs, and
(3) applied the process and ML configuration guides to a
SR conducted by a team of scientists at the Centers for Dis-
ease Control and Prevention (CDC).

Developing a theoretical ML “down selection” process
To operationalize the ML addition to the down selection
process [2], we developed a process based on the
constraints of ML and SRs. The steps in the proposed
process include (1) train ML models and perform ML
predictions; (2) conduct human review of articles
selected by the ML model and determine accuracy of
prediction; (3) incorporate new human reviewed articles
into iterative ML training; (4) random sampling to ensure
performance (Fig. 1).

Step 1—train the ML models and perform ML prediction
Supervised ML algorithms require training data to build
models. These data “teach” the algorithms which articles
meet inclusion criteria, and which do not, facilitating the
creation of a model [10, 11]. Our process aimed to show
that effective training data can come from a small set of
articles that are pre-identified as meeting or not meeting
inclusion criteria. In addition, a small volume (less than 200)
random sampling of articles can be drawn from a keyword
literature search or through unsupervised machine learning
[7]. Iterative training will occur later in the proposed process
after more articles are reviewed to reinforce learning.
In our proposed process, a ML model makes predic-

tions, after training, on combined title and abstract text
review. Through this process, each potential article fed to
the model is given a score of how likely it is to fit inclusion
criteria based on articles in the training data set. Predic-
tion scores are probabilistic ranging from 0 to 1.0, with
1.0 being a perfect match to inclusion examples [12].

Step 2—human review of ML selected articles and
determination
In this step, human reviewers examine articles predicted
by the ML model to fit inclusion criteria. During review,
humans correct the ML prediction by confirming if an
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article met inclusion criteria or did not. From this
process a new training set (human reviewed) is created
for use in a new iteration of training. This iterative train-
ing process is proposed to help improve ML prediction
by expanding training sets and overcoming potential bias
introduced by small training sets in step 1.

Step 3—incorporate new human reviewed articles into
iterative ML training
For each iteration, a new model is trained on the set of
human reviewed articles in step 2 and any previous
training sets. The iterated model is then employed on
the remaining unreviewed articles to determine a new
predictive score. Iterations should continue until the
number of articles predicted as relevant becomes small
and human review does not confirm articles predicted to
be relevant.

Step 4—random sampling to ensure accuracy
After exiting step 3, humans select a random sample of
articles not predicted as relevant by ML to test sensitivity of
the ML process. For our process we suggested a 99%
confidence level sample with a 10% margin of error for cal-
culating the total articles for random sampling to ensure
confidence. We recommend this process to increase confi-
dence that all inclusion articles have been identified.
Humans check this random selection of articles to look for
articles that fit review criteria. If more than one or two arti-
cles are found that fit inclusion criteria, this would indicate
the ML approach has not reached a reasonable sensitivity
and should continue for a new iteration (step 2).

Establish ML configurations for the down selection process
Supervised ML has a superabundant number of configura-
tions for predictive model development. Areas identified
that could have multiple configurations include (a) cleaning

Fig. 1 Flow chart of proposed approach to operationalize machine learning in a down selection process
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text; (b) reducing dimensionality; (c) feature engineering;
(d) developing a training sample; (e) initial algorithm
selection and assessment; (f) creating a soft voting stacked
model; and (g) choosing thresholds for the iterative model-
ing steps. To identify which ML configurations should be
utilized for the proposed ML down selection process we
utilized a hybrid theoretical and results-driven approach by
testing on four previously completed SRs hereby referred to
as experiment SRs. Configurations for steps a, b, c, and d
were selected based on theoretical knowledge, while config-
urations for steps e, f, and g were selected by testing per-
formance of different configurations for each experiment
SR individually.

Step a—cleaning text
From each of the experiment SRs, we performed stand-
ard text cleaning on the combined titles and abstracts
[13], removing numbers and common English words,
and tokenizing words into single and bi-grams. We used
Python’s Natural Language Toolkit (NLTK) version 3.2.4
for this process.

Step b—reducing dimensionality
Because our text cleaning process resulted in a data set
with a large number of rows and columns (a high-
dimensional matrix) that represent the numerical frequency
of token occurrences, we performed dimensionality
reduction [14]. We also manipulated the cleaned data into
a term frequency–inverse document frequency (TF-IDF)
matrix [15]. TF-IDF is a statistical weight, meant to show
importance of a word is to a document and the entire series
of documents in an analysis.

Step c—feature engineering
In ML applications, variables for modeling are often
referred to as “features” of the data. Feature engineering
involves manipulating variables to create new “features”
of the data and is often used to boost predictive
performance [16]. We utilized latent Dirichlet allocation
(LDA) on the reduced TF-IDF matrix to create new fea-
tures based on topics found in the data using a genera-
tive probabilistic approach [17]. Using topics instead of
just word counts as features creates the ability to identify
patterns across articles that does not rely on word token
occurrences. We set the LDA topics at 30 new features
under the theoretical assumption that 30 would reach
topic saturation in the data. We also used truncated
singular value decomposition (TSVD) to perform feature
decomposition—reducing a matrix to its constituent
parts—on the TF-IDF Matrix. This resulted in a con-
densed TF-IDF matrix containing the 50 most significant
features in terms of their representation of the original
data [18]. We also know that a literature search will typ-
ically have few articles returned that will meet inclusion

criteria (imbalanced data). To address this issue, we
applied a Synthetic Minority Over-sampling Technique
(SMOTE), which creates new feature points aimed at
overcoming imbalanced data [19]. We appended the
features derived from the LDA, TSVD, and SMOTE to
the reduced TF-IDF matrix to get our final matrix for
ML modeling.

Step d—developing training sample
Our approach to creating a training set was to mimic
the operational approach we outlined in the proposed
ML “down-selection” process. We assumed that a small
number of articles would be available for training; no
more than 60 with examples from both relevant and
non-relevant articles. Through this, we created our
initial training data through stratified random selection
of the experiment SRs articles, our test data set was the
unreviewed data from experiment SRs.

Step e—initial algorithm selection and assessment
Many ML algorithms for building models exist. We
tested the following algorithms for overall accuracy from
the initial training set: support vector machine (SVM)
with stochastic gradient descent, K-nearest neighbors
(KNN), decision tree binary, SVM with a sigmoidal ker-
nel, gradient boosting classifier, random forest classifier,
and multinomial naive Bayes [20–23]. Python’s scikit-
learn library and the base parameters of these modes
were used for implementing models. From these, we
chose the four models that performed the best in terms
of accuracy (ratio of number of correct predictions to
the total number predictions made) to include in a
stacked ensemble model [24, 25], which combines the
strengths of the best performing models. They were
SVM with Stochastic Gradient Decent, KNN, Decision
Trees, and Sigmoidal SVM.

Step f—compiling into a stacked ensemble model
We used a soft voting ensemble classifier to build
predictive models to overcome any weakness in each
individual model [25]. In a soft voting ensemble, differ-
ent models are given weights that are applied to their
prediction and combined for a final stacked prediction.
We evaluated various weight distributions according to
their area under receiver operating characteristic (ROC)
curves from initial model training (step d) [26]. The
[10–SVM, 1–KNN, 1–Decision Tree, 1–Sigmoidal SVM]
weighting distribution consistently resulted in the high-
est area under the curve of the options tested. As with
individual models, the stacked ensemble model predicts
a value for each article from 0 to 1.0, where values closer
to 1.0 indicate an article being relevant for inclusion.
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Step g—choosing prediction thresholds for iterative
modeling
Prediction thresholds in our scores (0–1.0) can be
changed to influence the selection of volume of articles
for review in iterations (SR down selection step 3) [27].
High thresholds result in lower volumes and vice versa.
By comparing actual results of experiment SR data with
different prediction thresholds, we were able to identify
predictive threshold guides to optimize the selection of
articles for review during iterations. Once we deter-
mined an optimal threshold for an iteration, we tested
multiple thresholds on the next iteration to confirm
sensitivity. We were able to accomplish this because we
had known results and could simulate a human review
(SR down selection step 3). Based on testing of experi-
ment SRs, we found that three iterations, including the
original training round, would reach the optimal trade
off in sensitivity versus percent of articles reviewed based
on a 98% sensitivity goal of finding relevant articles.
From our predictive threshold testing, we used the

weighted average of best thresholds from each experiment
SR as a guide for non-experimental application. These
thresholds are shown in Table 1. These thresholds should
be thought of as guides. Volume of articles selected for re-
view from different thresholds should also be considered
when selecting which threshold to proceed with.
Using these ML configurations, we examined the

percent of total articles needed to reach 95% and 98%
sensitivity of what human reviewers selected for inclusion
in the experiment SRs. On average only 21% of articles
would have to be reviewed to find 95% of what the human
SR selected, while 30% would have to be reviewed to find
98%, including initial training articles (Table 1).

Case study: applying the process and ML configuration
guides
In May of 2018, CDC’s Division of Diabetes Translation
initiated a SR designed to describe the effectiveness of
incentives in increasing enrollment and retention in
chronic disease prevention and management programs.

To initiate our case study, we started with the articles
identified in the CDC SR team’s literature search phase.
A total of 3137 articles were returned from the literature
search (following deduplication across searched data-
bases). We applied the ML down selection process
described above to this same set of 3137 articles. Four
team members participated in the iterative review of ML
selected articles and their inclusion in the SR. Two team
members independently reviewed each assigned abstract.
If there were any conflicts, they were discussed and
resolved. Once the team completed the ML down selec-
tion process, unreviewed article titles were scanned to
determine if our case produced acceptable results when
compared to a traditional approach.

Results
Table 2 shows a breakdown of the articles reviewed
during the ML assisted process and how they compared
to totals after final quality checks.

SR ML down selection step 1
To develop the first iteration of our case study, the CDC
SR team identified a training set of 15 articles that met
inclusion criteria, and 40 that did not. We built the
trained models using the ML configuration approach
identified from the experiment SRs.

SR ML down selection step 2
We examined different prediction thresholds after the
first iteration model predictions. We selected a thresh-
old of 0.4, which resulted in 458 articles as priority for
review. Although lower than the prediction threshold
identified from experiment SRs, the guide threshold
resulted in a number of articles thought to be too low
(250) to produce enough of a robust new training set.
For more information on threshold selection of each
iteration, please view the supplemental material in
Table S1. From the 458 articles, human review identi-
fied 155 as relevant and 303 as not relevant. We added
this new set of human reviewed articles to the initial

Table 1 Average post hoc model performance

Average post hoc model performance

Data set Prediction threshold
for 1st iteration

Prediction threshold
for 2nd iteration

Prediction threshold
for 3rd iteration

Total
articles

% of total human-
reviewed articles
needed to return
95% relevant articles

% of total human-
reviewed articles
needed to return
98% relevant articles

1st SR review 50.0% 20.0% 20% 14,655 19.3% 24%

2nd SR review 50.1% 30.3% 44% 15,234 18.9% 25%

3rd SR review 75.0% 20.0% 20% 7,670 10.0% 34%

4th SR review 70.0% 27.5% 19.5% 1,820 30.0% 41.8%

Weighted
average

57.6% 26.0% 29.5% N/A 20.9% 29.8%
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training articles for the second iteration of model train-
ing and predictions.

SR ML down selection step 3
We examined different prediction thresholds after the
second iteration predictions (Table S1). We selected a
threshold of 0.3 based on experiment SR guides and
number of articles which identified 260 articles as a
priority for review. Human review identified 43 as
relevant and 217 as non-relevant. We added this new set
of human-reviewed articles to the existing training set
for the third iteration of model training and predictions.

Results of third iteration
We examined different prediction thresholds after the
third iteration predictions (Table S1). We selected a
threshold of 0.3 based on experiment SR guides and
number of articles, which resulted in 45 articles as priority
for review. Human review identified no relevant articles.
We added this new set of 45 human-reviewed articles to
the existing training set for the fourth iteration of model
training and predictions.

Results of fourth iteration
During experiment SR testing we found three iterations
to reach an acceptable level of sensitivity performance.
During our case, we ran a fourth iteration to understand
if the newly trained model selected a large number of arti-
cles for review. After reviewing potential inclusion article
volume at different prediction thresholds, we decided to
move on to step 4—reviewing a random sample for an
error check due to small articles volumes at low thresholds.

SR ML down selection step 4
After three training iterations, we identified 2319 cita-
tions as non-relevant. To test for saturation in sensitiv-
ity, we randomly selected 6.7% (155 citations) of these
articles for human abstract review. This created a 10%
margin of error with a 99% confidence level. Results
from the random sample review returned 154 articles
not meeting inclusion criteria and 1 potential article that
met inclusion criteria, which was subsequently identified
as background material and excluded.

As a final sensitivity verification after the ML
process, we conducted a human review of only the ti-
tles of all 2172 unreviewed articles. Of these, we iden-
tified six articles for abstract review. We determined
these were not relevant, which aligned with the ML
process predictions.
Using recognized machine learning performance sta-

tistics to evaluate our approach, we achieved a sensitiv-
ity of 99.5% (213 out of 214) of total relevant articles
while only conducting a human review of 31% of total
articles returned from the search (Table 3). Sensitivity
of the model was paramount to model acceptability, as
a missed relevant article could jeopardize consensus
findings of a full review of results. These results are
consistent with experiment SR results in terms of sensi-
tivity and percent of articles reviewed to reach that
sensitivity.

Discussion and limitations
Our case study was conducted on a topic with a certain
volume of articles for down selection. The question of
efficiency for smaller and larger volume reviews remains
unanswered. ML approaches require not only the
expertise needed for normal SR down selection, but also
the time of persons familiar with the ML process. In
addition, between each iteration, a brief period is needed
for training and applying the ML models. Thus, time
saved by ML exclusion of irrelevant articles may be lost

Table 2 Results for each iteration and random sample

Relevant
training sample
(iteration)

Non-relevant
sample
(iteration)

Threshold
selected
(iteration)

Articles for
review
(iteration)

Relevant
articles
(iteration)

Non-relevant
articles
(iteration)

Total articles
reviewed
(cumulative)

Total articles
not reviewed
(cumulative)

First iteration 15 40 0.4 458 155 303 513 2624

Second iteration 170 343 0.3 260 43 217 773 2364

Third iteration 213 560 0.3 45 0 45 818 2319

Fourth iteration 213 605 Not selected N/A N/A N/A 818 2319

Random sample N/A N/A N/A 156 1 155 974 2163

Table 3 Final results after quality check

Number of
articles

Percent
of total
N (3137)

Total articles reviewed during ML
down selection process

974 31.0%

Total articles not reviewed 2163 69.0%

Total relevant articles meeting
inclusion criteria during ML down
selection process ML–iterative
review only

213 6.8%

Total relevant articles meeting
review after random sampling
error check and iterative review

214 6.8%
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while carrying out technical processes. For a low-volume
down selection, the potential risk of not predicting cor-
rectly with the ML process may not be justifiable given
the skillset and model training time needed. However, it
is likely that the benefits outweigh the risks for high-
volume reviews.
To develop our approach, we trained the model using

data from four completed experiment SRs, each to
answer different questions. This only provided guides for
certain configurations as seen by us choosing different
thresholds during our case study. Our approach could
be fine-tuned using a larger number of completed review
and expanding potential ML options.
Machine learning focused on prediction is a constantly

advancing field through ongoing commercial and aca-
demic investments in Artificial Intelligence (AI) research
and application. At the time of our research, our method
was focused on decision tree, linear discriminate, and
proximity approaches to prediction. Convolution neural
networks start to bring to life theoretical ideas about
human processing of information and are increasingly
being deployed to solve complex problems such as com-
puter vision. However, the process of ML for prediction
in a down-selection process may not require advanced
convolution algorithms or see an improvement in
performance from them. More testing is needed to
determine if deep-learning techniques would improve
performance in ML assisted down-selection prediction.
Ongoing advances in the area of natural language pro-

cessing (NLP) may offer improvement for ML support
for systematic reviews. At the time of our research, our
methods started to approach incorporating conceptual
topics in text through LDA; however, a transformer
method will likely improve ML support for systematic
reviews in terms of accuracy as they have outperformed
on common text analytics and NLP benchmark tasks
compared to n-gram based methods [28]. Transformers
and word-embeddings are becoming common usage at
the time of writing and are bringing to life theoretical
language interpretation to analyze text for conceptual
understand and may feature bi-directional or spatial re-
lationships as learning components.
In the future, it is also possible that the ML-assisted

down-selection approach could be conducted not just
on title and abstract data, but on full-text data. How-
ever, many literature search engine capabilities and
copyright restrictions only allow for a title and ab-
stract review to be conducted without extra monetary
costs. In addition, it will only become easier to apply
more advanced approaches in ML and NLP as many
initiatives on AI have a mission to opensource spread
new best-in-class models or allow the public to use
complex NLP models instead of developing it
themselves.

Conclusions
In this paper, we described the creation and testing of
an approach to use guided ML to support SRs. To our
knowledge, our case study is the first test of ML-
supported SR that incorporates ML guides from previ-
ous reviews and multiple iterative human reviews. This
approach to using guides represents some basic steps to-
wards transfer learning approaches for ML in systematic
reviews. The case study achieved sensitivity in finding
relevant articles that rivals that of traditional SR. We
believe this iterative method can help overcome bias in
initial model training by having humans reinforce
models with new information, however ensuring
multiple reviewers may still be necessary to overcome
human bias in the process. We also think this iterative
approach is applicable to real-world scenarios where
large initial training sets are not likely to be found.
Others can look to our ML configurations as guides, but
more experiments can be done to fine-tune configura-
tions and apply the latest techniques in ML and NLP.
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