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Introduction
Influenza A virus (IAV) was responsible for the pandemics in 
1918, 1957, and 1968, killing over 50 million people world-
wide.1 The recent pandemic in 2009 claimed 18 631 lives,2 but 
the total casualty was estimated to be around 10-fold higher.3 
The effort to treat IAV is complicated by a high rate of muta-
tion caused by antigenic shift and antigenic drift4 that enable 
the virus to evade the host immune system and lead to drug 
resistance against effective treatment, for example, the 
Oseltamivir.5 Furthermore, it is difficult to predict which strain 
of IAV will cause the next epidemic, given that IAV subtypes 
are classified based on 18 hemagglutinin (HA) subtypes and 11 
neuraminidase (NA). These problems lead to a persistent 
attempt to predict the next mutation’s characteristics and the 
annual development of new antibiotics to replace antibiotics 
ineffective against new mutations.6

Currently, HA has become an alternative to NA as a popu-
lar target for drug discovery and design. By attaching to the 
viral capsid, the HA receptor recognizes and binds to sialic acid 
decorated receptors of host epithelial cells. After binding to 
sialic acid, HA is cleaved into HA1 and HA2 to facilitate viral 
particle-cell fusion and penetration of IAV into host cells.1 
Since HA is highly expressed on the viral surface, it is an excel-
lent target for drug design. However, drug design targeting HA 
is not straightforward as different subtypes of HA have dem-
onstrated a high level of sequence variability.7 As HA plays a 

crucial role in the ability of IAV to infect cells, we hypothesized 
that HA has to keep a portion of its structure conserved to 
maintain its significant biological role unchanged through 
countless events of mutation. This hypothesis is supported by 
many experimental attempts that managed to identify broadly 
neutralizing antibodies (bnAb) capable of binding to conserved 
regions by X-ray crystallography. Conserved regions were 
found in the receptor binding site8 of the head or region of the 
stem. Clade neutralization was generated by antibody germline 
genes, which give rise to HA stem-directed bnAbs, such as 
VH1-69,9-12 VH1-18,10,13-15 VH3-30,16-18 VH6-1,15,19,20 and 
DH3-9.21 Some bnAbs exert cross-clade neutralization,11,20 
and the ability to develop cross-clade neutralization from 
group 1 or group 2-specific germline precursors was observed 
in 2 clonotypes from VH6-1 of the same donor,22 indicating 
the possibility of cross-clade neutralization through convergent 
evolution and bnAbs obtaining a far broader spectrum against 
influenza A virus. A novel class of antibody effective against a 
broad range of group 1 IAV, established from Turkish patients 
who recovered from H5N1 avian flu infection, was identified 
from phage-displayed combinatorial libraries.8 A group of 
antibodies was found to neutralize multiple influenza subtypes 
(H1, H2, H5, H6, H8, and H9).23 CR6261, the most potent of 
these antibodies, protected mice injected with lethal H5N1 or 
H1N1. A highly conserved helical region in the membrane-
proximal stem of HA1 and HA2 was confirmed to be the site 
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of recognition by CR6261.24 A variety of other antibodies 
cross-linking to multiple subtypes were also discovered.13,16,25,26 
Therefore, a hypothesis can lay the foundation for drug discov-
ery to achieve broad-spectrum anti-HA drugs targeting con-
served regions, hoping to bypass the high divergence of HA 
structure among various IAV strains and guarantee its usability 
as anti-HA drugs in many years and over many strains.

A practical and cheaper alternative to antibodies, peptide 
ligands, presents promising therapy by retaining high affinity 
and selectivity and overcoming multiple delivery challenges 
such as cell permeability, low bioavailability.27 Peptide inhibi-
tors (PI) could be synthesized automatically in a high-through-
put manner, reducing the time and cost of production compared 
to full antibodies.28 Generally, some PIs derived from protein 
segments have shown potential applications in medicine, gene 
expression, and sensor.29-31 In previous studies, peptides derived 
from the amino acid sequences of antibody were proven to 
bind to their designated targets with moderate strength 
(KD = 1.3 µM)31 or influenza HA (KD = 56.8 µM).28 In the 
scope of influenza, linear peptide inhibitors28,32 and circular 
peptide inhibitor32,33 were designed and experimentally proven 
to have broad-spectrum inhibition to HA regions conserved 
across multiple subtypes. These studies open up a new way to 
tackle evolutionary divergence in influenza HA, consisting of 
screening, design, optimization, and characterization of the 
binding positions and binding modes of peptides derived from 
neutralizing antibodies.

The search for the next antibody or PI candidates binding 
to HA conserved region can be effectively aided by computa-
tional methods that are gaining broader interest in recent 
years thanks to the understanding of the structure of the anti-
body34 and recent improvement in docking methods. For 
example, up to 2012, the best success rate in CAPRI was 46% 
on average for top ten performers (the percentage was based 
on the number of cases for which there is at least a correct 
prediction within the 10 models submitted from each partici-
pating group).35 In antibody-antigen docking, a success rate 
(defined as having Cα RMSD within <10 Å) (RMSD: root 
mean square deviation) of up to 80% in the top 10 clusters of 
the lowest energy score of conformation could be achieved by 
incorporating potential asymmetric DARS (Decoys as the 
Reference State) and non-CDR fragment masking (CDR: 
complementarity determining region) into PIPER docking 
algorithm.36 Modeling antibody structure has been exten-
sively developed. For example, antibody modeling was drasti-
cally simplified by discovering that most of the CDR loops of 
antibody (all but H3) fold in a limited number of conforma-
tions called canonical structures.37 Consequently, canonical 
structures can be predicted based on loop length and key resi-
dues within or outside the CDR regions. Notable applica-
tions of computational methods include the in silico design of 
proteins HB38, HB80 (HB: HA binder) capable of recogniz-
ing a hydrophobic patch on the stem region of HA.38 These 

molecules showed moderate to low binding affinity in empir-
ical tests. Computation methods also expanded to vaccine 
design against HA. Computationally Optimized Broadly 
Reactive Antigen (COBRA), an antigen design methodology 
establishing multiple rounds of consensus sequences, was uti-
lized to develop to elicit an immune response against H5 and 
H1 subtypes.39,40 Later years, a “re-epitoping” method had 
been introduced by Guy Nimrod and colleagues for designing 
a reactive antibody on a targeting antigen.41 Or a different 
approach on targeting the membrane fusion region of the 
virus to the host proposed 2 pentapeptides, which are opti-
mistic in action as inhibitors.32 The most recent research by 
our group has an iBRAB protocol to design a broad-spectrum 
Ab/Fab based on structures of available Ab against HA.42 
These researches proved that computational methods could 
be an effective instrument in designing potential therapeutic 
agents. Among therapeutic agents, antibodies hold the advan-
tage of specific binding and eliciting immune response. 
However, there has rarely been any attempt to utilize compu-
tational methods to design antibodies targeting conserved 
regions of HA molecules.

Our research aims to screen and modify the fragment of 
antibodies that can bind to the conserved region on HA to 
construct PIs using computational methods. Our method was 
derived from a procedure to design a hemagglutinin inhibitor 
that has been proven successful,38 with a few simplifications to 
reduce intensive computation. Therefore, our method can be 
routinely applied with low to average computational facilities. 
Such fragments can be CDR, framework regions, or any other 
parts of the variable regions of the anti-HA antibody that are 
found to make contact with HA. The scope of the target was 
limited to H1, H2, and H3 HA subtypes because they all 
caused pandemics in the past and have high transmissibility 
and mortality among the human population. Although H1 and 
H2 share different clade from H3, some bnAbs were discov-
ered to recognize these 3 subtypes.8,20 These facts imply struc-
tural features conserved across these subtypes.

Result
Structural alignment

Alignment by Matt resulted in 190 core residues, core RMSD 
of Cα (RMSD for short) 1.220 Å, raw score 440.673 for HA1; 
and, 32 core residues, core RMSD 0.999 Å, raw score 30.415 
for HA2. Conserved residues, strongly and weakly similar resi-
dues were classified and visualized on ClustalX2 (see 
Supplemental Figure S1). These residues were listed in Table 1. 
The conserved residues were numbered according to the PDB 
fasta file of 1RD8 (1918 H1N1). Only residues totally con-
served in all structures were chosen to be docked against dis-
embodied amino acids in the next step. The conserved residues 
were mapped onto the surface of the H1 protein (PDB ID 
1RD8) and visualized by UCSF Chimera (Figure 1).
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Table 1. Conserved residues, strongly and weakly similar residues structurally aligned by Matt and classified by ClustalX2. Residues were 
numbered as in the 1RD8 sequence to take account of deletion and insertion in the 1RD8 sequence. This numbering scheme also applies to H2 
and H3 HA.

DEGREE OF 
CONSERVATION

AMINO ACID

HA1 HA2

Conserved L59, C64, L71, G72, P74, C76, W84, E89, C97, Y98, P99, D104, Y105, L108, S114, E119, 
W127, G134, A138, C139, F147, W153, Y161, P162, N170, L177, W180, G181, H183, H184, 
P185, Q191, Y195, V204, P215, I217, R220, P221, W234, T235, D241, G249, N250, L251, 
P254, F258

D112, F138

Strongly similar I/V/L66, L/I70, N/D73, D/E77, I/F87, V/I/M88, R/K109, L/V112, S/A113, T/S136, Y/F148, L/
M151, L/I154, S/T167, E/Q/D175, L/I179, V/I182, D/E190, N/Q197, V/I202, S/T206, R/K/Q211, 
E/N216, V/I223, M/I230, L/I236, L/V237, I/L243, F/I245, E/N246, A/S247, I/V252, L/M/I260

N/E/K117, L/V126, K/
E131, I/F/M133, F/M/I140

Weakly similar Q/H/E/D60, K/D/N63, N/S/T65, G/D68, E/H/Q75, S/D85, F/V102, P/T/A128, S/G/D146, N/
R150, K/E/N/H156, S/N/T/K160, S/N/K165, S/D/E/K172, D/N/G/S199, N/S/Q210, A/G218, R/
N224, G/S228, N/E/S231, K/E/D238, T/N248, A/V253

K/E/R121, Q/S125, N/
S129, C/A/137

Figure 1. Conserved residues identified by structural alignment were mapped onto the surface of 1RD8 (H1) and visualized by UCSF Chimera, as seen 

from (A) the front, (B) the top, and (C) the rear. Conserved, strongly and weakly similar residues are labeled red, orange, and yellow, respectively. Most 

structurally conserved/similar residues lay on the HA1 domain.
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Analysis of hotspot residues

Of twenty amino acids, 3 were found to gather in clusters and 
make weak or medium contact with at least 1 conserved resi-
due and some physicochemically similar residues, identified by 
structural alignment, within Van der Waals radius of −2.8 Å 
(equivalent to the length of a row of 4 carbon atoms). The 
hotspot amino acids, nearby conserved or physiochemically 
similar residues and the corresponding docking score were 
listed in Table 2 (see Supplemental Figure S2 for the spatial 
position of the hotspot with respect to the conserved or similar 
residues).

Identifying antibody fragment scaffold and grafting 
hotspot residue into the scaffold

Two clusters of antibody fragments were found to bind close 
to conserved/similar residues on HA: 1 of 1F1 antibody 
(PDB: 4GXU) through contact with conserved amino acids 
Y105, F102, N65, and E89 and the other of 4M5Z through 
contact with conserved/similar amino acids Y105, N65, E89, 
and R109 (Figure 2A and B, Supplemental Table S2). A 
methionine hotspot fits the position of tyrosine numbered 
100 A of the M chain of antibody heavy chain from 1F1 
(Figure 2C). Tyrosine 100 A would be replaced by methio-
nine hotspot as the hotspot would be grafted into the sequence 
of 1F1 antibody fragment.

Modeling antibody structures for grafted antibody 
fragment sequences

Modeled structures of 1F1 grafted antibodies achieved gener-
ally similar DOPE scores (Supplemental Table S3) with an 
average energy score of −21 815.2. The DOPE profiles fol-
lowed a similar pattern and did not differ much from each 
other over the whole range of residues, except at the minima 
and maxima (Supplemental Figure S4). Ramachandran plots 
of all modeled antibody structures showed that most residues 
of each structure fell in the area of proper dihedral angles and 
low energy (Supplemental Figure S5).

Structural comparison of 5 grafted antibody models showed 
little deviation in structures and spatial orientation overall resi-
dues among modeled antibodies, modeled antibody fragments 
compared to the original antibody (Supplemental Figure S3), 
with 228 core residues, core RMSD 0.495 Å for whole anti-
body comparison; 8 core residues, core RMSD 0.149 Å for 
comparison among modeled antibody fragments.

Docking modeled antibody fragment structures to 
the HA

Within the top 20 clusters of lowest docking score, up to 5 
clusters per PI were found binding to conserved residues of H1 
HA close or directly to Y105. Every PI except PI.05 had at 
least 1 cluster bound directly to Y105. The clusters tend to 

Table 2. Hotspot residues were identified to form contact with conserved/similar residues on the HA structure. The hotspot residues were identified 
by docking disembodied amino acids to HA structure 1RD8. The corresponding conserved/similar residues in contact with hotspot residues and the 
docking score are listed in the second and third columns.

HOTSPOT CONSERVED/SIMILAR RESIDUES DOCKING SCORE

Methionine Y105, R109 −218.3

Methionine E89, R109 −213.1

Glutamic acid N170, D241, K172 −175.2

Serine C64, K63, Q60 −104.5

Figure 2. Antibody fragments of 4GXU (A) and 4M5Z (B) were found by docking to make contact with conserved/similar residues of HA. The antibody 

fragment is labeled purple, conserved, strongly, and weakly similar residues are labeled red, orange, and yellow, respectively. (C) Grafting of hotspot 

methionine (green) into antibody fragment on heavy chain M of 4GXU antibody. Tyrosine 100 A to be replaced by the hotspot methionine is marked blue.
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gather around the region consisting of conserved residues N65, 
E89, F102, Y105, and R109. For H2 HA, up to 6 clusters per 
modeled antibody fragment bound either to conserved residues 
consisting of N65, E89, F102, Y105, R109, Q175, L236, and 
D238. PI.01 and PI.04 had 2 clusters that bound directly to 
Y105. In the H3 HA subtype, no contact between methionine 
and Y105 was found within the top 20 clusters of the lowest 
energy score. However, for each modeled antibody fragment, 
up to 12 clusters could be found binding to H3 HA at a posi-
tion closed to conserved residues S114, D175, K238, and 
M260. The clusters of PIs with the lowest score of each sub-
type are shown in Figure 3 and Table 3. For detailed informa-
tion on each PI, see Supplemental Tables S4 to S6.

Discussion
The rationale of our design scheme

Initially, our design scheme was intended to be different from 
other schemes so that our study may offer new data and 
insights. Several peptidic inhibitor design schemes have been 
carried out in recent years, such as the designed cyclic PI named 
P2 to P7 constructed by merging the HCDR3 loop of FI6v3 
with the FR3 frame of CR9114 to target a highly conserved 
hydrophobic groove at the stem (HA2).32,33 Both these schemes 
and ours utilized structural knowledge of pre-characterized 
antibodies and focused on targeting the regions on HA con-
served across various subtypes. Nevertheless, our design scheme 

Table 3. The docking result of clusters of PIs with the lowest docking score for each HA subtype. The PIs were found to form contact with 
conserved/similar residues on the structures of all 3 HA subtypes. The conserved/similar residues of HA structure in contact with PIs and the 
docking score are listed in the fourth and fifth columns.

HA SUBTYPE PI CLUSTER NUMBER CONSERVED/SIMILAR RESIDUES DOCKING SCORE

H1 PI.05 4 N65, Y105, R109, E238 −291.8

H2 PI.05 7 S65, E89, Y105, K109, Q175, W234, T235, L236, D238 −237.3

H3 PI.01 1 S114, K238 −282.8

Figure 3. PIs of lowest docking score (purple) in contact with conserved (red), strongly (orange), and weakly (yellow) similar residues of H1 (A, 1RD8), H2 

(B, 3QQO), H3 (C, 2HMG) HA. The hotspot methionine grafted into the antibody fragment scaffold is colored green.
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has a significant difference that may offer new data and new 
insights. While P2 to P7 were designed to bind to the con-
served epitopes corresponding to their original bnAbs, we 
attempted to identify new potential conserved regions and 
screen for PIs from anti-hemagglutinin antibodies to other 
regions rather than our new conserved regions. We chose struc-
ture alignment on a set of HA structures rather than sequence 
alignment, which many previous studies did to identify new, 
structurally conserved regions. We aimed to discover new PI 
scaffolds by widening the sampling space of multiple anti-
hemagglutinin antibodies’ structures, which will include those 
epitopes and not overlap with any identified conserved regions. 
Then, the procedure was followed by hotspot grafting the 
epitope-binding sections of the antibody to increase the chance 
that the peptide inhibitor derived from that antibody can bind 
to novel conserved epitopes. Our method was not meant to be 
an alternative to the previous design schemes but comple-
mented the original-bnAb-adhering schemes to attain the 
common goal: to achieve a universal influenza therapy based on 
HA conserved regions.

One advantage in the cyclic PI designation, as pointed by 
the authors, is the constraint of peptide backbone by cycliza-
tion, improving the peptidic ligands’ performance against group 
1 HA. More rigid cyclic peptide structures (made possible by 
incorporating nonproteinogenic amino acids) exhibited higher 
complex stability and enhanced binding and neutralization. We 
believe any form of structure stabilization (including cycliza-
tion) is desirable if the following 2s conditions are to be met: 
(1) the region to which the PIs were designed to bind has been 
identified to be conserved and a target for neutralizing anti-
body; (2) the designed PIs should bind only to this conserved 
region. Our structural alignment located new conserved regions 
that have not been observed to be the epitopes of any bnAbs, so 
there is no use in attempting to enhance the binding affinity of 
our PI to our newly found conserved regions through PI 

structure stabilization. The second condition was dropped from 
our consideration after the docking result showed that some 
conserved regions on the HA1 domain, which disembodied 
amino acids frequently clustered around, are close to each other, 
suggesting that our PI may also target conserved regions nearby 
provided the regions are also clustered with disembodied 
amino acids. This scenario is possible as our PI can bind to 
several structurally conserved regions located close to one 
another, depending on the subtypes of HA (Figure 4B). 
Because our conserved regions adopt different shapes, and the 
shape of a region may vary across different subtypes, structure 
stabilization might reduce the flexibility of PI structure, pre-
venting PI from adapting to different shapes of the conserved 
regions nearby. This is shown to be true to our PI and its bind-
ing site on HA: the PI adapts different binding poses and ori-
entations to accommodate the variation of the binding surface 
among different HA subtypes (Figure 5).

A twofold approach was used to make sure the PIs would 
bind to HA in the proximity of conserved residue: first, hotspot 
residues that were screened to determine the ones that could 
make contact with conserved residue were identified, and then 
antibody fragment scaffolds that could bind to the same con-
served residue were identified. More clusters of PI within the 
top 20 clusters were found close to Y105 than the original anti-
body fragment scaffold (1F1) suggested that the PI had a 
higher chance to bind to Y105 than the original scaffold. 
Indeed, in terms of the number of clusters located close to 
Y105, the PIs outranked 1F1 by at most 6 to 1. The only dif-
ference between the PIs and 1F1 is the methionine hotspot, 
indicating that the hotspot played a role in bringing the PIs 
close to Y105. Therefore, the twofold approach was successful 
in the context of this research. Furthermore, this hotspot-graft-
ing approach had been proven successful before.38 It can be 
concluded that there is a certain degree of effectiveness in the 
twofold approach. The best docking scores of PI.05 to H1 and 

Figure 4. Binding position of all modeled PIs (here represented by PI.05 cluster 4) (purple) with respect to regions on HA structure (represented by 

1RD8): receptor-binding site (green), HA1 fusion region (yellow), esterase (tan), and HA2 fusion region (cyan). The conserved/similar residues are 

visualized (A) with respect to HA regions and (B) separately and are marked red if they are located in the esterase region and orange in the receptor-

binding site.
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PI.01 to H3 were favorable as they were relatively close to or 
higher than the score of the original antibody fragment 1F1 
(−287.7).

Moreover, the grafted scaffolds showed a significantly 
higher number of times (among top 20 clusters) of binding 
to HA to the site close to the arch-like cluster, and some 
grafted scaffolds showed a higher number of contact with 
conserved/similar residues than the original scaffold, regard-
less of H1, H2, or H3 subtypes (as compared between 
Supplemental Table S2 and S4-S6). For example, each 
grafted scaffold typically appeared 3 to 6 times among the 
top 20 clusters binding around the arch-like cluster of H2 
(Supplemental Table S5) compared to 1 time of the original 
1F1 antibody fragment (Supplemental Table S2), and each 
cluster of grafted scaffolds formed a contact with 4 to 12 
conserved/similar residues (Supplemental Table S5) rather 
than 3 residues in the case of 1F1 antibody fragment 
(Supplemental Table S2, Supplemental Figure S9). These 
results suggest the hotspot residue could enhance the binding 
affinity to HA, the probability to appear among the top 
results and the breadth of recognition of HA of the original 
scaffold. By assessing docking results, 2 factors matter equally: 
docking score (representing a decrease in free energy) and the 
number of conserved/similar residues of HA in contact with 
PIs. The former was important as energy favorability is cru-
cial to the formation and stability of the binding complex. 
The latter factor dictated the breadth of PIs to recognize con-
served/similar residues across different subtypes. However, 
our docking result showed that these 2 factors did not neces-
sarily go together (Supplemental Tables S4-S6). For example, 
in Supplemental Tables S4 and S5, most clusters binding to 
H1 HA generally had more favorable binding energy 
(reflected by the lower docking score) but fewer conserved 
residues in contact with them than the clusters binding to H2 
HA. One possible explanation is that more conserved/similar 
residues recognized by the PIs cause the IPs to cover a wider 
area, and the energy landscape tends to vary across a wider 
area, resulting in less favorable binding energy.

In terms of modeling, the structures of our PIs generally 
adopted similar conformation to each other and the conforma-
tion of the original antibody fragment scaffold (1F1), as indi-
cated by an RMSD of Cα 0.149 Å and lower than that of the 
whole modeled antibodies. The side chain of methionine hot-
spot of all PIs (PIs) showed different conformations but overall 
pointed outward from the modeled antibody’s surface in 1 
direction (Supplemental Figure S3C), allowing the hotspot to 
be accessible to the conserved residues on the HA molecule. 
Therefore, 5 modeled PIs can be viewed as 1 PI with flexible 
side chains. Ramachandran plots showed that most residues 
fell into the area of no steric clash. Otherwise, the grafted 
Y105M residue can be incorporated into the original 1F1 anti-
body as a way to improve the binding affinity and specificity of 
1F1 to our new conserved residues. If the grafted 1F1 antibody 
is experimentally validated to be superior to the original anti-
body, we would gain a new neutralizing antibody for therapeu-
tic use and immunological studies that identify new B-cell 
lines eliciting similar antibodies. Finally, the new conserved 
region to which improved 1F1 bind would be a potential can-
didate for broad-spectrum vaccine design. However, as a flexi-
ble macromolecule, the antibody would be better validated by 
molecular dynamics than rigid docking.

Identif ication of conserved regions using structural 
alignment

Different structural alignment algorithms adopt different 
mathematical approaches and emphases and produce different 
alignment results from the same batch of data. From this fact, it 
could be inferred that HA is more suitable for 1 algorithm than 
others. Conventionally, algorithms are tested by performing 
alignment with protein families derived from alignment data-
bases. These databases contain groups of protein alignment that 
were manually curated and checked. Common databases for 
structural alignment include HOMSTRAD43 containing the 
alignment of homologous families. SABmark,44 despite its 
focus on sequence alignment, provides pairwise reference 

Figure 5. The binding site of PI.01 (purple) overlaps with the invariant residues (yellow) and synthetic lethal residues (orange) on the B loop that is 

proposed to drastically alter conformation during fusion. Notice the variation in the orientation of the side chains of invariant and synthetic lethal residues 

across (A) H1, (B) H2, and (C) H3 HA and the change in the orientation of PI.01 to adapt to different subtypes.
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structural alignment that can be used to benchmark structural 
alignment algorithms. However, no HA structures were found 
in HOMSTRAD, and a BLAST run on the whole SABmark 
database yielded only 3 HA structures, a sample size too small 
to afford good statistical power. To circumventing this problem, 
the algorithm was selected based on the performance test 
reported in past literature. Berbalk et al45 tested 5 commonly 
used structural alignment algorithms: POSA,46 MultiProt,47 
MASS,48 MUSTANG,49 and Matt50; using SISYPHUS,51 a 
database whose protein members contain many features suitable 
for comprehensive test for the performance of structural align-
ment algorithms: circular permutations, segment-swapping, 
context-dependent folding or chameleon sequences that can 
adopt alternative secondary structures. Matt was ranked the 
best with the median values for the core alignment accuracy 
score of 75.83%.45 Matt (short for “Multiple Alignment with 
Translations and Twists”) utilizes the aligned fragment-pair 
chaining method and allows flexible protein backbone transfor-
mations, enabling the backbone to bend or rotate in order to 
produce optimal alignment.50 Owing to its ability to make a 
structurally impossible twist in alignment, Matt is suitable for 
HA, which shows significant structural variation among IAV 
strains. Furthermore, Matt is a stable program; unlike other 
structural alignment algorithms, Matt was reported to cause no 
technical failures during runtime.45

As the sequences of HA are very diverse, whereas structures 
tend to be more conserved than sequences,52 we believe that 
sequence alignment may not achieve a result that matches the 
result of structural analysis of HA in terms of secondary and ter-
tiary structural levels. To combine structural alignment with scor-
ing matrix from sequence alignment (Gonnet Pam250 matrix) of 
sequence alignment, our group performed structural alignment 
using 3D structural information, bring peptide segments of HA 
with similar secondary or tertiary structural characteristics close 
together to identify structurally conserved regions. Then, we ana-
lyzed the aligned amino acid sequences of the structurally con-
served regions with the aid of ClustalX2 (using its scoring matrix 
and visualization) to locate residue positions that held physico-
chemically similar or conserved amino acids. Note that ClustalX2 
was used not to perform sequence alignment but to visualize the 
degree of conservation (analyzed by the scoring matrix of 
ClustalX2) of each amino acid position.

The result of structural alignment showed that many con-
served residues are buried deep in the core of the HA structure, 
particularly in the case of HA2, while some conserved residues 
of HA1 were located close to the outer environment but par-
tially shielded by neighboring residues. Some residues belong 
to or are located close to regions of special interest, such as the 
receptor binding sites: A138, G134, T/S136 (130 loop); D/
E190, Q191, Y195, N/Q197 (190 helix); P221, V/I223, R/
N224, G/S228 (220 loop).53 Such crucial positions showed 
that the conserved residues employed a clever tactic: by situat-
ing as deep into the core as possible, these residues could pro-
vide structural support to maintain the general structure of HA 

from inside while being shielded from the immune system and 
therapeutic agents.

Most conserved/similar residues were located in the recep-
tor-binding region of H1 HA1 (Supplemental Table S7). 
Esterase ranked second in the number of conserved/similar 
residues. Coming next was the HA2 fusion and, finally, the 
HA1 fusion region. The location of some residues in correla-
tion with special regions of HA implies that some conserved 
residues may play an active part in maintaining the function of 
HA. Conserved/similar residues that are also receptor-binding 
sites, as previously identified,53 included G134, A138, W153, 
H183, P185, T/S136, and G/S228. D/E77 was also previously 
identified as a highly conserved residue that may affect recep-
tor binding specificity.53 This implication is also in agreement 
with the hypothesis that HA must keep a portion of its struc-
ture conserved to maintain its biological role. Some antigenic 
sites hold conserved or physicochemically similar residues: 
E19, W127, P162, S/T167, N/Q197, K/E/N/H156, S/D/E/
K172, R/N224.53 These sites hold promise as future therapeu-
tic targets such as a universal vaccine.

A large portion of conserved residues was exposed on the 
surface of HA (Figure 1). These conserved residues tend to 
cluster together, creating small patches of conserved residues 
scattering throughout the head region, whereas a few patches 
are situated on the stem region. These patches could be a good 
target for the design of new anti-influenza antibodies. On the 
other hand, our conserved/similar residues tend to cluster in 
the head region rather than the stem, which implied a high 
level of structural conservation in the head domain and a low 
degree of structural conservation in the stem domain (Table 1, 
Figure 1 and Supplemental Figure S1). Nevertheless, the head 
domain usually undergoes a higher level of mutations to enable 
immune evasion of IVA while the stem is conserved across sev-
eral pathogenic influenza A subtypes.13 This discrepancy stems 
from the fact that past research focused on sequence alignment 
more than structural alignment, whereas structural alignment 
was emphasized in this research. Consequentially, the result of 
our structural alignment does not necessarily contradict with 
the result of sequence alignment of past literature; instead, our 
finding added a new light to the degree of conservation of 
HA2: HA2 is sequentially conserved (as stated in past litera-
ture) but structurally divergent (as found in our research). It 
means that HA2 of different subtypes may adopt different 
conformations. However, it should be noted that the number of 
HA structures used in this research was low. New structures 
need to be identified in the future to fully grasp the extent of 
structural conservation in the head and the stem region.

A new target for therapeutic design

The result of the final docking step between PI and HA struc-
tures showed that the grafted antibody fragment structures were 
able to bind to conserved residues of HA of 3 subtypes. Notably, 
many clusters were found binding to a recurrent set of 
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conserved/similar residues, such as N65, E89, F102, Y105, 
R109 of the H1 subtype; S114, D175, K238, and M260 of the 
H3 subtype and a combination of conserved regions in the H2 
HA subtype. Such recurrent binding regions imply that the PIs 
have a high chance of being highly specific to these regions. The 
binding part on the H2 subtype is a combination of both H1 
and H3 regions, suggesting that the binding region of H2 shares 
similar characteristics. Altogether, these binding regions com-
prise an arch-like cluster made of residues structurally con-
served/similar among H1, H2, and H3. It should be noted that 
H1 and H2 HA belong to a different clade from H3 HA. Also, 
most known broad-spectrum antibodies were effective against 
only 1 clade, which meant they could only target either both H1 
and H2, or H3 HA. Therefore, this arch-like cluster may be a 
potential target for new antibodies that can cross-react 2 clades.

One notable characteristic of the arch-like cluster is that it 
lies at the intersection of various regions of hemagglutinin: 
receptor-binding site (red), HA1 fusion region (yellow), ester-
ase (orange), and HA2 fusion region (cyan) (Figure 4A) (the 
regions were identified based on H1N1)53; stretching from the 
right side of HA monomer (as viewed from the rear side) to the 
left side of the adjacent monomer (Figure 4B). This intersec-
tion is known to undergo a considerable conformational change 
upon virion-endosome fusion, for example, the shedding of 
HA1 and the reorganization of a buried loop into an exposed 
extended coiled-coil (also known as the spring-loaded mecha-
nism).54-56 Due to being composed of conserved residues and 
situated at a strategic area of fusogenic activity, the arch-like 
cluster may hold a significant role during fusogenic conforma-
tional change. This region can be a novel promising target for 
therapeutic agents, as no known broad-spectrum antibodies or 
inhibitors have bound to this area.

Interestingly, some PI orientations were found to simulta-
neously make contact with the arch-like cluster and a region 
consisting of the B loop connecting 2 helices (Figure 5A) 
which is proposed by the spring-loaded mechanism to undergo 
drastic conformational change during fusion.55 A recent study 
employing over 10 000 HA sequences found multiple invariant 
residues and 2 lethal synthetic residues (represent mutations 
that are lethal to the virus when present together) in this 
spring-loaded region, forming a pocket resistant to mutation 
and an attractive target for small-molecule inhibitors.57 
Therefore, our PI may simultaneously bind to 2 conserved 
regions, one of the arch-like clusters and the other invariant 
residues. This region was a target for designing pentapeptide 
inhibitors. In silico validation method using molecular dynam-
ics and quantum chemistry revealed that the pentapeptide 
blocked the spring-loaded mechanism by binding to the region 
around the B loop and altering the protonation states of key 
residues in the loop.32 Taking together the arch-like cluster, the 
spring-loaded region, and encouraging results from the penta-
peptide and our studies, we hypothesize the newly found arch-
like cluster acts as a seal-able position. Any antibodies or PIs 

that could bind strongly to this conjoined area may act as a 
sealing tape that ties HA1 of different monomers, effectively 
blocking the shedding of HA1 and the exposition of the fuso-
genic HA2 domain.

A simple, light, and fast method for designing 
therapeutic peptides

The scaffold design method implemented by our group relies 
mostly on rigid protein docking. Although the downsides of 
rigid docking, compared to molecular dynamics, is that it dis-
cards the structural flexibility of proteins, it is less computa-
tionally intensive and can be performed all day, in short to 
medium amount of time and on average computers that can be 
found in the market at an affordable price. The encouraging 
results of our study prove that our design method using rigid 
docking can be used to conduct extensive screening or design-
ing of small molecular candidates (such as therapeutic peptides 
of around 10 to 30 residues). Alternatively, rigid docking can be 
performed for a fast, rough global sampling of all possible 
docking poses, which will then be shortlisted for validation by 
molecular dynamics. Such an approach combines the advan-
tages and mitigates the shortcomings of both methods.

Methods
The procedure of this article was derived from a procedure previ-
ously described.38 In brief, HA structures were gathered for struc-
tural alignment to identify conserved residues of HA. Twenty 
types of amino acids (in disembodied form, disconnected from any 
protein structure) were docked against HA to determine the hot-
spot residues. Sample antibody fragments in complex with HA 
were gathered and docked against HA to determine the antibody 
fragment scaffolds that can bind to conserved residues. The hot-
spot residue would be grafted into that antibody fragment 
sequence. Finally, the grafted antibody fragment scaffolds were 
modeled to form PIs, which would then be docked against HA to 
check whether the hotspot residue made contact with conserved 
residues. The procedure was summarized in Figure 6.

Preparing HA structures and antibodies

HA structures were searched from Research Collaboratory for 
Structural Bioinformatics Protein Database (RCSB-PDB) 
with the following criteria: sequence length ranged between 
100 and 450, title contained “hemagglutinin,” the title did not 
have “complex,” “antibody,” “Fab,” “bound,” “epitope,” and 
“receptor” to collect HA native structures which are not in 
complex with any other molecules. The PDB files were ran-
domly collected and sorted into H1, H2, H3 groups. Any PDB 
files that merged chain A and chain B of HA into 1 single 
chain were left out due to the algorithm’s limitation for struc-
tural alignment software (Matt) to distinguish protein chains, 
which will be explained in the next step. Antibody scaffolds 
were selected from antibody structures in complex with HA of 
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H1, H2, and H3 subtypes from PDB. PDB was searched using 
the structure title “hemagglutinin” and “antibody.” Supplemental 
Table S1 listed all PDB IDs of HA structures and anti-influ-
enza antibodies used in this article.

Structural alignment to identify conserved residues

The structural alignment was preferred to sequence alignment 
because the former can exploit structural information, which 
tends to be better conserved than sequence.52 This fact made 
structural alignment a good choice for proteins with high 
sequence variation among various subtypes like HA.

Before alignment, it had been decided to perform separate 
alignment on each HA chain, HA1 and HA2, because Matt 
rejected multiple-chain input; that is, Matt treated each protein 
chain as 1 different protein. As such, HA structures would not be 
aligned against each other as a whole, but rather, HA1 chains 
would be aligned against HA2 chains. An advantage of aligning 
separate domains is that domain-domain alignment might 
achieve a higher level of structural conservation, but not neces-
sarily sequential conservation.

In the form of fasta, the alignment result was visualized by 
simply being loaded on ClustalX258 (no further analysis was 
needed in ClustalX2). ClustalX2 helped classify and visualize 
all residue positions into 3 degrees of physiochemical similar-
ity: conserved residue (marked by asterisk “*”), strongly simi-
lar residue (“:”) and weakly similar residue (“.”). Positions 
with conserved residue contained only 1 type of amino acid, 
while more than 1 type of amino acid was associated with 
strongly and weakly conserved residues. Strongly and weakly 
similar residues are groups with a positive matrix score based 
on the Gonnet Pam250 matrix,59 which results in the residues 
in each group sharing similar physiochemical properties. In 
ClustalX2, the strongly and weakly similar groups were 
defined as having substitution scores higher than 0.5 and less 
or equal to 0.5, respectively. One implication from the Gonnet 
Pam250 matrix score is the degree of conservation of the 
physiochemical property, and thus the degree of conservation 
of each residue decreases from conserved to strongly and, 
finally, weakly similar residue. Only conserved residues were 
collected to identify hotspot residues to increase their reliabil-
ity. When hotspot residue forming contact with a conserved 

Figure 6. Overview of the design of PI to be employed in this paper.
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residue of HA structure was found, the hotspot residue would 
be further analyzed for contact with strongly and weakly sim-
ilar residues nearby.

Identifying hotspot residue

Hotspot residues contribute to binding more than other resi-
dues in the same binding interface.60 Each disembodied 
amino acid was docked against the HA structure using Hex 
8.0.61 Hex docked protein based on rigid-body, shape com-
plementarity, and refines docked complexes by electrostatic 
potential. Docking parameters of Hex were set as default, 
with the exceptions listed as follows: correlation type 
“Shape+Electro” (corresponding to hydrophobic energy and 
electrostatic energy, respectively), Post Processing “OPLS 
Minimization” (Newton-like energy minimization and “soft” 
Lennard-Jones and hydrogen bond potentials adapted from 
the OPLS force-field parameters and explicit charge-charge 
electrostatic contribution); solutions 50 000; clustering 
RMSD was set 1.5 Å for docking small amino acids, and 
3.0 Å for antibody scaffold, because docking of small mole-
cules is more effective at smaller RMSD of Cα, as noted by 
the authors of Hex (for more information, see Hex user 
manual at http://hex.loria.fr/manual800/hex_manual.pdf ). 
Crystal structure 1RD8 (1918 human H1 HA) was chosen 
as a receptor from this step and other docking steps. Docking 
results were narrowed down to the top 200 clusters, because 
the energy score of the 200th ranked cluster is usually 20% to 
33% greater than the 1st ranked cluster, which has the lowest 
docking score. This shortlisting would increase the chance to 
collect clusters with a high probability of forming contact 
with HA structure in terms of free energy. Any disembodied 
amino acids that were either not located close to the con-
served residues or not among the top 200 clusters were elimi-
nated. The contact (polar, hydrophobic, or clash) between 
hotspots and conserved residues was analyzed by UCSF 
Chimera software,62 with van der Waals radii set at −2.8 Å 
(equivalent to the length of 4 carbon atoms in a row).

Identifying antibody fragment Scaffolds

Since Hex cannot distinguish antibody fragment regions 
from other parts of the antibody structure, the antibodies 
would be docked against HA arbitrarily, irrespective of anti-
body fragment regions. To alleviating this problem, atomic 
coordinates of antibody fragment regions were extracted from 
the contact interface of HA-antibody complexes within a van 
der Waals radius of −2.8 Å with the help of UCSF Chimera. 
The extraction was done by copy-pasting the atomic coordi-
nates of the antibody fragment (thus preserving the arrange-
ment of atoms in the antibody fragment structure) from the 
PDB file of HA-antibody complexes into a separate, newly 
formed PDB file. Instead of docking the whole antibody, 
antibody fragment regions were docked against HA, as if 

non-antibody fragment regions of the antibody had been 
masked. Docking results were narrowed down to the cluster 
with the energy score that was up to 20% greater than that of 
the first ranked cluster.

Grafting hotspot residue into antibody fragment 
scaffold

When Hex found any antibody fragment region located close 
to any conserved residues, the atomic coordinates of antibodies, 
hotspot residues, and sample antibodies were merged into 1 
single PDB file. The file was then inspected by the RasMol 
tool to see if any hotspot residues overlapped with residues of 
antibody fragment regions. If overlapping happened, new anti-
body fragment sequences would be formed by replacing those 
overlapped residues of antibody fragment regions with the hot-
spot residues.

Predicting the structure of the PIs

PIs were modeled from the grafted antibody fragment sequence 
based on homology modeling by Modeller.63 The grafted hot-
spot residue was incorporated into the sequence of initial anti-
body structures from which the grafted antibody fragment 
sequence originated, then that antibody would be used as the 
template for modeling grafted antibody. The quality of the 
models was checked by comparing the DOPE score (Discrete 
optimized protein energy) by GNUPlot,64 Ramachandran 
plot65 of the Visual Molecular Dynamics (VMD) tool,66 and 
structurally comparison by Matt. Finally, atomic coordinates of 
the structures of PIs were extracted from the antibody frag-
ment of the grafted antibody structure to perform docking in 
the final step.

Docking PIs to HA

PIs were docked against the representative HA structure of 
H1, H2, and H3 (1RD8, 3QQO, and 2HMG, respectively). 
For each PI structure, twenty clusters with the lowest docking 
score were checked for interaction with HA structures by 
UCSF Chimera.

Conclusion
Our research managed to identify the hotspot residues and 
model grafted antibody fragment structures into peptide 
inhibitors with a high probability of contacting conserved or 
physiochemically similar residues on the HA structures of 
subtypes H1, H2, and H3. We drew attention to an arch-like 
cluster on HA composed of conserved/similar residues at the 
intersection of various regions of HA and stretching through 
the heads of adjacent HA monomers. This article consolidates 
the potential and affordable application of hotspot residues 
and antibody fragment scaffolds in designing PIs to treat 
other diseases.

http://hex.loria.fr/manual800/hex_manual.pdf
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