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Independent component analysis (ICA) is a widely applicable and effective approach in blind source separation (BSS), with
limitations that sources are statistically independent. However, more common situation is blind source separation for nonnegative
linear model (NNLM) where the observations are nonnegative linear combinations of nonnegative sources, and the sources may
be statistically dependent. We propose a pattern expression nonnegative matrix factorization (PE-NMF) approach from the view
point of using basis vectors most effectively to express patterns. Two regularization or penalty terms are introduced to be added
to the original loss function of a standard nonnegative matrix factorization (NMF) for effective expression of patterns with basis
vectors in the PE-NMF. Learning algorithm is presented, and the convergence of the algorithm is proved theoretically. Three
illustrative examples on blind source separation including heterogeneity correction for gene microarray data indicate that the
sources can be successfully recovered with the proposed PE-NMF when the two parameters can be suitably chosen from prior
knowledge of the problem.
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1. Introduction

Blind source separation (BSS) is a very active topic recently
in signal processing and neural network fields [1, 2]. It is
an approach to recover the sources from their combina-
tions (observations) without any understanding of how the
sources are mixed. For a linear model, the observations are
linear combinations of sources, that is, X = AS, where S is an
r×nmatrix indicating r source signals each in n-dimensional
space, X is an m × n matrix showing m observations in
n-dimensional space, and A is an m × r mixing matrix.
Therefore, BSS problem is a matrix factorization, that is, to
factorize observation matrix V into mixing matrix A and
source matrix S.

Independent component analysis (ICA) has been found
very effective in BSS for the cases where the sources are
statistically independent. In fact, it factorizes the observation
matrix V into mixing matrix A and source matrix S by
searching the most nongaussianity directions in the scatter
plot of observations, and has a very good estimation

performance of the recovered sources when the sources are
statistically independent. This is based on the Central Limit
Theorem, that is, the distribution of a sum (observations)
of independent random variables (sources) tends toward a
Gaussian distribution under certain conditions. This induces
the two serious constraints of ICA to the application of
BSS: (1) the sources should be statistically independent to
each other; (2) the sources should not follow Gaussian
distribution. The performance of the recovered sources with
ICA approach depends on the satisfactory of these two
constraints, and decreases very rapidly when either of them
is not satisfied. However in real world, there are many
applications of blind source separation where the observa-
tions are nonnegative linear combinations of nonnegative
sources, and the sources are statistically dependent to some
extent. This is the model referred to as nonnegative linear
model (NNLM), that is, X = AS with elements in both
A and S nonnegative, and the rows in S (the sources)
may be statistically dependent to some extent. One of the
applications of this model is gene expression profiles, where
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each of the profiles, which is only in nonnegative values,
represents a composite of more than one distinct but partially
dependent sources [3], the profiles from normal tissue and
from cancer tissue. What needs to be developed is an
algorithm to recover dependent sources from the composite
observations.

It is easy to recognize that BSS for NNLM is a
nonnegative matrix factorization, that is, to factorize X
into nonnegative A and nonnegative S, where nonnegative
matrix factorization (NMF) technique is applicable. Several
approaches have been developed on applying NMF-based
technique for BSS of NNLM. For example, we proposed a
method for decomposition of molecular signatures based on
BSS of nonnegative dependent sources with direct usage of
standard NMF [3]; Chichocki and his colleagues proposed
a new algorithm for nonnegative matrix factorization in
applications to blind source separation [4] by adding two
suitable regularizations or penalty terms in the original
objective function of the NMF to increase sparseness and/or
smoothness of the estimated components. In addition, mul-
tilayer NMF was proposed by Cichocki and Zdunek for blind
source separation [5], and nonsmooth nonnegative matrix
factorization was proposed aiming at finding localized, part-
based representations of nonnegative multivariate data items
[6]. Some other researches include the work of Zdunek and
Cichocki, who proposed to take advantage of the second-
order terms of a cost function to overcome the disadvantages
of gradient (multiplicative) algorithms for NMF for tackling
the slow convergence problem of the standard NMF learning
algorithms [7]; the work by Ivica Kopriva and his colleagues,
who proposed a single-frame blind image deconvolution
approach with nonnegative sparse matrix factorization for
blind image deconvolution [8]; and the work by Liu and
Zheng who proposed nonnegative matrix factorization-
based methods for object recognition [9].

In this paper, we extend NMF to pattern expression NMF
(PE-NMF) from the view point that the basis vector is desired
to be the one which can express the data most efficiently. Its
successful application to blind source separation of extended
bar problem, nonnegative signal recovery problem, and
heterogeneity correction problem for real gene microarray
data indicates that it is of great potential in blind separation
of dependent sources for NNLM model. The loss function
for the PE-NMF proposed here is a special case of that
proposed in [4], and here not only the learning algorithm
for the proposed PE-NMF approach is provided, but also
the convergence of the learning algorithm is proved by
introducing some auxiliary function. For speeding up the
learning procedure, a technique based on independent
component analysis (ICA) is proposed, and has been verified
to be effective for the learning algorithm to converge to
desired solutions.

2. Pattern Expression NMF and BSS
for NNLM Model

NMF problem is given a nonnegative n × m matrix V , find
nonnegative n×r and r×mmatrix factorsW andH such that

the difference measure between V and WH is the minimum
according to some cost function, that is,

V ≈WH. (1)

NMF is a method to obtain a representation of data using
nonnegative constraints. These constraints lead to a part-
based representation because they allow only additive, not
subtractive, combinations of the original data. For the ith
column of (1), that is, vi = Whi, where vi and hi are the
ith column of V and H , the ith datum (observation) is a
nonnegative linear combination of the columns of W =
(W1,W2, . . . ,Wr), while the combinatorial coefficients are
the elements of hi. Therefore, the columns of W , that is,
{W1,W2, . . . ,Wr}, can be viewed as the basis of the data V
when V is optimally estimated by its factors.

2.1. Pattern Basis

Let W1,W2, . . . ,Wr be linearly independent n-dimensional
vectors. We refer to the space spanned by arbitrarily non-
negatively linear combination of these r vectors the positive
subspace spanned by W1,W2, . . . ,Wr . Then, W1,W2, . . . ,Wr

is the pattern expression of the data in this subspace, and
is called the basis of the subspace. Evidently, the basis
W1,W2, . . . ,Wr derived from NMF is the pattern expression
of the observation data in columns of V , but this expression
may not be unique. Figure 1(a) shows an example of the
data V which have two pattern expressions of {W1,W2}
and {W ′

1,W ′
2}. Hence, we have the following questions:

which basis is more effective in expressing the pattern of
the observations in V ? In order for the basis to express
the pattern in V effectively, in our opinion, following three
requirements should be satisfied:

(1) the angle between the vectors in the basis should be
as large as possible, such that each data in V is a
nonnegatively linear combination of the vectors;

(2) the angles between the vectors in the basis should be
as small as possible to make the vectors clamp the
data as tightly as possible, such that no space is left
for expression of what is not included in V ;

(3) each vector in the basis should be of the most efficient
in expression of the data in V, and the same efficient
in this expression compared with any other vector in
the basis.

The vectors defined with the above three requirements are
what we call the pattern basis of the data, and the number
of vectors in the basis, r, is called the pattern dimension
of the data. Figures 1(a), 1(b), and 1(c) show, respectively,
the too large between-angle, too small between-angles, and
too unequally important basis situation with {W ′

1,W ′
2} as

basis, where data in Figures 1(a) and 1(b) are assumed to
be uniformly distributed in the gray area while those in
Figure 1(c) are assumed to be nonuniformly distributed (the
data in the dark gray area is denser compared with those in
the light gray area). For these three cases, {W1,W2} is a better
basis to express the data.
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Figure 1: The basis {W1,W2}/{W ′
1,W ′

2} which obeys/violates (a) the first point; (b) the second point; (c) the third point in the definition
of the pattern basis.
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Figure 2: Bar problem solution obtained from NMF: (a) source images, (b) mixed images, (c) recovered images from ICA, and (d) recovered
images from NMF.

Notice that the second requirement in the definition
of the pattern basis readily holds from the constraint of
NMF that the elements in H are nonnegative. Then, we
can get the three constraints as follows: (1) due to the
requirement that the between-angle between each pair of
vectors in the basis should be as large as possible, we have
WT

i Wj→ min, for i /= j, where Wi is the ith column of the
matrix W ; (2) due to the requirement that each vector in
the basis should be equally efficient in expression of the data
in V, while the efficiency of the vector in this expression is
measured by the summation of the projection coordinates
of all the data in V to this vector, that is, samples vj , j =
1, 2, . . . ,n if expressed in the vector Wi, the efficiency of the
vector Wi for expression of vj , j = 1, 2, . . . ,n is

∑n
j=1hji,

we have
∑r

i=1

∑n
j=1hji→ min. Hence, we formulate PE-NMF

problem as minimizing the loss function E(W ,H ;α,β) in the
following equation subject to nonnegativity constraints.

PE-NMF problem

Given an n by m nonnegative observation matrix V, find an
n by r and an r by m nonnegative matrix factors W and H,
such that

min
W ,H

E(W ,H ;α,β) = 1
2
‖V −WH‖2 + α

∑

i, j, j /= i
WT

i Wj

+ β
∑

i, j

hi j , s.t. W ≥ 0, H ≥ 0,

(2)

where W ≥ 0, H ≥ 0 indicates that both W and H
are nonnegative matrices, respectively, Wi is ith column of
matrix W, and hi j is theelement in the ith row and jth column
of the matrix H.

This problem is a special case of the constrained opti-
mization problem proposed in [4]:

min
W ,H

E(W ,H ;α,β) = 1
2
‖V −WH‖2 + αJW (W)

+ βJH(H), s.t. W ≥ 0, H ≥ 0.
(3)

2.2. PE-NMF Algorithm and its Convergence

For the derivation of learning algorithm for W and H, we
first present and prove the following lemma.

Lemma 1. For any r by r symmetric nonnegative matrix Q
and for any r-dimensional nonnegative row vector w, the r by r
matrix

F = δab

(
QwT

)
a

wa
−Q (4)

is always semipositive definite, where δab((QwT)a/wa) repre-
sents a diagonal matrix with diagonal element in the ath row
and ath column being (QwT)a/wa.

Proof. By noticing that wa and wb are nonnegative, the
definition of the matrix F is the same as that of the matrix S in
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which the ath row and bth column element is Sab = waFwb.
Hence, we consider proving the semipositive definition of the
matrix S in the following context.

For any r-dimensional vector V, we have the following
formula:

VTSV =
∑

ab

VaSabVb =
∑

ab

VawaFwbVb

=
∑

ab

[

Vawaδab

(
QwT

)
a

wa
wbVb −VawaQabwbVb

]

=
∑

ab

[

Vawaδab

(
QwT

)
a

wa
wbVb

]

−
∑

ab

VawaQabwbVb

= A− B,
(5)

where A denotes the first term and B denotes the second
term in the above formula. By noticing that Q is a symmetric
matrix, we have (QwT)a = (wQ)a, and hence the first term A
becomes

A =
∑

a

Vawa

(
wQ
)
a

wa
waVa =

∑

a

(
wQ
)
awaV

2
a

=
∑

a

(
∑

b

wbQba

)

waV
2
a =

∑

b

(
∑

a

waQab

)

wbV
2
a

=
∑

ab

waQabwbV
2
a ,

(6)

we substitute the above A into formula (5), and obtain

VTSV =
∑

ab

(
waQabwbVa −waQabwbVaVb

)

=
∑

ab

waQabwb
[
V 2
a −VaVb

]

=
∑

ab

waQabwb

[
1
2
V 2
a +

1
2
V 2
b −VaVb

]

= 1
2

∑

ab

waQabwb
(
Va −Vb

)2
.

(7)

Due to the fact that w and Q are a row vector and a nonneg-
ative matrix, respectively, hence for any r-dimensional row
vector V, we have

VTSV = 1
2

∑

ab

waQabwb
(
Va −Vb

)2 ≥ 0. (8)

Hence, the matrix S and therefore F = δab((QwT)a/wa) − Q
is a semipositive definite matrix.

Now in Theorem 1, we derive learning algorithm and
prove its convergence for updating each row w in W when
H is set to be a fixed nonnegative matrix. The learning
algorithm for updating each column h in H when W is set to
be a fixed nonnegative matrix is depicted in Theorem 2, and
can be proved similarly but skipped due to the limitation of
the space.

Theorem 1. For the quadratic optimization problem,

min
w

E(w;H ,α) = 1
2
‖v −wH‖2 +

1
2
αwMwT , s.t. w ≥ 0,

(9)

where w is an r-dimensional row vector, v is a given m-
dimensional nonnegative row vector, H is an r by m fixed
nonnegative matrix, M is an r by r constant matrix with all
elements being 1 except diagonal elements being zeros, and α is
a fixed nonnegative parameter. The following update algorithm

wt+1
a = wt

a

(
vHT

)
a(

wtHHT + αwtM
)
a

(10)

converges to its optimal solution from any initialized nonnega-
tive vector w0.

Proof. The convergence proof will be performed by introduc-
ing an appropriate auxiliary function F(w,wt) that satisfies

F
(
wt,wt

) = E
(
wt
)
, (11)

F
(
w,wt

) ≥ E(w). (12)

If such a function can be found, then the update of w by
setting

wt+1 = arg min
w

F
(
w,wt

)
(13)

will make

E
(
wt+1) ≤ F

(
wt+1,wt

) ≤ F
(
wt,wt

) = E
(
wt
)

(14)

which always makes the objective function E(w) to be
decreased with respect to iterations in the algorithm, indicat-
ing that the algorithm converges with the updating formula
(13).

Now we construct the auxiliary function to be

F
(
w,wt

) = E
(
wt
)

+
(
w −wt

)∇E(wt
)

+
1
2

(
w −wt

)
J
(
wt
)(
w −wt

)T
,

(15)

where J(wt) is a diagonal matrix

J
(
wt
) = δab

(
HHTwtT + αMwtT

)
a(

wtT
)
a

. (16)

Obviously, F(wt,wt) = E(wt), so formula (11) holds.
The Taylor expansion of the loss function E(w), when w

approaches wt, can be written to be

E(w) = E
(
wt
)

+
(
w −wt

)∇E(wt
)

+
1
2

(
w −wt

)(
HHT + αM

)(
w −wt

)T
.

(17)
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By subtracting F(w,wt) in (8)–(16) to E(w) in (7)–(17), we
have

F
(
w,wt

)− E(w)

= 1
2

(
w −wt

)
[

δab

(
HHTwtT + αMwtT

)
a

(wtT)a

−HHT − αM
]
(
w −wt

)T

= 1
2

(
w −wt

)
[

δab

(
QwtT

)
a(

wtT
)
a

−Q
]
(
w −wt

)T
,

(18)

whereQ = HHT+αM. Due to the fact that Q is a nonnegative
symmetric matrix since H is the nonnegative factor of V,
and α is always a nonnegative parameter, and the fact that
wt is a nonnegative vector, we have, from Lemma 1, that
the matrix δab((QwtT)a/(w

tT)a)−Q is semipositive definite,
and therefore we always have F(w,wt) − E(w) ≥ 0. Hence,
updating w according to wt+1 = arg minwF(w,wt) always
leads the iteration process to converge.

We employ the steepest descent search strategy for
optimal w. For this purpose, we have wt+1 to satisfy
(∂F(w,wt))/∂w|w=wt+1 = 0, from which we get ∇E(wt) +
J(wt)(wt+1 −wt)T = 0, or equally

wt+1T = wtT − J−1(wt
)∇E(wt

)
. (19)

By the definition of the loss function E(w), we have

∇E(wt
) = H

(
HTwt − vT) + αMwtT

= (HHT + αM
)
wtT −HvT.

(20)

Since J(wt) is a diagonal matrix, we only need to compute
inversion of each diagonal element in J for J−1. Hence, we
have the following updating formula for the ath element of
w:

wt+1
a = wt

a −
(
wtT

)
a(

HHTwtT + αMwtT
)
a

·(HHTwtT + αMwtT −HvT)a

= wt
a

(
HvT

)
a(

HHTwtT + αMwtT
)
a

= wt
a

(vHT
)
a(

wtHHT + αwtM
)
a

.

(21)

Theorem 2. For the quadratic optimization problem.

min
h
E(h;W ,β) = 1

2
‖v −Wh‖2 + βITh, s.t. h ≥ 0,

(22)

where h is r-dimensional column vector, v is a given n-dimen-
sional nonnegative column vector, W is an n by r fixed nonneg-

Algorithm parameters: α, β;
Input: an n by m nonnegative observation matrix V ;
Output: an n by r nonnegative matrix W and an r by m
nonnegative matrix H.
Step 1: set t = 0, and generate nonnegative matrix W0 and
H0 at random;
Step 2: Update H from Ht to Ht+1 by

Ht+1 = Ht ⊗
(
Wt
)T
V

(
Wt
)T(

Wt
)(
Ht
)

+ βI
,

Wt+1 =Wt ⊗ V
(
Ht
)T

Wt
(
Ht
)(
Ht
)T

+ αWtM
,

where I is an r by m matrix full of elements being 1s, and M
is an r by r matrix with all elements being 1s except diagonal
elements being zeros.
Step 3: Increment t by t = t + 1 and go to step 2 until Ht+1

and Wt+1 converge.

Algorithm 1: Learning algorithm.

ative matrix, I is an r ×m matrix with all the elements being
1s, and β is a fixed nonnegative parameter. The following rule

ht+1
a = hta

(
WTv

)
a(

WTWht + βI
)
a

(23)

converges to its optimal solution from any initialized nonnega-
tive vector h0.

This theorem can be proved similarly as the proof of
Theorem 1.

By representing (10) and (23) in (elementwise) Had-
amard product, one has the following learning algorithm
for updating both W and H for the PE-NMF optimization
problem in (1).

Theorem 3. For the optimization problem shown in (1), the
above learning algorithm converges to locally optimal solution
from any initialized nonnegative vector H0 and W0.

It is evident that the portion relating to the row w in
the objective function E(W ,H ;α,β) in (1) is just E(w;H ,α)
in (9), and the portion relating to the column h in the
objective function E(W ,H ;α,β) in (1) is just E(h;W ,β) in
(22). Hence, using formula to update w and h alternatively
will make the learning process to converge to the solution
of the objective function E(W ,H ;α,β). Hence, the above
theorem can be easily proved on the basis of Theorems 1 and
2.

The update of the W and H can also be expressed with
MatLab command of W = W.∗(V∗H′)./(W∗H∗H′ +
alfa∗W∗M) and H = H.∗(W ′∗V)./(W ′∗W∗H + beta).

2.3. Initialization of the Algorithm

To our knowledge, it seems that there are two main reasons
for NMF to converge to undesired solutions. One is that
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(a) (b) (c)

Figure 3: Extended bar problem solution obtained from PE-NMF:
(a) source images, (b) mixed images, (c) recovered images from PE-
NMF.

(a) (b)

Figure 4: Recovered images from (a) ICA, and (b) NMF for the
extended bar problem.

the basis of a space may not be unique theoretically, and
therefore separate runs of NMF may lead to different results.
Another reason may come from the algorithm itself, that
the loss function sometimes gets stock into local minimum
during its iteration. By revisiting the loss function of the
proposed PE-NMF, it is seen that similar to NMF, the
above PE-NMF still sometimes gets stock into local mini-
mum during its iteration, and/or the number of iterations
required for obtaining desired solutions is very large. For
the sake of these, an ICA-based technique was proposed
for initializing source matrix instead of setting it to be a
nonnegative matrix at random: we performed ICA on the
observation signals, and set the absolute of the independent
components obtained from ICA to be the initialization of the
source matrix. In fact, there are reasons that the resultant
independent components obtained from ICA are generally
not the original sources. One reason is the nonnegativity
of the original sources but centering preprocess of the ICA
makes each independent component be both positive and
negative in its elements: the means of each independent
component is zero. Another reason is possibly dependent

or partially independent original sources which does not
follow the independence requirement of sources in the ICA
study. Hence, the resultant independent components from
ICA could not be considered as the recovery of the original
sources. Even so, they still provide clues of the original
sources: they can be considered as very rough estimations
of the original sources. From this perspective, and by
noticing that the initialization of the source matrix should
be nonnegative, we set the absolute of the independent
components obtained from ICA as the initialization of the
source matrix for the proposed PE-NMF algorithm. Our
experiments indicate that such an initialization technique is
very effective in speeding up the learning process for getting
desired solutions.

3. Experiments and Results

The proposed PE-NMF algorithms have been extensively
tested for many difficult benchmarks for signals and images
with various statistical distributions. Three examples will be
given in the following context for demonstrating the effec-
tiveness of the proposed method compared with standard
NMF method and/or ICA method. In ICA approach here, we
decenteralize the recovered signals/images/microarrays for
its nonnegativity property for compensating the centering
preprocessing of the ICA approach. The NMF algorithm is
simply the one proposed in [10] and the ICA algorithm
is simply the FastICA algorithm generally used in many
applications in [11]. The examples include blind source
separation of extended bar problem, mixed signals, and
real microarray gene expression data in which heterogeneity
effect occurs.

3.1. Extended Bar Problem

The linear bar problem [12] is a blind separation of bars from
their combinations. 8 nonnegative feature images (sources)
sized 4 × 4 including 4 vertical and 4 horizontal thin
bar images, shown in Figure 2(a), are randomly mixtured
to form 1000 observation images, the first 20 shown in
Figure 2(b). The solution obtained from ICA and NMF with
r = 8 are shown in Figures 2(c) and 2(d), respectively,
indicating that NMF can fulfill the task very well compared
with ICA . However, when we extended this bar problem into
the one which is composed of two types of bars, thin one and
thick one, NMF failed to estimate the original sources. For
example, fourteen source images sized 4 × 4 with four thin
vertical bars, four thin horizontal bars, three wide vertical
bars, and three wide horizontal bars, shown in Figure 3(a),
are nonnegative and evidently statistically dependent. These
source images were randomly mixed with mixing matrix of
elements arbitrarily chosen in [0, 1] to form 1000 mixed
images, the first 20 shown in Figure 2(b). The PE-NMF with
parameter α = 4 and β = 1 was performed on these mixed
images for r = 14. The resultant images, which are shown
in Figure 2(c), indicate that the sources were recovered
successfully with the proposed PE-NMF. For comparison,
many times we tried using ICA and NMF on this problem
for avoiding obtaining local minimum solutions, but always
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Figure 5: Blind signal separation example: (a) 5 original signals, (b) 9 observations, (c) recovered signals from NMF, and (d) recovered
signals from PE-NMF.

failed to recover the original sources. Shown in Figures 4(a)
and 4(b) are the examples of the recovered images with these
two approaches. Notice that both the ones recovered from
ICA and NMF are very far from the original sources, and
even the number of sources estimated from the ICA is only 6,
rather than 14. It is noticeable that the recovered images from
the PE-NMF with some other parameter such as α = 4.2 and
β = 0.1 are comparable to the ones shown in Figure 3(c),
indicating that the proposed method is not very sensitive to
the parameter selection for this example.

3.2. Recovery of Mixed Signals

We performed experiments on recovering 5 nonnegative sig-
nals from 9 mixtures of 5 nonnegative dependent source sig-

nals, which is the one in [4]. The 9 mixture observation sig-
nals come from arbitrarily nonnegative linear combinations
of the 5 nonnegative source signals shown in Figure 5(a).
The difficulty to recover the sources is a very small number
of observations compared with the number of sources. Both
NMF and our proposed PE-NMF (where α and β are taken
to be 0.001 and 17.6, resp.) were employed for recovery of the
sources. By comparison of the resultant signals obtained by
NMF shown in Figure 5(c) and these obtained by PE-NMF
shown in Figure 5(d), it is evident that the PE-NMF can
recover the sources with a higher recovery performance. In
fact, the signal-to-interference ratios (SIRs) for the recovered
sources from NMF is only 22.17, 11.13, 10.98, 14.91, and
14.15 while that from PE-NMF increases to 47.10, 28.89,
26.67, 83.44, and 28.75 for the 5 source signals.
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Observations

(a)
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(b)
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Figure 6: Heterogeneity correction result: (a) observations, (b) recovered sources from PE-NMF, and (c) real sources.
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Figure 7: The scatter plots of the real sources (blue stars) and the recovered sources (red dots) from (a) PE-NMF, and (b) NMF.

3.3. Heterogeneity Correction
of Gene Micrroarrys

Gene expression microarrays promise powerful new tools
for the large-scale analysis of gene expression. Using this
technology, the relative mRNA expression levels derived from
tissue samples can be assayed for thousands of genes simul-
taneously. Such global views are likely to reveal previously

unrecognized patterns of gene regulation and generate new
hypotheses warranting further study (e.g., new diagnostic
or therapeutic biomarkers). However, as a common feature
in microarray profiling, gene expression profiles represent a
composite of more than one distinct but partially dependent
sources (i.e., the observed signal intensity will consist of the
weighted sum of activities of the various sources). More
specifically, in the case of solid tumors, the related issue is
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called partial volume effect (PVE), that is, the heterogeneity
within the tumor samples caused by stromal contamination.
Blind application of microarray profiling could result in
extracting signatures reflecting the proportion of stromal
contamination in the sample, rather than underlying tumor
biology. Such “artifacts” would be real, reproducible, and
potentially misleading, but would not be of biological or
clinical interest, while can severely decrease the sensitivity
and specificity for the measurement of molecular signatures
associated with different disease processes. Despite their
critical importance to almost all the followup analysis steps,
this issue, called partial volume correction (PVC), is often
less emphasized or at least has not been rigorously addressed
as compared to the overwhelming interest and effort in
pheno/gene-clustering and class prediction.

The effectiveness of the proposed PE-NMF method was
tested with real-world data set, microarray gene expression
data set, for PVC. The data set consists of 2308 effective
gene expressions from two samples of neuroblastoma and
non-Hodgkin lymphoma cell tumors [13]. Two observation
microarrays, recovered microarrays from PE-NMF, and two
pure source microarrays are shown in Figures 6(a), 6(b),
and 6(c), respectively. Notice that the true sources are
determined, in our present case, by separately profiling
the pure cell lines that provide the ground truth of the
gene expression profiles from each cell populations. In our
clinical case, we use laser-capture microdissection (LCM)
technique to separate cell populations from real biopsy
samples. By comparison of Figures 6(b) and 6(c), the blind
source separation by PE-NMF method recovered the pure
microarray successfully. Figures 7(a) and 7(b) show the
scatter plots of the recovered microarrays from PE-NMF and
from NMF compared with these of the pure microarrays.
These scatter plots and the SIRs of being 56.79 and 31.73 for
the PE-NMF approach and of being only 21.20 and 32.81 for
the NMF approach also indicate that the proposed PE-NMF
is effective in recovering the sources successfully. Many other
independent trials using other gene sets reached a similar
result.

4. Conclusions

This paper proposes a pattern expression nonnegative ma-
trix factorization (PE-NMF) approach for efficient pattern
expression and applies it to blind source separation for
nonnegative linear model (NNLM). Its successful application
to blind source separation of extended bar problem, nonneg-
ative signal recovery problem, and heterogeneity correction
problem for real microarray gene data indicates that it is
of great potential in blind source separation problem for
NNLM model. The loss function for the PE-NMF proposed
here is in fact an extension of the multiplicative update
algorithm proposed in [10], with the two terms introduced
with parameters α and β, respectively, in which β is for
update rule for the matrix H , which is similar to some sparse
NMF algorithms [14], and α as the regularization term added
to HHT in the update rule for matrix W . The loss function
for the PE-NMF is a special case of that proposed in [4].
However, in this approach, not only the learning algorithm is

motivated by expressing patterns more effectively and more
efficiently, and experimented successfully in a wide range
of applications, but also the convergence of the learning
algorithm is proved by introducing some auxiliary function.
In addition, a technique based on independent component
analysis (ICA) is proposed for speeding up the learning
procedure, and has been verified to be effective for the
learning algorithm to converge to desired solutions.

Same as what has been mentioned in [4], the optimal
choice of PE-NMF parameters depends on the distribution
of data and a priori knowledge about the hidden (latent)
components. However, our experimental results on extended
bard problem indicate that the parameter choice is not so
sensitive to some problems.
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[12] P. Földiák, “Forming sparse representations by local anti-
Hebbian learning,” Biological Cybernetics, vol. 64, no. 2, pp.
165–170, 1990.

[13] J. Khan, J. S. Wei, M. Ringnér, et al., “Classification and diag-
nostic prediction of cancers using gene expression profiling
and artificial neural networks,” Nature Medicine, vol. 7, no. 6,
pp. 673–679, 2001.

[14] M. Mørup, L. K. Hansen, and S. M. Arnfred, “Algo-
rithms for sparse non-negative TUCKER (also named
HONMF),” Tech. Rep., Technical University of Denmark, Lyn-
gby, Denmark, 2007, http://www2.imm.dtu.dk/pubdb/views/
edoc download.php/ 4658/pdf/imm4658.pdf.

http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/4658/pdf/imm4658.pdf
http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/4658/pdf/imm4658.pdf
http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/4658/pdf/imm4658.pdf

	Introduction
	Pattern Expression NMF and BSS for NNLM Model
	Pattern Basis
	PE-NMF problem

	PE-NMF Algorithm and its Convergence
	Initialization of the Algorithm

	Experiments and Results
	Extended Bar Problem
	Recovery of Mixed Signals
	Heterogeneity Correctionof Gene Micrroarrys

	Conclusions
	Acknowledgment
	References

