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Abstract

Cellular differentiations are often regulated by bistable switches resulting from specific

arrangements of multiple positive feedback loops (PFL) fused to one another. Although bist-

ability generates digital responses at the cellular level, stochasticity in chemical reactions

causes population heterogeneity in terms of its differentiated states. We hypothesized that

the specific arrangements of PFLs may have evolved to minimize the cellular heterogeneity

in differentiation. In order to test this we investigated variability in cellular differentiation con-

trolled either by parallel or serial arrangements of multiple PFLs having similar average

properties under extrinsic and intrinsic noises. We find that motifs with PFLs fused in parallel

to one another around a central regulator are less susceptible to noise as compared to the

motifs with PFLs arranged serially. Our calculations suggest that the increased resistance

to noise in parallel motifs originate from the less sensitivity of bifurcation points to the extrin-

sic noise. Whereas estimation of mean residence times indicate that stable branches of

bifurcations are robust to intrinsic noise in parallel motifs as compared to serial motifs.

Model conclusions are consistent both in AND- and OR-gate input signal configurations and

also with two different modeling strategies. Our investigations provide some insight into

recent findings that differentiation of preadipocyte to mature adipocyte is controlled by net-

work of parallel PFLs.

Introduction

Cellular heterogeneity is a natural phenomenon where an isogenic population of cells in

homogeneous environmental conditions generate significant variability in cellular content,

shape, size, cell cycle duration and stimuli responses[1, 2]. The origin of such heterogeneity

has been found to be primarily due to the inevitable intrinsic[3–5] and extrinsic[6–11] sources

of variabilities collectively known as chemical noise. While intrinsic noise originating from the

fluctuations of low copy numbers of various chemical species is inherent to a chemical reac-

tion, extrinsic noise globally influences all the chemical reactions in a cell. The chemical noise

can either cause a nuisance in various cellular phenomena such as cell cycle[12], apoptosis[13],

p53 dynamics[14], HIV virus latency/replication[15, 16], aneuploidy[17] or it can help cell
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efficiently adapt to the continuously changing environment[18, 19]. It has been a standing

question how a living cell manages to minimize the effects of chemical noise which may have

unwanted consequences in cellular phenomena.

Since the early findings that a negative feedback loop may attenuate the effects of stochastic

fluctuations[20], a number of studies, both theoretical/computational[3, 21–26] and experi-

mental[27–29], focused investigating on the role of negative feedback on the cellular noise.

Negative feedback loop has the potential to reduce noise but at the cost of compromising the

sensitivity to the external signals[30, 31]. On the other hand, calculations on simple network

motifs by Hornung et al predicted that positive feedback has the ability to filter noise without

compromising signal sensitivity[31]. In addition against a graded input signal a positive feed-

back loop (PFL) has potential to generate digital signal response creating bistability[32]. Bist-

ability has been found to be associated with various cellular responses such as differentiation

[33–35], memory[36, 37], activation of anaphase promoting complex in frog eggs[38, 39],

G1/S transition in yeast and mammalian cells[40–42]. Consistent with experimental observa-

tions[41, 42], system-level stochastic model of budding yeast cell cycle[43] investigated the role

of PFLs in various phases of the cell cycle and confirmed that PFL filters noise in various events

during cell cycle.

Bistable switches are known to regulate cellular differentiations such as TGF-β induced epi-

thelial to mesenchymal transition[33], preadipocyte to adipocyte differentiation[35] and myo-

genic and osteogenic differentiation[44]. In this context in order to lock a cell to its

differentiated state, it must have tools to reduce the effects of noise such that the cell does not

revert back to its original state and vice versa. This is quite relevant in situations where from a

large pool of precursor cells only a small fraction differentiates under weak signaling regime.

Fusing a negative feedback loop in bistable switch is known to increase the excitability of the

system thus certainly it cannot be an optimal solution for reducing noise in bistable systems

[45, 46]. Several protein regulatory networks are known to consist of two PFLs fused together

[47–49] and model calculations showed that reliability of a noisy input signal increases if the

two PFLs act in disparate time scales[50, 51]. Thus fusion of two or more PFLs can be a poten-

tial solution to this problem. However arrangements of these fused PFLs can have effect on the

propagation of noise in the system. In a recent study Ahrends et al found that differentiation

of preadipocyte to adipocyte cells located in fat tissue is regulated in a bistable manner created

by seven independent positive feedback loops via a common master regulator peroxisome pro-

liferator-activated receptor γ (PPARG) [52]. This independent arrangement of PFLs around

the key regulator PPARG can be termed as parallel PFLs. Using model calculations they

showed that added feedback loops efficiently reduces extrinsic noise as compared to a single

feedback system with increased cooperativity.

However, the question that needs to be answered here is how different types of topologies

of multiple PFLs dictate the noise in bistable systems. In particular, in addition to the parallel

arrangements, PFLs can be arranged in a sequential manner creating a chain like topology that

we call serial PFLs. Thus parallel and serial PFLs are analogous to parallel and serial arrange-

ments of resistors in electrical circuits, respectively. The average properties, region of bistabil-

ity and values of steady states, of parallel and serial circuits of PFLs can be exactly identical.

However in presence of noise the behavior of these two topologies can be quite different and

therefore can have detrimental effects in differentiation dynamics. Using mathematical model-

ing and stochastic simulations, here we investigated the effects of intrinsic and extrinsic noise

in parallel and serial network motifs creating identical bistable switches. We found that, con-

trary to the serial motifs, a population of cell each with parallel PFLs is able to maintain their

respective differentiation state in presence of either intrinsic or extrinsic fluctuations. Thus

parallel PFLs are far superior in reducing the effects of noise compared to the PFLs with serial
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arrangement. Our calculations suggest that in parallel motifs the saddle-node bifurcation

points generating bistability are less susceptible to extrinsic noise and the distributions of

bifurcation points are less skewed as compared to serial motifs. Further, we found that the sta-

bility of steady states, calculated by mean residence times, are consistently higher in parallel

motifs suggesting parallel motifs are less perturbed by intrinsic noise as compared to serial

motifs. We found our results are consistent for both AND- or OR-gate configurations of input

signals and are independent of modeling methodologies.

Results and discussion

We investigated two classes of network motifs that generate bistable signal responses: parallel
and serial PFLs. In parallel network motifs multiple PFLs are fused around a central regulator

X0 creating a topology where feedback loops are independent of one another. On the other

hand in serial network motifs PFLs are arranged serially in an end-to-end chain like sequence

configuration (Fig 1). We first created a positive feedback loop between two components, X0

and X1, where they positively regulate synthesis of each other. This creates a single PFL motif

(1L motif) and functions as a ‘repeat unit’ for multiple PFL motifs. Now to generate a parallel

motif, for example a two-loop (2L) parallel motif, we introduced another component, X2, that

is in a PFL with X0 independent of X1. In this way we generated networks with up to five paral-

lel PFLs (5L) (Fig 1a, left). For the serial arrangements, the PFLs are interconnected with one

another, for example in 2L serial motif, X2 is in PFL with X1 which is connected to X0 by a PFL

(Fig 1a, right).

In signal transduction pathway often multiple input signals can act in non-redundant or

redundant manner to trigger responses. Non-redundant input signals function like an AND-

gate whereas redundant input signals function like an OR-gate analogous to electrical circuits

[53]. We have taken into consideration of AND- or OR-gate configurations of signaling inputs

in our models whenever applicable. For example, in parallel motifs synthesis of X0 is positively

regulated by several components (X1, X2 etc.) either by AND- or OR-gate. Similarly in serial

loops synthesis of any component Xi is regulated by Xi-1 and Xi+1 creating either AND- or OR-

gate configurations except for the terminal components.

In a basic ‘repeat unit’ the synthesis rate of X0 is directly proportional to the amount of X1

present and in turn X0 helps the synthesis of X1 by enzymatically activating the transcription

factor (T1) for X1. The production rate of X1 is proportional to the amount of its active tran-

scription factor (T1,A). This single PFL motif (1L) may generate bistability satisfying the condi-

tion of embedded ultrasensitivity in the network[54]. In order to incorporate ultrasensitivity

we implemented Goldbeter-Koshland’s (GK) zero order ultrasensitivity in the activation-deac-

tivation of transcription factor[55]. As per the requirement of GK switch, we assumed that the

total amount of transcription factor (TT) for every species is constant and activation-deactiva-

tion reactions follow Michaelis-Menten type enzyme kinetics. Owing to its flexibility in param-

eter space, Hill function has been a preferred choice to generate ultrasensitivity over

Goldbeter-Koshland switch. However we chose the GK switch for accurate estimation of

intrinsic noise using Gilespie’s algorithm[56, 57]. In the parallel arrangements for any compo-

nent Xi, its transcription factor Ti is activated enzymatically by X0 and in return all Xis catalyze

the synthesis of X0 through either an AND- or an OR-gate input signaling combination. In

case of serial arrangements, for any component Xi, its transcription factor is activated by two

neighboring components Xi-1 and Xi+1 by AND- or OR-gate mechanism. See S1 Fig for

detailed network diagrams of serial and parallel models. We have listed the model equations in

the Table 1 and provided the parameters corresponding to the models in the S1 and S3 Tables.

Parallel positive feedback loops reduce noise efficiently
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Fig 1. Network diagrams and bifurcations of models. (a) Positive feedback loop between two components (X0 and

X1) creates a 1L PFL motif and several of these motifs are fused together to create either parallel (left) or serial motifs

(right). One parameter bifurcation diagrams of parallel (b) and serial (c) models with various number of feedback loops

with AND-gate configurations. The parameter s in the model equation represents the ‘signal’. The left and right saddle-

node (SNL and SNR) bifurcation points are indicated by the arrow. Upper and lower stable branches (solid line) are

associated with the differentiated and undifferentiated states of a cell. The unstable middle branch (dashed line)

separates these two states.

https://doi.org/10.1371/journal.pone.0188623.g001
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In our models the synthesis rates of regulators (X0 and Xi s) consist of unregulated and reg-

ulated parts that follow mass action rate laws. The degradation rate constant (γ) or the life-

time (1/γ) of all the components were assumed to be same representing their dilution dynam-

ics during the growth of the host cell. We have used the same set of parameters for all motifs

with parallel PFLs. Whereas, in case of serial arrangements the activation rate constant of tran-

scription factor for X1 (rf,1)and the regulated synthesis rate constant of X0 (r1) were carefully

adjusted to achieve similar region of bistabilities as in the case of parallel arrangements. In our

models we have introduced a ‘cell volume’ parameter, V, to scale up or scale down the number

of molecules of various species without hampering the dynamics of the model. Next we report

the results from the models with AND configurations.

First we investigated the steady state responses of these networks in absence of any intrinsic

or extrinsic sources of variabilities using XPP-AUT software tool[58] (http://www.math.pitt.

edu/~bard/xpp/xpp.html) to generate one-parameter bifurcation diagrams of the models.

These models generate reversible bistable switches while we varied the parameter s in the

model. The parameter s represents the amount of external stimulus that triggers the differenti-

ation of preadipocyte cells. The choice of parameter s as the bifurcation parameter is obvious

as differentiation is typically triggered by extracellular signals, for example, in case of preadipo-

cyte differentiation external stimulus rosiglitazone initiate adipogenesis in mouse OP9 cells

[35]. We call this parameter as ‘signal’ in the rest of the paper. The parameter k0 or r0 repre-

sents the ‘effectiveness’ of the external signal in initiating differentiation. The bistability is due

to the two saddle-node (SN) bifurcation points (Fig 1b) that create reversible bistable switches.

With the increase in the number of feedback loops the region of bistability increases both in

the parallel (Fig 1b) and serial (Fig 1c) topologies. We emphasize here that the bifurcation dia-

grams obtained from parallel and serial models are closely similar including the region of bist-

abilities. This is an important criteria for comparison of noise propagation in parallel and

serial feedback loops. In the context of cell differentiation the lower and upper branches of sta-

ble steady states represent the undifferentiated (or dedifferentiated) and differentiated cellular

states, respectively. The cell fate decision driven by SN bifurcation has been proposed in many

systems [33, 59] although it is slightly different than the well celebrated Waddington’s epige-

netic landscape[60] of cell fate decision. In the Waddington’s proposal of cell fate decision dif-

ferentiation occurs due to the supercritical pitchfork bifurcation where in differentiation of

preadipocyte cells SN bifurcations dictate the process. Several important consequences emerge

due to the different nature of bifurcations regulating cell fate decision[59]. In case of SN bifur-

cation the alternate states are already present well before the critical point whereas in pitchfork

bifurcation the new states are born only after the critical point. This has significant

Table 1. List of dynamical equations for the parallel and serial models with GK switch.

Parallela Serialb

dX0

dt
¼ s k0V þ k1P0ð Þ � gX0

dX0

dt
¼ s r0V þ r1X1ð Þ � gX0

dXi
dt
¼ k2V þ k

0

2
Ti;A � gXi

dXi
dt
¼ r2V þ r

0

2
Ti;A � gXi

dTi;A
dt
¼

kfX0ðV :TT � Ti;AÞ
KMV þ ðV :TT � Ti;AÞ

�
kbV :Ti;A
KMV þ Ti;A

dTi;A
dt
¼

rf;iGiðV :TT � Ti;AÞ
KMV þ ðV :TT � Ti;AÞ

�
rbV :Ti;A
KMV þ Ti;A

For i = 1,2, . . . N, where N = number of loops, V is a scaling factor to change the number of molecules of

chemical species. The value of scaling factor (V) was 40 in all calculations.

aFor AND-gate P0 ¼
1

VN� 1

QN
i¼1
Xi and for OR-gate P0 ¼

PN
i¼1
Xi.

bFor AND-gate G i ¼ 1

V Xi� 1Xiþ1 and for OR-gate Gi ¼ Xi� 1þXiþ1; for N = 1, G1 ¼ X0 and for i = N, GN ¼ XN� 1.

https://doi.org/10.1371/journal.pone.0188623.t001
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implications when the decision making processes are influenced by the molecular noise—

before the critical point both the states can coexist in a population of cell in first case whereas

in Waddington’s approach before critical point there is no possibility of coexistence of cell

fates. Further cell fate decision making is always a reversible process in Waddington’s

approach whereas cell differentiation driven by SN bifurcation can be irreversible.

In absence of any variability whatsoever every cell in a population would behave identically

therefore there would be a clear switch-like transition from undifferentiated to differentiated

state for the entire population when the signal dose crosses the right SN bifurcation point

(SNR) (Fig 1b). Similarly the whole population of cells would shift sharply from the differenti-

ated to the dedifferentiated (or undifferentiated) state when the signal is reduced beyond the

left SN bifurcation point (SNL). Thus the population will be ‘pure’ in terms of the state of its

differentiation in absence of any noise–they all are either differentiated or undifferentiated.

However due to the extrinsic and intrinsic sources of variabilities each cell would behave dif-

ferently resulting in a non-switch like response at the population level and ultimately this

would generate a mixed population of differentiated and dedifferentiated cells in the interme-

diate range of signaling. To assess the extent of mixed population due to extrinsic and intrinsic

noise, we calculated the percentage of differentiated (high X0, upper steady state) or dediffer-

entiated (low X0, lower steady state) cells with varying doses of signal (s).
We implemented extrinsic noise in our models assuming that unregulated synthesis rates

are log-normally distributed with a coefficient of variation (CV) of 30%. The choice of 30%

variation in rate constants was due to the fact that similar variations have been observed[9] in

many constitutively expressed proteins. Our objective here was to find out between the parallel

and serial feedback loops which configuration filters noise more efficiently. We estimated the

fraction of cell that transitions from undifferentiated (or differentiated) to differentiated (or

dedifferentiated) state while the signal is varied in presence of extrinsic variability (see Materi-

als and methods for details). We have performed separate calculations to estimate the fraction

of differentiated and dedifferentiated cells with varying signal. In differentiation fraction calcu-

lation we started with undifferentiated state (initializing the system in the lower steady state of

bifurcation diagram, low X0) and estimated the fraction of cells that have differentiated with

varying signal. The sum of differentiated fraction and undifferentiated fraction (the population

that did not differentiate) adds to 1. However we have reported only the differentiated fraction

as our goal was to determine the effect of molecular noise on the differentiation starting from

undifferentiated state. Similarly for the calculation of dedifferentiated fraction starting from

differentiated state (initializing the system in upper steady state, high X0) we reported only the

fraction of dedifferentiated cells. At any signal, the total fraction of differentiated and dediffer-

entiated cells does not add to 1 as we estimated these two populations from two separate calcu-

lations. Our aim here was to determine the fraction of cells that would differentiate at a given

signal and once differentiated the fraction of cells that would dedifferentiate at the same signal

in presence of extrinsic or intrinsic noise. Expectedly we found that with 1L motif, differentia-

tion and dedifferentiation curves intersect with one another (Fig 2a and 2b) resulting in a

mixed population in the intermediate range of signaling. In case of parallel motifs, as shown

before[52], with the increase in number of feedback loops these two curves move away from

one another minimizing the population heterogeneity in the low signal strength (Fig 2a). In

serial arrangements, however, these two curves do not pull away from one another with

increasing number of PFL resulting in a more heterogeneous population (Fig 2b). To estimate

the extent of heterogeneity we calculated the percentage of cells at the intersection of these two

curves. On the contrary to the serial motifs, the percentage at intersection decreases consis-

tently with increasing numbers of feedback loops in parallel motifs (Fig 2c). Therefore serial

motifs are less efficient in reducing the effect of extrinsic noise compared to the parallel PFLs

Parallel positive feedback loops reduce noise efficiently
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although the underlying bistable switches are almost identical in both the cases. In the S2 Fig

the steady state distribution of cells around the bifurcation diagram are given for parallel and

serial motifs with extrinsic noise. In order to determine whether the noise suppression effi-

ciency of parallel models depends on the nonlinearity or ultrasensitivity of the dynamics, we

reduced the Michaelis constant in Goldbeter-Koshland switches (KM) by five times from 0.05

to 0.01. The decrease in Michaelis constant leads to increase in ultrasensitivity of the underly-

ing switches. The bifurcation diagrams with increased value of nonlinearity are given in

S3 Fig. We found that even with increasing nonlinearity the parallel PFLs are more efficient in

reducing extrinsic noise as compared to serial motifs. However serial motifs performed slightly

better with increasing nonlinearity (Fig 2d and S4 Fig).

Intrinsic noise has been known to cause cell-to-cell variability through the ‘finite number

effect’ in chemical reactions. Therefore we investigated the effects of intrinsic noise on the dif-

ferentiation dynamics in both types of motifs by simulating the chemical reactions (S2 Table)

of models using Gillespie’s stochastic simulation algorithm[56]. In the bistable region of bifur-

cation diagram the system (X0) may jump back-and-forth between the two stable steady states

depending on the amount of noise the system possesses due to the stochasticity of molecular

abundances. In the bistable region, the system alternates between the two stable steady states

Fig 2. Differentiation with AND-gate under extrinsic noise. (a-b) The percentage of differentiated (solid) and dedifferentiated

(dashed) cells with varying signal doses for parallel (left) and serial (right) motifs with different numbers of PFLs having low nonlinearity

(KM = 0.05). The percentage of cells at the intersection of differentiation and dedifferentiation curves with the number of PFLs are

presented for low (c; KM = 0.05) and high (d; KM = 0.01) nonlinearity in both the models.

https://doi.org/10.1371/journal.pone.0188623.g002
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and at equilibrium some fraction of cells reside around the lower steady state and the rest

reside around the upper steady states (S5 Fig). With increase in number of parallel PFLs the

fraction of mixed population decreases (Fig 3a), whereas in serial case, even with multiple feed-

back loops there is no significant reduction of mixed population (Fig 3b). The percentage of

mixed population at the intersection dramatically reduces with increasing number of feedback

loops in parallel motifs contrary to the serial motifs (Fig 3c) the percentages are invariant to

the number of feedback loops. Although the noise reduction capacity of parallel loops

increases with the increase in nonlinearity, however there is no noticeable change in case of

serial models (Fig 3d and S6 Fig). Therefore our calculations suggest that compared to serial

arrangements of PFLs, parallel PFLs reduces both extrinsic and intrinsic noise more efficiently

in bistable systems.

We hypothesized that the sensitivity of saddle-node bifurcation points to the extrinsic noise

must have significant role in dictating the noise in these two types of motifs. With extrinsic

noise the bifurcation diagram of one cell will be different from another cell. Therefore we cal-

culated the right and left bifurcation points (the value of signal, s) for 10000 cells in presence of

extrinsic noise (Materials and methods). The amount of noise, CV, of SN bifurcation points in

Fig 3. Differentiation with AND-gate under intrinsic noise. (a-b) The percentage of differentiated (solid) and dedifferentiated

(dashed) cells with varying signal doses for parallel (left) and serial (right) regulatory motifs with different numbers of PFLs having low

nonlinearity (KM = 0.05). The percentage of cells at the intersection (indicated by solid circles in a and b) of differentiation and

dedifferentiation curves with the number of PFLs are presented for low (c; KM = 0.05) and high (d; KM = 0.01) nonlinearity in Goldbeter-

Koshland switches in both the models.

https://doi.org/10.1371/journal.pone.0188623.g003
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serial models are higher as compared to parallel models for both left and right bifurcation

points (Fig 4a). We determined that higher noise in serial motifs was due to the increased

skewness of distributions of bifurcation points (Fig 4b). While we found that the shape of dis-

tributions of right bifurcation points are similar for parallel and serial models, however the dis-

tributions of left bifurcation points are highly positively skewed for serial models as compared

to the parallel models (Fig 4c). Consistently due to the increased skewness of left SN points the

dedifferentiation curves had long tail in serial motifs (Fig 2b). Repeating calculations with

decreased Michaelis constant we found similar results as well (S7 Fig). Thus the left bifurcation

points, regulating the transition from differentiation to dedifferentiation state, are very much

susceptible to extrinsic noise in serial PFLs.

The susceptibility of a steady state to the intrinsic noise is determined by the stability of the

steady states[61]. Therefore to assess the stability of the steady states we calculated the mean

residence time of steady states in the bistable region of the bifurcation diagrams (Materials and

Fig 4. Susceptibility of bifurcation points to the extrinsic noise with low nonlinearity (KM = 0.05) having AND-gate. The variation in

coefficient of variation (a) and skewness (b) of distributions of right (SNR) and left (SNL) bifurcation points with increasing number of PFLs. (c)

Comparison of the distributions of right (c; top row) and left bifurcation (c; bottom row) points for parallel and serial models.

https://doi.org/10.1371/journal.pone.0188623.g004
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methods). The mean residence times of both upper and lower stable branches of bifurcations

are much higher in parallel motifs as compared to the serial motifs (Fig 5). This clearly indi-

cates that owing to the higher stability of steady states in parallel feedback loops, the system

becomes less susceptible to stochastic fluctuations of molecular abundance or intrinsic noise.

Thus PFLs with parallel arrangements efficiently are able to filter intrinsic noise. The increased

sensitivity of steady states to the intrinsic noise in serial motifs is due to the chain-like architec-

ture of PFLs where small amplitude fluctuations in abundance propagate and get amplified on

its way to the activation of terminal regulator X0. On the other hand small fluctuations neither

propagate nor amplified due to the independent architecture of PFLs in parallel motifs.

We further extended our calculations in case of OR-gate configurations where signaling

can trigger in redundant manner (for parameters see S3 Table). We performed similar calcula-

tions as we did for the AND case by parameterizing models such that both parallel and serial

models generate similar bistable switches (Fig 6a and 6b). In OR-gate configurations parallel

motifs efficiently reduce both extrinsic (S8 Fig) and intrinsic noise compared to the serial

motifs although serial motifs does better job in OR as compared to AND case (Fig 6c–6f).

From the mean residence time calculations, we also found that the stability of stable branches

in parallel PFLs are higher than in the serial loops (S9 Fig). From these calculations we found

that the OR-gate signaling input show less variability when compared to the AND-gate signal-

ing input because fluctuations in OR-gate gets amplified due to the multiplicative nature of the

gate.

Fig 5. Stability of steady states under intrinsic noise: Mean residence time. Comparison of mean residence times of upper (USS) and

lower (LSS) steady states for parallel and serial models with AND-gate. Top row: low nonlinearity (KM = 0.05) and bottom row: high nonlinearity

(KM = 0.01). The maximum simulation time was 1×106 arbitrary time unit.

https://doi.org/10.1371/journal.pone.0188623.g005
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Materials and methods

Calculation of differentiation-dedifferentiation percentage

We have calculated differentiation/dedifferentiation percentages for a population of cells in

presence of extrinsic and intrinsic noise with varying signal doses. Single cell quantification of

many proteins in eukaryotic cells revealed asymmetric and positively skewed protein distribu-

tions which can be best fitted by log-normal distributions [9, 13, 62]. Several extrinsic factors

including differences in cell size, shape, cellular content, cell cycle phases, local temperature

and pH are known to contribute significantly in population heterogeneity of protein

Fig 6. Differentiation in OR-gate configuration. One parameter diagrams (a-b), differentiation and dedifferentiation

percentage (c-d) under intrinsic noise with low nonlinearity and the extent of mixed population with low (e) and high (f)

nonlinearities in Goldbeter-Koshland switch.

https://doi.org/10.1371/journal.pone.0188623.g006

Parallel positive feedback loops reduce noise efficiently

PLOS ONE | https://doi.org/10.1371/journal.pone.0188623 November 29, 2017 11 / 20

https://doi.org/10.1371/journal.pone.0188623.g006
https://doi.org/10.1371/journal.pone.0188623


abundance and ultimately leads to positive skewness in distributions. Therefore in order to

generate log-normal distributions of proteins we have introduced log-normal distribution of

rate constants which globally takes into account of various extrinsic factors together. We

implemented extrinsic noise assuming log-normal distribution of unregulated synthesis rate

constants (for parallel k0 and k2 and for serial r0 and r2) with 30% variation as unregulated pro-

teins were found[9] to follow log-normal distribution with a typical CV of 30%. The average

values of rate constants are listed in S1 Table. The typical sample size in our calculations was

10000 representing a sample of 10000 ‘cells’. It is also important to mention that for every com-

ponent Xi its corresponding rate constant k2 or r2, as appropriate, was sampled from a different

sequence of random numbers to generate independent distributions.

In order to calculate the percentage of cell differentiated at a given signal dose, s, we initial-

ized the system in lower steady state of the bifurcation diagram and numerically solved the

coupled set of ordinary differential equations listed in Table 1 using CVODE method (https://

computation.llnl.gov/projects/sundials/cvode) implemented in Matlab. At each input signal s,
we simulated a total of 10000 cells sampling the basal synthesis rate constants from log-normal

distributions as mentioned. We integrated the set of equations for sufficiently long time to

ensure that the system reached steady state. Finally to determine the number of differentiated

cells, we counted the number of cells that have reached above a certain threshold value of X0 at

steady state. For differentiation, the threshold was chosen as the value of X0 corresponding to

the right saddle-node bifurcation point. In dedifferentiation fraction calculation, on the con-

trary, we initialized the system at the upper steady state and following the similar procedure

we counted the number of cells below a threshold value of X0 corresponding to the left bifurca-

tion point.

In case of intrinsic noise originating from the fluctuations of finite number of molecular

species, we used Gillespie’s stochastic simulation algorithm [56] to simulate the reactions

(S2 Table) corresponding to the dynamical equations listed in the Table 1. Here to determine

the fraction of differentiated cells, we recorded the steady state value of X0 simulating the reac-

tions for sufficiently long time after initializing the system at the lower steady state of the bifur-

cation diagram. At each value of input signal s, we generated a steady state distribution of X0

(S5 Fig). We counted the number of cells with values of X0 above the separatrix (unstable

steady state) to calculate the fraction of differentiated cells. We performed similar calculations

initializing the system from the upper steady state to calculate the percentage of dedifferenti-

ated cells at steady state. Here we counted the number of cells that were present below the

separatrix.

Sensitivity of bifurcation points

Due to the extrinsic noise, the locations of saddle-node bifurcation points shift from one cell

to another cell. We determined the two saddle-node bifurcation points for 10000 cells in pres-

ence of extrinsic noise to estimate the sensitivity of bifurcation point to the noise. For each cell,

we integrated numerically the dynamical equations with the varying values of the signal s. The

bifurcation point was the value of s for which the system abruptly jumps from one steady state

to the other. By repeating this calculations for 10000 cells initializing the system either from

lower or upper steady state, we generated two distributions corresponding to right and left sad-

dle-node bifurcation points, respectively.

Residence time calculations

In the bistable region of bifurcation diagrams, we calculated the mean residence time of steady

states (undifferentiated and differentiated states) while the system is influenced by the intrinsic
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noise. We simulated the chemical reactions initializing the system at the lower steady state and

recorded the time at which the system crosses the separatrix for the first time to get the first

passage time or residence time of the lower steady state. By repeating this calculations 10000

times, we obtained the mean residence time for the lower steady state. We followed the same

procedure to calculate mean residence time of differentiated state initializing the system at the

upper steady state. The maximum time of calculations was 1×106 arbitrary time unit.

Conclusions

Cellular functions are regulated by chemical reaction networks with distinct steady state and

dynamical properties. These properties help the regulatory system to achieve desired cellular

functions. The properties of regulatory network motifs depend crucially on the architecture or

the topology of these networks, for example, a positive feedback loop generates multistability

or a negative feedback loop generates oscillations or excitability[63]. The average properties of

topologically equivalent networks could be similar although the properties of these networks

are known to get perturbed differently due to extrinsic and intrinsic sources of chemical noise.

Since in many cases chemical noise is known to act as nuisance to the cellular behavior, there-

fore the system’s obvious tendency would be to adopt a network that helps minimize the effects

of chemical noise. In this context, a positive feedback loop that generates bistability has been

found to reduce fluctuations in various cellular phenomena[31, 41–43]. On the other hand

bistability generated from fusion of multiple PFLs have been found to regulate many cellular

differentiation processes[33, 35, 37]. Multiple PFLs help the system to generate a robust bist-

ability, however the arrangements of these PFLs may have some crucial role in reducing the

effects of chemical noise. Therefore the topological effects of multiple PFLs on the stochasticity

of a network is quite relevant in order to understand how a cell lock the undifferentiated or dif-

ferentiated state under the influence of chemical noise.

Recently Ahrends et al[52] showed that the differentiation to mature adipocyte from a large

pool of preadipocyte cells are controlled by bistable switch and the low rate of differentiation is

maintained by stochastic fluctuations of chemical species within the regime of weak signaling.

However the same stochasticity may lead to the loss of differentiated state, thus locking a dif-

ferentiated state is a crucial task a cell has to achieve. This indicates that there must be some

mechanisms in place that can filter the effects of chemical noise in cellular differentiation.

As argued before, the network topology may have some relevance in the noise filtration

[47, 50, 51]. The most intriguing finding of their work was that the differentiation of preadipo-

cyte cells is controlled by seven PFLs around a central regulator PPARG creating a parallel

arrangements of PFLs. Thus a relevant question that arises here is why these PFLs are arranged

in a parallel manner while a serial arrangements may as well serve the purpose.

In order to address the question how the network topologies of positive feedback loops con-

tribute to the amplification or reduction of chemical noise, we generated bistable switches with

similar region of bistabilities from parallel and serial arrangements of PFLs. We calculated the

fraction or percentage of differentiated and de-differentiated cells both for parallel and serial

topologies consisting of different numbers of feedback loops. We found that when the signals

are in AND-gate configurations parallel topologies reduce both extrinsic and intrinsic noise

more efficiently compared to the serial topologies with a given number of loops. In fact we

found that parallel motifs are much efficient in filtering intrinsic noise as compared to the

serial motifs. Our calculations indicate the two saddle-node bifurcation points leading to bist-

ability are much sensitive to the extrinsic noise when the topologies are serial in nature. This

increased sensitivity is reflected on the skewness of the distribution of bifurcation points in

serial motifs and ultimately increases variability in differentiated state. On the other hand In
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case of intrinsic noise the stability of the steady states, measured by mean residence time, in

the bistable region are much higher in parallel motifs compared to the serial motifs. Therefore

steady states in parallel motifs are less susceptible to intrinsic noise as compared to serial

motifs. We also investigated the OR-gate input signal configurations and found that the intrin-

sic noise filtering capacity of parallel motifs are again much better than serial motifs.

Further, in order to find out whether our conclusions are dependent on modeling method-

ology, we used Hill functions to model the ultrasensitivity instead of Goldbeter-Koshland

switch. We performed similar calculations (for equations and parameters see S4 and S5 Tables)

as we reported in the Results and Discussion section and found that with Hill functions paral-

lel motifs reduce both extrinsic and intrinsic noise efficiently as well (S10 Fig).

In absence of any stochasticity parallel and serial motifs would not make any difference in

differentiation dynamics. However our investigations of extrinsic and intrinsic noise in parallel

and serial PFLs showed that parallel motifs reduce noise significantly better compared to serial

motifs. Therefore evolution may have chosen parallel configurations as it is robust to the sto-

chastic fluctuations of chemical species. As investigated previously[50, 64] that the complexity

of PFLs have potential to reduce noise however our results also emphasize that in addition to

the complexity the topological arrangements of PFLs play a major part in noise attenuation.

Parallel architecture of positive feedback loops are not limited only to the differentiation. In

cell cycle network of Saccharomyces cerevisiae (budding yeast), activation of b-type cyclins

Clb1,2 are regulated by three positive feedback loops through independent involvement of

Cdh1, Sic1 and Fkh2 in OR-gate configuration. [43]Stochastic model of cell cycle predicted

that removal of any one of these positive feedback loops increases variability in various cell

cycle properties such as cycle time, size at birth and division etc. Further similar architecture

of PFLs are also known to present in activation of maturation promoting factor (MPF) in cell

cycle network of Saccharomyces pombe (fission yeast)[65].

In our models the parameter values are within the realistic range of biological parameters.

For proteins we have chosen ~70 min (ln(2)/γ) as the half-life which is typical average half-life

of many proteins. The chosen synthesis rate constants lead to the molecular abundances in the

range of a few hundred molecules per cell which also falls in the physiological range. We have

performed simulations where rate constants were picked up from log-normal distributions

(CV = 0.3) that takes into account of reasonable range in parameter values. Further we have

studied two different configurations of input signals (AND- and OR-gate) and we also

extended the modeling approach using Hill function to generate bistable switch. In all cases

our calculations produced similar conclusions indicating the generality of our findings.

Supporting information

S1 Codes. Computer codes used to produce the data reported in the manuscript.

(ZIP)

S1 Fig. Detailed networks for 1L and 2L PFL motifs. Detailed networks for 1L PFL, 2L paral-

lel (left) and 2L serial (right) motifs.

(TIFF)

S2 Fig. The steady state distribution of cells in presence of extrinsic noise. The steady state

distribution of cells in presence of extrinsic noise for various number of PFLs with low nonlin-

earity (KM = 0.05) for the Goldbeter-Koshland switch model with AND-gate. Each point here

represents a cell. The upper two rows (blue) and the lower two rows (orange) have cells initial-

ized in the lower and upper steady states respectively.

(TIF)
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S3 Fig. One parameter bifurcation diagrams with high nonlinearity. One parameter bifur-

cation diagrams for parallel (left) and serial (right) models with AND-gate for various number

of loops with high nonlinearity (KM = 0.01) for the Goldbeter-Koshland switches.

(TIF)

S4 Fig. Differentiation with extrinsic noise and high nonlinearity. Differentiation with

extrinsic noise and with high nonlinearity (KM = 0.01) for the Goldbeter-Koshland switch

models with AND-gate. (a-b) The percentage of differentiated (solid) and dedifferentiated

(dashed) cells with varying signal doses for parallel (left) and serial (right) regulatory motifs

with different numbers of PFLs.

(TIF)

S5 Fig. The steady state distribution of cells in presence of intrinsic noise. The steady state

distribution of cells in the bistable region with the intrinsic noise for various number of PFLs

with low nonlinearity (KM = 0.05) for the Goldbeter-Koshland switches with AND-gate. Each

point here represents a cell. The upper two rows (blue) and the lower two rows (orange) have

cells initialized in the lower and upper steady states respectively.

(TIF)

S6 Fig. Differentiation with intrinsic noise and high nonlinearity. Differentiation under

intrinsic noise with high nonlinearity (KM = 0.01) for the Goldbeter-Koshland switch models

with AND-gate. (a-b) The percentage of differentiated (solid) and dedifferentiated (dashed)

cells with varying signal doses for parallel (left) and serial (right) regulatory motifs with differ-

ent numbers of PFLs are shown.

(TIF)

S7 Fig. Susceptibility of bifurcation points to the extrinsic noise. Susceptibility of bifurca-

tion points to the extrinsic noise for the Goldbeter-Koshland switch models with AND-gate

having high nonlinearity (KM = 0.01). The coefficient of variation (top left) and skewness (top

right) of right (SNR) and left (SNL) bifurcation points with increasing number of PFLs are

shown. Comparison of the distributions of right (top row) and left bifurcation (bottom row)

points for parallel and serial models.

(TIF)

S8 Fig. Differentiation with extrinsic noise in OR-gate models. Differentiation with extrinsic

noise with low nonlinearity (KM = 0.05) for the Goldbeter-Koshland switch models with OR-

gate. The percentage of differentiated (solid) and dedifferentiated (dashed) cells with varying

signal doses for parallel (left) and serial (right) regulatory motifs with different numbers of

PFLs.

(TIF)

S9 Fig. Mean residence time of steady states with OR-gate. Stability of steady states under

intrinsic noise: mean residence time steady states with OR-gate. Comparison of mean resi-

dence times of upper (USS) and lower (LSS) steady states for parallel and serial models with

low nonlinearity (top; KM = 0.05) and High nonlinearity (bottom; KM = 0.01). The maximum

simulation time was 1×106 arbitrary time unit.

(TIF)

S10 Fig. Differentiation in AND-gate Hill function models with extrinsic and intrinsic

noise. One parameter bifurcation diagrams (a-b) for parallel (left) and serial (right) models

with Hill function with AND-gate for various number of loops with cooperativity (M = 2). The

color scheme of lines are same as S8 Fig. Comparison of the percentage of cell at the
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intersection of differentiation and dedifferentiation curves for two models with various num-

ber of PFLs. (c) extrinsic noise and (d) intrinsic noise.

(TIF)

S1 Table. Parameter values for the models in AND-gate configurations. Parameter values

for the models in AND-gate configurations. With changing number of feedback loops, the

parameters whose values were adjusted to obtain similar region bistability are highlighted.

Red-coloured fonts indicate that in case of extrinsic noise calculations these rate constants

were sampled from independent log-normal distributions (CV = 0.3) with average value indi-

cated in the table. The unit of rf,i becomes min-1 for i = N. The value of scaling factor (V) was

40.

(DOCX)

S2 Table. List of chemical reactions and their propensities. List of chemical reactions and

their propensities in parallel and serial models with GK switch.

(DOCX)

S3 Table. Parameter values for the models in OR-gate configurations. Parameter values for

the models in OR-gate configurations. With changing number of feedback loops, the parame-

ters whose values were adjusted to obtain similar region bistability are highlighted. Red-col-

oured fonts indicate that in case of extrinsic noise calculations these rate constants were

sampled from independent log-normal distributions (CV = 0.3) with average value indicated

in the table. The value of scaling factor (V) was 40.

(DOCX)

S4 Table. Dynamical equations for the models with Hill function. List of dynamical equa-

tions for models with Hill function.

(DOCX)

S5 Table. Parameters values for the models with Hill function. Parameters values for the

models with Hill function. Red-coloured fonts indicate that in case of extrinsic noise calcula-

tions these rate constants were sampled from independent log-normal distributions

(CV = 0.3) with average value indicated in the table. The value of scaling factor (V) was 30.

(DOCX)
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