
RESEARCH ARTICLE

High abundance of ArfGAP1 found in the

mossy fibers in hilus of the dentate gyrus

region of the mouse brain

Sergiy Chornyy1☯¤*, Anna Parnis1‡, Michael Shmoish2‡, Dan Cassel1☯

1 Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel, 2 Bioinformatics Knowledge

Unit, Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion-Israel Institute of

Technology, Haifa, Israel

☯ These authors contributed equally to this work.

¤ Current address: Department of Psychology, Haifa University, Haifa, Israel

‡ These authors also contributed equally to this work.

* sch_1982@yahoo.com

Abstract

The Arf GTPase-activating protein ArfGAP1 and its brain-specific isoform ArfGAP1B play an

important role in neurotransmission. Here we analyzed the distribution of ArfGAP1 in the

mouse brain. We found high levels of ArfGAP1 in the mouse dentate gyrus where it dis-

played especially elevated level in the polymorph layer (hilus). Importantly, the ArfGAP1 sig-

nal follows the pathway of the granular cell axons so-called mossy fibers which extend from

the dentate gyrus to CA3 via stratum lucidum and partially stratum oriens. Additionally, we

identified differential expression of ArfGAP1 in the isocortex. Thus, staining with anti-Arf-

GAP1 antibodies allows distinction between cortical cell layers 1, 2, 3 and 5 from 4 and 6.

Taken together, our data suggest that ArfGAP1 can be used as a specific marker of the den-

tate mossy fibers and as for visualization of cortical layers in immunohistochemical studies.

Introduction

ADP-ribosylation factor GTPase-activating protein 1 (ArfGAP1) is a well-known regulator of

vesicle cycling through the Coat Protein Complex I (COPI) system that mediates retrograde

Golgi to ER transport [1]. The ArfGAP1 protein is ubiquitously expressed in many tissues with

the highest level found in liver and brain. Our previous studies demonstrated that the major

ArfGAP1 isoform in the rat brain (ArfGAP1B) contain an in-frame insertion of 10 amino

acids after residue 239, and a deletion of 22 amino acids after ArfGAP1 residue 259. These

insertion/deletion regions might function as alternative Golgi localization determinants [2] or

may have yet undetermined regulatory functions in the brain.

Protein trafficking in neurons plays essential roles in the establishment and maintenance of

cell morphology and synaptic function. Recent findings indicated that ArfGAP1 plays a role in

trafficking in neurons that may differ from its function as a COPI regulator. Thus, it was

found that ArfGAP1 can regulate trafficking and targeting of the GABA transporter-1 in the

axonal terminals [3]. More recently, ArfGAP1B was found to function as a regulator of
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neurotransmission via the formation of tripartite AP-1/σ1A-ArfGAP1-Rabex-5 complexes [4].

Taken together, the aforementioned research suggests that ArfGAP1B might be an essential

regulator of a variety of brain functions including nerve cell secretion, signaling, neurotrans-

mission and neurodegeneration. Here, we carried out a morphological study aimed at reveal-

ing how ArfGAP1 is distributed among different regions of the mouse brain.

Materials and methods

Animals and sample preparation

Experiments involved mouse brain tissues preparations were conducted using brains extracted

from corps of eight-week-old naïve adult males CD1 mice, which had not received any special

treatment or stress, and kindly donated for our investigation by Prof. Cohen, Technion, Biology

Department, Haifa, Israel. Prior performing our experiments, we had consulted with the Institu-

tional Animal Care and Use Committee (IACUC) of the Technion, Haifa, Israel and confirmed

that a special approval for the usage of mice corpses was not required. All ethic procedures

involving housing, handling and euthanizing animals were carried out in the Laboratory of Prof.

Cohen in accordance with their IACUC approved protocol. After brains were removed from the

skull, they were washed with ice-cold phosphate-buffered saline (PBS) followed by 4% parafor-

maldehyde fixation and overnight incubation in 30% sucrose in PBS. Brains were stored in OCT

(Tissue-Tek, Netherlands) at -20˚C and sectioned on a CM1860cryostat (Leica biosystems, Ger-

many) at 30 μm followed by immunohistochemical processing. For protein analysis, several

brain regions were immediately isolated from mice brains without fixation and carefully cleaned

in ice-cold PBS followed by protein extraction.

Immunohistochemistry

Brain tissue sections were washed in ice-cold PBS, incubated in 1% NaBH4 for 15 min to

decrease autofluorescence, and permeabilized in TBST (PBS with 0.3% v/v Triton X-100) for

30 min followed by incubation for 2 hrs in blocking buffer containing 5% w/v bovine serum

albumin (BSA, Sigma-Aldrich), 5% v/v goat serum (Sigma-Aldrich) and 5% w/v normal don-

key serum (Jackson ImmunoResearch) in PBST. Sections were immunostained with rabbit

anti-ArfGAP1 (1:400, ab183746, AbCam, UK), rabbit ArfGAP1 antibodies against the inser-

tion peptide that is present in the brain/heart isoforms previously generated by us [2] (1:400),

mouse anti-ZnT3 (1:100, Synaptic Systems, France), mouse anti-GFAP (1:500, Millipore,

USA) overnight at 4˚C, washed with PBS and incubated for 1 hr with appropriate secondary

antibodies (1:400, Alexa-488 conjugated anti-rabbit and CY3 conjugated anti-mouse from

Jackson Immuno Research, USA). Sections were then washed in PBS, incubated with DAPI (1

mg/ml, Sigma-Aldrich) for 5 min or NeuroTrace™ 530/615 for 2 hrs (1:50, Thermofisher Sci)

followed by washing in water, and mounted on glass slides. Images were acquired using a

Nicon A1-R confocal microscope for whole-brain mapping of ArfGAP1 localization (coronal

view, bregma -1,94 mm and sagittal view, lateral 1.68 mm) and a Zeiss LSM 700 laser scanning

confocal microscope (Germany) for more detailed analysis (coronal view bregma -1.94) at

10X.

Western blot assay

Proteins were extracted from 100 μg of brain tissue after homogenization using 100 μl of

20mM Tris-HCl buffer (pH 7,5), sonicated (Misonix Sonicator, USA), centrifuged and protein

concentration in the supernatant was assayed using the Nano Drop ND-1000 spectrophotome-

ter (Thermo Fisher Scientific, USA). Aliquots of the extract containing 50 μg protein were
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separated by reducing SDS-PAGE (10%) and electroblotted onto nitrocellulose membranes.

The blots were blocked by using 0,2% EZ-block solution (Biological Industries, USA) in PBS

Tris-buffered salt with Tween-20 (PBST). The blots were incubated overnight at 4˚C with rab-

bit anti-ArfGAP1 antibody (1:1000, ab183746, AbCam, UK) and rabbit ArfGAP1 antibodies

against the insertion peptide that is present in the brain/heart isoforms previously generated

by us [2](1:3000), then incubated in goat-anti-rabbit secondary antibody-conjugated horserad-

ish peroxide (1:2500, Sigma-Aldrich). Proteins were visualized by chemiluminescence using

the Clarity Western ECL Substrate (Bio-Rad Laboratories, USA). To ensure even loading of

the samples, the same membrane was probed with rabbit anti-GAPDH antibody (1:1000,

AbCam). The analysis was performed by Image Quant LAS 4000 (GE HealthCare Life Science,

USA). The intensity of the ArfGAP1 band in each sample was normalized relative to GAPDH.

Statistical analysis

Linear regression analysis was performed using Excel (Microsoft). Quantification of Western

Blot data was conducted using Prism (GraphPad, USA). Data correspond to means ± SEM,

n = 3.

Results and discussion

To identify the ArfGAP1 distribution among different mouse brain regions, we performed an

immunohistochemical analysis of the mouse brain using a commercial antibody recognizing

all ArfGAP1 variants (ab183746, AbCam). Examination of the mouse brain showed high abun-

dance of ArfGAP1 in the dentate gyrus (DG) and moderate level in the isocortex (IsoCtx)

compared to other regions (Fig 1A and 1B). The ArfGAP1 levels looked similar in both hemi-

spheres. However, ArfGAP1 was not detected in most of the areas were the fibers tracts are

spanning. Within the DG, ArfGAP1 displayed especially elevated level in the polymorph layer

(hilus) and was absent in the granule cell bodies (Fig 2). Interestingly, the ArfGAP1 signal fol-

lows the pathway of the DG granule cell axons so-called mossy fibers. The mossy fibers extend

from the DG to CA3c and partially CA3b areas through suprapyramidal bundle in stratum

lucidum together with intra- and infrapyramidal projection located mainly in stratum oriens

(Fig 2B). We identified these projections in both coronal and sagittal brain tissue sections (Figs

1 and 2).

In the IsoCtx, we found diverse levels of ArfGAP1 immunoreactivity. The most intense

staining among all areas was observed in the sagittal plane such as the visual and posterior

parietal association areas (PTLp) that have higher abundance compare to the somatosensory

(SS) and somatomotor (MO) areas (Fig 1B). In contrast, the other areas of the IsoCtx have low

level of abundance. In addition, we detected separation of ArfGAP1 staining in the cortical lay-

ers. Thus, layers 1, 2, 3 and 5, have higher signal than layers 4 and 6a, while the layer 6b has an

absent or very low immunoreactivity of ArfGAP1 as seen in both the coronal and sagittal

planes (Fig 1A and 1B) and using Nissl staining (Fig 1C).

Functionally, layers of the IsoCtx can be divided into three parts: the supragranular layers

1–3, the internal granular layer 4 and the infragranular layers 5 and 6 [5]. Layer 1 has very few

neurons and cells and are mainly composed of dendrites and axons that extend from lower lev-

els of the IsoCtx, while layer 2 contains granular cells and small pyramidal cells. Glanule cells

and transverse fibers are most prominent in layer 4. In contrast, layers 3 and 5 consist mostly

of pyramidal cells. Moreover, layer 5 contains giant pyramidal cells (Betz cells) which are the

largest excitatory projection neurons in the brain that can project to the spinal cord and form

synapses to target muscles that control movement. Layer 6 contains less common cell types,

including horizontal cells, fusiform cells and the cells of Martinotti [5]. There are many
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Fig 1. Mapping of ArfGAP1 localization in the adult mouse brain. A. Coronal plane. B. Sagittal plane. C.

Double labeling of ArfGAP1(green) and Nissl st. (stain) (red) of cortical layers (L). IsoCtx–isocortex, RSP–

retrosplenial cortex, VIS–visual cortex, PTLp–posterior parietal association areas, MO–motor cortex, SS–

somatosensory cortex, AUD–auditory cortex, TEa–temporal association areas, ECT–ectorhinal cortex, PERI–

perirhinal cortex, ENTI–entorhinal cortex, FRP–frontal pole, ORB–orbital area, OLF–olfactory cortex, OB–

olfactory bulb, STR–striatum, AMG–amygdala, FT–fiber tracts, TH–thalamus, HY–hypothalamus, HIP–

hippocampus, VL–lateral ventricle, PAL–pallidum, MB–midbrain, P–ponce, MY–medulla, Cer–cerebellum, arb–

arbor vitae, CP–cerebral peduncle, SC–spinal cord. The scale bars represent 500 μm (A,B) and 200 μm (C).

https://doi.org/10.1371/journal.pone.0189659.g001
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Fig 2. ArfGAP1 immunoreactivity in the hippocampus. A. Coronal plane. B. schematic view of the mossy

fibers projections. C. Sagittal plane. SP-MF–suprapyramidal bundle and IIP-MF–intra- and infrapyramidal

bundles of the mossy fibers projections. C. Sagittal plane. poDG–polymorph layer (hilus) of the DG, grDG–

granular cell layer of the DG, sr–stratum radiatum, slu–stratum lucidum, so–sorstratum oriens. CA1, CA2 and

CA3 –Cornu Ammonis of the hippocampus. The scale bars represent 200 μm.

https://doi.org/10.1371/journal.pone.0189659.g002
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staining techniques to analyze neuronal morphology and cytoarchitecture of the IsoCtx and

the whole brain including conventional techniques such as Nissl, Golgi and Weigert stainings

[6, 7]. However, there are difficulties in the identification of some layers using conventional

techniques. Recent experimental approaches including in situ gene expression analysis allow

well-defined morphological identification of the specific cortex layers (reviewed by Molyneaux

et al, 2007 [8]). Using anti-ArfGAP1 antibodies we were also able to obtain a clear visualization

of the structural layers of the IsoCtx (Figs 1 and 2). Taken together, our data suggest that the

ArfGAP1 antibody can be used for visualization of the hilus of the DG including its projections

to CA3 region and cortical layers in immunohistochemical studies.

We attempted to determine the distribution of the brain-specific ArfGAP1 isoform using a

previously-developed antibodies directed against the ArfGAP1B insertion peptide [2]. How-

ever, these antibodies were found inefficient in immunohistochemical staining and produced

a high background. As an alternative, we performed Western Blot analysis on isolated brain

regions using the antibodies recognizing all forms of ArfGAP1 or the B isoform only [2, 4]

(Fig 3A). Both antibodies equally detected the highest level of proteins in the DG, moderate

level of proteins in the IsoCtx and the lowest levels in the cerebellum (Cer), thalamus (TH)

and olfactory bulbs (OB) which were approximately twice less than in the DG. These results

are in agreement with the immunohistochemistry observations described above. Linear regres-

sion analysis of the data (Fig 3B) revealed the correlation between band intensities detected by

antibodies that recognized total ArfGAP1 and those recognizing the brain specific isoform

only (R2 = 0.84359). As ArfGAP1B is the major ArfGAP1 isoform in total brain [2], our

Fig 3. Western blot detection of total ArfGAP1 and ArfGAP1B in adult mouse brain regions. A. Data were normalized to

GAPDH protein levels for each region. DG–dentate gyrus, Cer–cerebellum, OB–olfactory bulb, IsoCtx–isocortex, TH–thalamus.

Data expressed as the mean ± SEM, n = 3. B. Linear regression analysis of the pairs of data obtained using the two antibodies

from each tissue in each of the 3 experiments.

https://doi.org/10.1371/journal.pone.0189659.g003
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findings are in agreement with the idea that the B isoform is predominant in all brain regions

examined.

Despite identified difference between ArfGAP1 levels in the Hippocampus (in the DG area)

and Cer, both brain regions have anatomically similar axons—mossy fibers (Fig 4). However,

the functional properties of mossy fibers are different in each region [6]. Thus, our findings of

differential expression of ArfGAP1 is probably related to functional properties of the axons. It

is recognized that the hilus contains mossy cells and mossy fibers which represent the main

part of this region, as well as interneurons and astrocytes [7]. The pattern of ArfGAP1 staining

in this region (Fig 2) is similar to the mossy fibers projections usually seen via Timm’s sulfide

silver staining method [8, 9] which suggests that ArfGAP1 follows the path of mossy fibers—

unmyelinated axons of the granule cells. It is known that mossy fibers give rise to a distinctive

set of collaterals that heavily innervate cells within the hilus and have large terminals that form

en passant synapses with the mossy cells in the hilus and with the CA3 pyramidal cells [10].

To further demonstrate the concentration of ArfGAP1 in mossy fibers of the hilus, we car-

ried out colocalization analysis using anti-zinc transporter 3 (ZnT3) antibodies—a known

marker for mossy fibers [11] and anti-glial fibrillary acidic protein (GFAP) as a marker for

Fig 4. ArfGAP1 protein localization in mouse dentate gyrus and cerebelum. A, B. coronal view of the

DG, poDG–polymorph layer (hilus) of the DG, grDG–granular cell layer of the DG, sr–stratum radiatum, slu–

stratum lucidum, so–sorstratum oriens. CA1, CA2 and CA3 –Cornu Ammonis of the hippocampus. C, D.

Coronal view of the cerebellum, ANcr1 and ANcr2 –ansiform cruciform lobule 1 and 2, arb–arbor vitae;

ArfGAP1 (green), DAPI stain (blue). B,D–control experiments with the omission of primary antibody and

staining only with secondary antibody. Magnification 10X. The scale bars represent 210 μm.

https://doi.org/10.1371/journal.pone.0189659.g004
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astrocytes [12]. We observed colocalization of the ArfGAP1 fluorescence with that of ZnT3 in

dorsal and ventral regions of the hippocampus (Fig 5A and 5B), whereas there was no colocali-

zation between the astrocyte marker GFAP and ArfGAP1 in the hilus (Fig 5C and 5D). More-

over, similar to ZnT3, ArfGAP1 did not highlight the mossy cells and interneuron cell bodies.

The distribution of ArfGAP1-immunoreactive mossy fibers projected uniformly along the

dorsoventral axis of the hilus, in agreement with the other data described above (Figs 1 and 2).

It is recognized that the pattern of ZnT-3 immunoreactivity resembles that observed with the

Timm’s stain since they both detect zinc-enriched mossy fibers [8,9,11]. However, the com-

plexity of Timm’s staining technique become a limiting factor to its applications for the studies

using immunofluorescence. Our finding that ArfGAP1 is enriched in the Dentate mossy fibers

adds a new perspective to use this antibody in immunofluorescence.

According to the Genome-wide atlas of gene expression in the adult mouse brain, the high-

est abundance of the ArfGAP1 mRNA are found in the granule cells of the DG, pyramidal cells

of the hippocampus including Cornu Ammonis (CA) areas: CA1, CA2 and CA3 and partially

in the cortex layer 1 [13].

Since ArfGAP1 translocates in cultured cells between cytosol and the Golgi complex, we

expected to detect the protein in the soma or dendrites. However, we did not find any specific

Fig 5. ArfGAP1 is localized in the mossy fibers of the mouse DG. A, B. Double labeling of ArfGAP1(green) and ZnT3 (red).

Yellow staining indicates colocalization of ArfGAP1 and ZnT3. C, D. Double labeling of ArfGAP1(green) and GFAP (red). F, E.

Omission of the primary antibody and staining only with secondary antibody. Abbreviations: CA1, CA2 and CA3 –Cornu Ammonis

of the hippocampus. Coronal DG (dentate gyrus) view of ventral (A, C, F) and dorsal (B, D, E) hippocampus. TH–thalamus. mf–

mossy fibers. Magnification 10X.The scale bars represent 210 μm.

https://doi.org/10.1371/journal.pone.0189659.g005
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intracellular staining. We speculate that after expression in the DG granular cells, ArfGAP1

might translocate from the soma to the axon and accumulate there.

Overall, our findings indicate that ArfGAP1 can be used as a specific marker of the Dentate

mossy fibers in immunohistochemical applications. Moreover, the high level of ArfGAP1 in

the hilus of the DG point to a possible regulatory role of this protein in neurotransmission.

This hypothesis is further suggested by the fact that ArfGAP1 was identified as an interaction

partner of GABA transporter-1 that controls the recruitment of the transporter into transport

vesicles and its trafficking through the secretory pathway to the membrane in axon terminals

[3]. Interestingly it was speculated that in DG the mossy fiber terminals could co-release of

both GABA and glutamate [14]. However, the possible role of ArfGAP1 in the regulation of

trafficking of both neurotransmitters is unknown and required further investigations. Finally,

our findings suggest that focusing on processes in the mossy fibers, in particular, may yield

better understanding of the function of ArfGAP1 in brain.
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3. Reiterer V, Maier S, Sitte HH, Kriz A, Rüegg MA, Hauri H-P, et al. Sec24- and ARFGAP1-Dependent

Trafficking of GABA Transporter-1 Is a Prerequisite for Correct Axonal Targeting. 2008, J Neurosci. 28

(47):12453–64. https://doi.org/10.1523/JNEUROSCI.3451-08.2008 PMID: 19020038

4. Candiello E, Kratzke M, Wenzel D, Cassel D, Schu P. AP-1/sigma1A and AP-1/sigma1B adaptor-pro-

teins differentially regulate neuronal early endosome maturation via the Rab5/Vps34-pathway. 2016,

Scientific reports. 6:29950. https://doi.org/10.1038/srep29950 PMID: 27411398

5. Swenson R. Review of Clinical and Functional Neuroscience: Dartmouth Medical School; 2006. Avail-

able from: https://www.dartmouth.edu/~rswenson/NeuroSci/.

6. Delvendahl I, Weyhersmuller A, Ritzau-Jost A, Hallermann S. Hippocampal and cerebellar mossy fibre

boutons—same name, different function. 2013, J Physiol. 591(13):3179–88. https://doi.org/10.1113/

jphysiol.2012.248294 PMID: 23297303

ArfGAP1 high abundance in the mossy fibers

PLOS ONE | https://doi.org/10.1371/journal.pone.0189659 December 14, 2017 9 / 10

https://doi.org/10.1074/jbc.M508959200
https://doi.org/10.1074/jbc.M508959200
http://www.ncbi.nlm.nih.gov/pubmed/16316994
https://doi.org/10.1523/JNEUROSCI.3451-08.2008
http://www.ncbi.nlm.nih.gov/pubmed/19020038
https://doi.org/10.1038/srep29950
http://www.ncbi.nlm.nih.gov/pubmed/27411398
https://www.dartmouth.edu/~rswenson/NeuroSci/
https://doi.org/10.1113/jphysiol.2012.248294
https://doi.org/10.1113/jphysiol.2012.248294
http://www.ncbi.nlm.nih.gov/pubmed/23297303
https://doi.org/10.1371/journal.pone.0189659


7. Amaral DG, Scharfman HE, Lavenex P. The dentate gyrus: fundamental neuroanatomical organization

(dentate gyrus for dummies). 2007, Prog Brain Res. 163:3–22. https://doi.org/10.1016/S0079-6123(07)

63001-5 PMID: 17765709

8. Wiera G, Mozrzymas JW. Extracellular proteolysis in structural and functional plasticity of mossy fiber

synapses in hippocampus. 2015, Frontiers in Cellular Neuroscience. 9(427).

9. Sluyter F, Jamot L, Bertholet J-Y, Crusio WE. Prenatal exposure to alcohol does not affect radial maze

learning and hippocampal mossy fiber sizes in three inbred strains of mouse. 2005, Behavioral and

Brain Functions. 1(1):5. https://doi.org/10.1186/1744-9081-1-5 PMID: 15916699

10. Buchwalow I, Samoilova V, Boecker W, Tiemann M. Non-specific binding of antibodies in immunohis-

tochemistry: fallacies and facts. 2011, Scientific reports. 1:28. https://doi.org/10.1038/srep00028 PMID:

22355547

11. Palmiter RD, Cole TB, Quaife CJ, Findley SD. ZnT-3, a putative transporter of zinc into synaptic vesi-

cles. 1996, Proc Natl Acad Sci U S A. 93(25):14934–9. PMID: 8962159

12. Orr AG, Hsiao EC, Wang MM, Ho K, Kim DH, Wang X, et al. Astrocytic adenosine receptor A2A and

Gs-coupled signaling regulate memory. 2015, Nat Neurosci. 18(3):423–34. https://doi.org/10.1038/nn.

3930 PMID: 25622143

13. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, al e. Genome-wide atlas of gene expression in the

adult mouse brain. 2007, Nature. 445(7124):168–76. https://doi.org/10.1038/nature05453 PMID:

17151600
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