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Abstract 

Background:  Alport syndrome (AS), which is a rare hereditary disease caused by mutations of genes including 
COL4A3, COL4A4 and COL4A5, has a wide spectrum of phenotypes. Most disease-causing variants of AS are located 
in the exons or the conservative splicing sites of these genes, while little is known about the intronic disease-causing 
variants.

Methods:  A Chinese AS family was recruited in this study. All the clinical data of AS patient were collected from 
medical records. After pedigree analysis, the pathogenic variants were studied by the whole exome sequencing 
(WES). Minigene assay and in vivo RT-PCR analysis were performed to validate the functions of the variants.

Results:  Renal biopsy showed a typical histopathology changes of AS. WES revealed compound heterozygous sub-
stitution, NM_033380 c.991–14(IVS17) A > G, in the intron 17 of the COL4A5 gene, which were confirmed by Sanger 
sequencing. Moreover, the variant was co-segregated with the phenotype in this family. Minigene assay in cultured 
cell lines showed that a splicing error was induced by this intronic variant, which further confirmed by in vivo RT-PCR 
analysis.

Conclusion:  A novel intronic disease-causing variant in COL4A5 gene was identified by WES, which was the molecu-
lar pathogenic basis of AS.
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Background
Alport syndrome (AS) is a hereditary nephropathy, 
whose phenotypes ranged from isolated hematuria with 
a non-progressive course to progressive renal disease 
with extrarenal abnormalities [1–3]. The molecular basis 

of AS is related to the mutant genes including COL4A3, 
COL4A4 and COL4A5.

The clinical diagnose of AS is mainly based on clinical 
manifestations and renal histopathology. When the clini-
cal manifestations are atypical, genetic testing is power-
ful to establish an accurate diagnosis of AS. Due to the 
large sizes of these genes and the absence of mutation hot 
spots, PCR-based screening of the variants of AS patients 
is much complicated and time-consuming [4, 5]. With 
the progress in next-generation sequencing (NGS), a 
strategy by utilizing targeted capture to analyze COL4A3, 
COL4A4, and COL4A5 is much powerful [6]. However, 
with the expense of whole exon sequencing (WES) goes 
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down, WES has been extensively applied in clinical prac-
tice [7]. For example, WES was successfully utilized to 
identify de novo mutations in COL4A5 in two Korea girls 
with AS [8]. Moreover, WES might be a better choice 
when the clinical manifestations are atypical.

Besides the coding regions, WES can also detect the 
adjacent intronic variants. Although genetic analysis of 
inherited diseases is important, it is still difficult to dis-
tinguish intronic variants leading to splicing errors from 
harmless polymorphisms. Several in silico approaches 
have been developed to assess the function of sequence 
variants, but the fundamental method to analyze splicing 
errors is by in vivo assay [9, 10]. Recently, a hybrid mini-
gene assay has been developed to analyze the function of 
intronic variants associated with splicing errors [11]. For 
the pathogenic variants of AS, most variants are located 
at exons and the conservative splicing sites, while the 
functional intronic variants are very limited. In current 
study, we reported a functional intronic variant in a Chi-
nese family. a functional splicing assay using.

Methods
Subjects
The study was approved by the Ethics Committee of Xin-
qiao Hospital at Army Medical University (Chongqing, 
China). All participants provided written informed con-
sent. The proband was a 9-year-old Chinese Han girl. Her 
family including her parents and her grandparents was 
recruited in current study. Blood samples were collected 
for DNA isolation.

Clinical evaluation
Clinical data was obtained from electronic health 
records. Abdominal ultrasound examination and histo-
pathology study of renal biopsy were performed for clini-
cal diagnosis.

DNA extraction
Genomic DNA was isolated from the peripheral blood 
cells of the pedigree with a QIAamp DNA Blood Mini-
Kit (Qiagen, Germany), according to the manufacturer’s 
instructions.

Exome sequencing
Whole exome sequencing of the DNA samples from the 
proband and the parents was performed by Chigene (Bei-
jing) Translational Medical Research Center (Beijing, 
China), as previously described [12].

In silico splicing assay
A splicing effect of detected mutation was predicted via 
the Alamut Visual v.2.11 software (Interactive Biosoft-
ware, Rouen, France) by using following algorithms; 

SpliceSiteFinder-like, MaxEntScan, NNSPLICE, and 
GeneSplicer.

Hybrid minigene assay
The DNA fragment spanning the exon 17 ~ 19 of Col4A5 
was obtained by PCR, and was cloned into the mini-
gene vector H492 [11]. Then the recombinant vector was 
transfected into HEK293T and Hela cells. Twenty-four 
hours later, total RNA was isolated and RT-PCR was per-
formed to analyse the splicing of recombinant vector, and 
the product was confirmed by Sanger sequencing.

In vivo assay
Subcutaneous adipose tissue was obtained from the 
patient, and total RNA was isolated. RT-PCR was per-
formed to amply a cDNA fragment spanning the exon 
16 ~ 20 of Col4A5. Briefly, total RNA was extracted by 
using an RNA Isolation Kit (TakaRa, Dalian, China) and 
was reverse-transcribed into cDNA. Then regular PCR 
was performed on a cycler with Col4A5 primers: 5′- 
AAA​GAG​GTA​AAC​CAG​GCA​AAGA-3′ and 5′- ATC​
ACT​AGG​AGG​AAT​GTG​AGGG-3′. The product of RT-
PCR was confirmed by Sanger sequencing.

Results
Clinical presentations
A 9-year-old Chinese Han girl was admitted to our 
Department for microscopic hematuria. Five year ago, 
she suffered from proteinuria and urine occult blood 
(3+), and took some renoprotective drugs to ameliorate 
proteinuria. However, urine occult blood was persistent 
positive. After that, no additional treatment was exe-
cuted, as no other symptoms were found.

Urine routine test showed that urine protein (3+) 
and urinary occult blood (3+) were abnormal. But no 
other parameters were revealed by other laboratory 
tests including blood routine tests, serum chemistry and 
immunology. Pure tone audiometry result was unremark-
able. No obvious abnormality was detected by abdominal 
ultrasound examination and electrocardiographic exami-
nation except compression and dilation of left renal vein 
(Fig. 1a).

Then, histopathology study of renal biopsy from the 
proband was performed to further understand its renal 
pathology. Totally, 12 glomeruli were observed, with one 
glomerulus being ischemic sclerosis. Mesangial cells and 
mesangial stromal segments were mildly proliferated, 
and renal tubules were filtered with foam cells (Fig. 1b). 
All the immunological staining including IgA, IgG, IgM, 
complement C3, C4, C1q, K and λ was negative. Seg-
mental thinning, irregular thickening and splitting of the 
glomerular basement membrane (GBM) were observed 
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by electron micrographs (Fig.  1c). The histopathology 
changes fitted well with that of AS.

The proband’s mother was diagnose as chronic glo-
merulonephritis when she was 20 years old because of 
microscopic hematuria. But the symptom was alleviated 
after residential treatment. She had no conscious symp-
toms until her daughter was hospitalized. Her urine rou-
tine test showed positive urine protein (2+) and urinary 
occult blood (3+).

According to the renal biopsy and the family his-
tory, the proband received a treatment of angioten-
sin-converting enzyme inhibitor (ACEi, Irbesartan, 
80 mg/day), as well as traditional Chinese medical to 

protect renal function. Follow-up data showed that 
the UPCR ratio (urinary protein/creatinine) decreased 
from 2355.5 mg/g to 1154.5 mg/g about 1 month later, 
1144.8 mg/g at 3 month later, and 308.6 mg/g about 
1 year later.

Genetic analysis
After investigating the family history, diagnose of 
AS was highly suspected in this family (Fig.  2a). 
To make a conclusive diagnosis, the proband and 
her parents were recommended to have a genetic 
test. After sequencing, a heterozygous substitution, 
NM_033380 c.991–14(IVS17) A > G, was revealed. 

Fig. 1  Clinical diagnostic images of the proband. A Abdominal ultrasound image. B Histopathology study of renal biopsy. C Electron microscopic 
examination of renal biopsy. Bar, 100 μm. Bold arrow indicated the thinning and splitting of GBM. Bar, 2.0 μm

Fig. 2  Genetic analysis of the Chinese family. A Pedigree of the Chinese family. Affected family members are denoted in black. Arrow indicates the 
proband; B Direct Sanger sequencing confirmed the heterozygous mutations of COL4A3 gene. a, proband; b, II-1; c, II-2
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Both the mother and the proband were heterozy-
gous, but her grandparents were wild genotype. The 
variant was further confirmed by Sanger sequencing 
(Fig. 2b). This variant was excluded from the Single 
Nucleotide Polymorphism database (dbSNP) and 
the ClinVar database. In addition, the variant can 
be classified as “Uncertain significance” according 
to the American College of Medical Genetics and 
Genomics (ACMG) standards and guidelines [13].

Mutation analysis
As the variant located in the intron 17, we suspected it 
might affect the splicing. First, we analyzed the influence 
of the variant on splicing using the Alamut Visual v.2.11 
software (Interactive Biosoftware, Rouen, France). As 
shown in Fig. 3a, an additional splicing acceptor site was 
generated by the variant, which was a little stronger than 
the original one. Therefore, the DNA fragment spanning 
the exon 17 ~ 19 of Col4A5 was amplified and cloned into 
minigene vector (Fig.  3b). After transfect, the spliced 
RNA from the hybrid minigene had additional 13-bp 
fragment, which was confirmed by Sanger sequencing 
(Fig. 3c). Therefore, this intronic variant is functional.

In vivo validation
To confirm the result of minigene assay, we further ana-
lyzed the splicing aberration in the patient, which might 
be the most reliable. For this purpose, subcutaneous 
adipose tissue was obtained from the patient, and total 
RNA was isolated. As shown in Fig. 4a, a corresponding 
DNA band was detected. Subsequently, Sanger sequenc-
ing revealed that an additional fragment of 13-bp was 
confirmed, which would lead to reading frame shift 
(Fig. 4b).

Discussions
In current study, we reported a disease-causing variant 
in intron of COL4A5 gene. The pathogenic mutation in 
COL4A5 gene was identified by WES and confirmed by 
subsequent Sanger sequencing and functional analysis.

AS is a rare genetic disorder that caused by pathogenic 
variants in COL4A3, COL4A4, and COL4A5 that result 
in abnormalities of the collagen IV α345 network of base-
ment membranes. Its phenotypes are complicated, which 
can vary from isolated hematuria with a non-progressive 
to progressive renal disease with extrarenal abnormali-
ties. Most AS cases will deteriorate to ESRD within the 
first three decades of their lives [14]. For the AS cases, 

Fig. 3  Mutation analysis of the intronic variant. A Analysis using Alamut Visual v.2.11 has shown that the variant c.911-14A > C generated the novel 
potential splicing acceptor site (red rectangle). B Exon 17 to 19 spanning the intronic variant was cloned into vector H492. C Splicing products in 
cell lines were confirmed by Sanger sequencing
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microhematuria is the most frequently observed symp-
tom, although some individuals are asymptomatic. A 
proportion of patients eventually develop proteinuria. 
Both the proband and her mother were found to have 
microhematuria and proteinuria. However, the symp-
toms of the mother were a little lighter than that of the 
proband.

Variants in COL4A5 count for about 80–85% of 
AS patients [15]. To date, there are more than 1300 
variants of COL4A5 gene deposited in the ClinVar 
database. More and more variants are discovered by 
WES technology [16]. All of these variants include 
deletion, duplication, substitution and splicing muta-
tion. Among these variants of small indels, most vari-
ants are pathogenic or likely pathogenic. In previous 
reports regarding the splicing mutation, the variants 
are almost located at the evolutional conserved sites 
within the boundary of exons and introns. Few reports 
focused on the functions of intronic variants, bec-
uase it is hard to distinguish intronic variants lead-
ing to splicing errors from harmless polymorphisms. 
Recently, Chiereghin C et  al. reported an intronic 
disease-causing variant in COL4A5. Their vari-
ant (c.2245-40A > G) was outside the conventionally 
screened candidate region for genetic diagnosis, but 
was functional by using a minigene-based approach 
in HEK293 cells [17]. According to the ACMG guide-
lines, our variant is classified as Uncertain Signifi-
cance. However, based on its co-segregation with 
the phenotype in this family, and its influence on the 
splicing, this variant is finally classified as pathogenic 
in this study.

RNA splicing is more complicated than expected. 
Besides the conservative splicing donor and acceptor 
site, additional sequences known as splicing enhanc-
ers and silencers can also facilitate exon selection by the 
spliceosome [18, 19]. These enhancers and silencers can 
be located at exons or introns, acting as binding sites for 
splicing factors like the serine/arginine-rich (SR) protein. 
In turn, variants involved in these elements also lead to 
splicing errors. For example, exon skipping was induced 
by a nonsense mutation in the DMD gene, which led to 
the conversion of a splicing enhancer to a splicing silencer 
[20]. Therefore, besides splicing donor or receptor sites, 
other intronic variants need to be carefully analyzed.

Currently, one of the most efficient reproaches to 
functionally analyze the intronic variants is minigene-
based approach, when the in vivo splicing study can-
not be available. Horinouchi T et al. reported a hybrid 
minigene system to analyze the intronic variants and 
their results showed 6 of seven tested intronic vari-
ants were functional [11]. By using this method, we 
further confirm the splicing error caused by this vari-
ant. As COL4A5 gene locates on X-chromosome, only 
one type of the splicing product was detected by RT-
PCR analysis in this study, which might be due to ran-
dom X inactivation [21, 22]. This might also be the 
reason why female X-linked AS patients have much 
complicated clinical presentations. Nevertheless, the 
main limitation of current study is that the convincing 
of intronic pathogenic variant is time-consuming. The 
genetic information cannot benefit in-patient treat-
ment timely, but for long-term follow-up and genetic 
counseling.

Fig. 4  In vivo validation of the splicing of COL4A5 gene. A Total RNA was obtained from the fat tissue, and was analyzed by RT-PCR. 1, DNA ladder; 
2, RT-PCR product. B RT-PCR product was directly sequenced. Black line indicated the additional fragment
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Conclusion
In summary, the pathogenic intronic variant in 
COL4A5 was identified by WES in a Chinese AS family 
and its effect on splicing was verified by minigene assay 
and in vivo study. Identification of the pathogenic vari-
ant helps to understand the relationship between phe-
notypes and genotypes of AS.
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