
Neuro-Oncology
24(10), 1712–1725, 2022 | https://doi.org/10.1093/neuonc/noac105 | Advance Access date 26 April 2022

 1712

EGFR suppresses p53 function by promoting p53 
binding to DNA-PKcs: a noncanonical regulatory axis 
between EGFR and wild-type p53 in glioblastoma
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Abstract
Background. Epidermal growth factor receptor (EGFR) amplification and TP53 mutation are the two most common 
genetic alterations in glioblastoma multiforme (GBM). A comprehensive analysis of the TCGA GBM database re-
vealed a subgroup with near mutual exclusivity of EGFR amplification and TP53 mutations indicative of a role of 
EGFR in regulating wild-type-p53 (wt-p53) function. The relationship between EGFR amplification and wt-p53 func-
tion remains undefined and this study describes the biological significance of this interaction in GBM.
Methods. Mass spectrometry was used to identify EGFR-dependent p53-interacting proteins. The p53 and DNA-dependent 
protein kinase catalytic subunit (DNA-PKcs) interaction was detected by co-immunoprecipitation. We used CRISPR-Cas9 
gene editing to knockout EGFR and DNA-PKcs and the Edit-R CRIPSR-Cas9 system for conditional knockout of EGFR. ROS 
activity was measured with a CM-H2DCFDA probe, and real-time PCR was used to quantify expression of p53 target genes.
Results. Using glioma sphere-forming cells (GSCs), we identified, DNA-PKcs as a p53 interacting protein that function-
ally inhibits p53 activity. We demonstrate that EGFR knockdown increased wt-p53 transcriptional activity, which was asso-
ciated with decreased binding between p53 and DNA-PKcs. We further show that inhibition of DNA-PKcs either by siRNA 
or an inhibitor (nedisertib) increased wt-p53 transcriptional activity, which was not enhanced further by EGFR knock-
down, indicating that EGFR suppressed wt-p53 activity through DNA-PKcs binding with p53. Finally, using conditional 
EGFR-knockout GSCs, we show that depleting EGFR increased animal survival in mice transplanted with wt-p53 GSCs.
Conclusion. This study demonstrates that EGFR signaling inhibits wt-p53 function in GBM by promoting an inter-
action between p53 and DNA-PKcs.

Key Points

1. EGFR signaling inhibits wt-p53 function in GBM

2. EGFR functions by enhancing the interaction between DNA-PKcs and p53 and 
functionally inhibits p53 activity

3. EGFR plays an essential role in tumor maintenance in wt-p53 glioma.
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Glioblastoma multiforme (GBM) is the most aggressive and 
common primary brain tumor in adults. The current standard 
treatment includes surgical resection, radiotherapy, and ad-
juvant chemotherapy with temozolomide; however, the out-
come of GBM patients remains poor, with a median survival 
duration of 15–17 months.1,2 Novel therapeutic approaches 
are desperately needed to improve the outcome of these 
patients. A comprehensive analysis of The Cancer Genome 
Atlas (TCGA) GBM database led to the identification of 
three relevant subgroups (proneural, classical, and mes-
enchymal).3–5 Based on the genome-wide DNA, RNA, and 
epigenome analyses of TCGA GBM samples, translational 
studies are needed to bring these research results closer to 
the clinical routine and evaluate markers that may define 
the main molecular subgroups, predict prognosis and iden-
tify potential future treatment targets.

GBM arises through the accumulation of genetic alter-
ations, including 1p/19q co-deletion, isocitrate dehydro-
genase1/2 (IDH1/2) gene mutation, EGFR amplification, 
and mutation, phosphatase and tensin homolog (PTEN) al-
terations, TP53 (which encodes the p53 tumor suppressor 
protein) mutation, and telomerase reverse transcrip-
tase (TERT) promoter gene mutations.6 Of these genetic 
changes, EGFR amplification and TP53 mutation are the 
two most common in GBM. About 57% of GBM patients 
have EGFR amplification, and 50% have TP53 mutation.7–9 
Although EGFR amplification and/or overexpression and 
TP53 mutation are 2 genetic events that seem to molecu-
larly differentiate these clinical subtypes of GBM, while the 
association of these 2 hallmarks has been considered to be 
almost mutually exclusive, studies have shown coexist-
ence of p53 mutation and EGFR amplification in subsets of 
primary GBM tumors10–13 and the prognostic significance 
of these concurrent alterations has not been studied. GBM 
subgroup showing simultaneous alteration of EGFR and 
p53 pathways are characterized by a worse clinical out-
come and simultaneous deregulation of the EGFR and p53 
pathways may indicate a relevant cell cycle deregulation 
that leads to more aggressive GBM formation.9

The signaling pathway cascades activated by EGFR am-
plification, include activation of cyclooxygenase-2,14,15 
KRAS and AKT signaling, and mammalian target of ra-
pamycin (MTOR), together with phosphatidyl-inositol-3-
kinase (PI3K) pathways.16–19 Mutations of TP53 can disrupt 
normal p53 functions, and missense mutations can have a 
gain of function (GOF) which promotes tumor proliferation 

and metastasis.20 In the remaining malignant tumors with 
wt-p53, the normal function of p53 is usually suppressed 
so that the tumors can avoid apoptosis and maintain high 
proliferation. MDM2 and MDM4 are the main suppressors 
of p53. In most cases, the levels of MDM2 and MDM4 are 
overproduced to suppress the normal pro-apoptotic func-
tion of p53.21 A pan-cancer study from TCGA reveals that 
MDM2 and MDM4 amplification shows mutual exclusivity 
with TP53 mutation in GBM.22 In the present study, we also 
observed a mutually exclusive relationship between EGFR 
and TP53 mutation, raising the question as to whether 
EGFR plays a direct role in suppressing wt-p53 activity in 
GBM. The molecular interactions between EGFR and p53 
have yet to be described and the prognostic significance 
has not been studied. Therefore, this study was under-
taken to evaluate the concurrent expression of wt-p53 
and EGFR in GBM to understand the mechanism of tumor 
maintenance.

Using GSCs as the model system,23–27 we demonstrate 
that EGFR plays an essential role in tumor maintenance in 
wt-p53 GSCs. We further showed that EGFR inhibits wt-p53 
function by enhancing the interaction between DNA-PKcs 
and p53. These findings provided a new noncanonical reg-
ulatory axis between EGFR and wt-p53 in GBM.

Materials and Methods

Cell Lines and Reagents

Patient-derived glioma sphere-forming cell (GSC) lines 
with varying EGFR and p53 status were used in this study. 
The GSCs were established by isolating neurosphere-
forming cells from fresh surgical specimens of GBM be-
tween 2005 and 2008, as described previously.28 Cells 
were authenticated by testing short tandem repeats 
using the Applied Biosystems AmpFISTR Identifier kit 
(Foster City, CA). The most recent authentication was 
performed on July 31, 2017. This study was approved 
by the Institutional Review Board of The University of 
Texas MD Anderson Cancer Center. The GSC lines were 
cultured in DMEM/F12 medium containing B27 supple-
ment (Invitrogen, Carlsbad, CA), basic fibroblast growth 
factor (20  ng/mL), and epidermal growth factor (20  ng/
mL). Erlotinib and nedisertib were purchased from 
Selleckchem (Houston, TX).

Importance of the Study

EGFR is the most frequently amplified gene in GBM 
and plays a crucial role in maintaining tumor growth. 
Around 30% of GBM patients harbor p53 mutation. In 
malignant tumors with wt-p53, the normal function of 
p53 is suppressed by Mouse double minute 2 homolog 
(MDM2) and Mouse double minute 4 homolog (MDM4). 
Remarkably, like MDM2, EGFR amplification shows 
mutual exclusivity with TP53 mutation in GBM. This re-
sult raises the question of whether EGFR plays a role 

in suppressing wt-p53 activity in GBM. Here, we report 
the functional relationship between EGFR and p53 in 
GBM. We showed that EGFR inhibited wt-p53 function 
by enhancing the interaction between DNA-PKcs and 
p53. Knockdown of either EGFR or DNA-PKc increased 
wt-p53 transcriptional activity due to decreased binding 
between p53 and DNA-PKcs. These findings provided a 
new noncanonical regulatory axis between EGFR and 
wt-p53 in GBM for novel biological roles.
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Cell Growth Curve

GSC lines were treated in triplicate, with or without dox-
ycycline (1 μg/mL), for 3, 6, and 10 days. Cell growth was 
tested using the CellTiter-glo (Promega, Madison, WI) via-
bility assay.

Immunoblotting Analysis

Cell lysates were analyzed by western blot analysis as pre-
viously described.29 The membranes were probed with the 
following primary antibodies: anti-EGFR, anti-p53, anti-
DNA-PKcs, anti-phosphorylated p53, anti-PUMA (all from 
Cell Signaling, Boston, MA, USA), anti-MDM2, and anti-
MDM4 (Abcam, Cambridge, MA, USA), and anti-p21 (BD, 
San Jose, CA, USA). Anti-β-actin or anti-GAPDH antibodies 
were purchased from Sigma (St. Louis, MO, USA) and 
used as the loading control. Densitometric quantification 
of immunoblots was done using NIH open-source software 
Image J (version 1.53, https://imagej.nih.gov/ij/). The pro-
tein expression was normalized to actin/GAPDH and pre-
sented as a fold change in the untreated or control group.

Immunoprecipitation

Cells were lysed in lysis buffer (50  mM Tris–HCl [pH 
8.0], 5  mM EDTA, 150  mM NaCl, 0.5% NP-40, and 1  mM 
phenylmethylsulfonyl fluoride. Cell lysate (200 to 1000 μg 
of protein) was immunoprecipitated with specific anti-
bodies and Pierce Protein A/G UltraLink Resin (Thermo 
Fisher) for 18 h at 4°C and eluted using 2× SDS buffer and 
followed by Western blot detection.

RNA Extraction and Real-Time Quantitative 
Polymerase Chain Reaction

Total RNA was extracted from GSCs using the RNeasy 
Mini kit (Qiagen, Valencia, CA, USA), according to the 
manufacturer’s instructions. Real-time quantitative PCR was 
performed with the SuperScript III One-Step RT-PCR System 
and Sybrgreen DNA polymerase (Invitrogen, Grand Island, 
NY, USA). The sequences of primers for quantitative PCR 
are GAPDH forward 5′-GGAGCGAGATCCCTCCAAAAT-3′, 
GAPDH reverse 5′-GGCTGTTGTCATACTTCTCATGG-3′, 
PUMA forward 5′- GACCTCAACGCACAGTACGAG-3′, PUMA 
reverse 5′- AGGAGTCCCATGATGAGATTGT-3′, p21 for-
ward 5′-TGGAGACTCTCAGGGTCGAAA-3′, and p21 reverse 
5′-GGCGTTTGGAGTGGTAGAAATC-3′.

RNA Interference

EGFR and DNA-PKcs were silenced in GSCs by transfecting 
40  nM siRNA against human EGFR (cat. no. SI00300104 
and SI02660147, QIAGEN, Germantown, MD, USA), DNA-
PKcs (cat. no. SI02224236 and SI02224229, QIAGEN) and 
non-silencing negative control siRNA (cat. no.  1027415, 
QIAGEN) using Lipofectamine 2000 (Invitrogen Life 
Technologies). The knockdown efficiency was measured by 
immunoblotting.

For the CRISPR-Cas9-mediated EGFR knockout, a double 
nickase plasmid (sc-400015) and control double nickase 
plasmid (sc-437281, Santa Cruz) were transfected with 
Lipofectamine 2000 (Invitrogen, Grand Island, NY) for 48 
hours. Cells with green fluorescent protein were sorted 
onto 96-well plates to form single colonies. After 4–5 
weeks, single colonies were transferred to 24-well plates 
to determine cell proliferation. A  reverse transcription-
polymerase chain reaction was performed, followed by 
sequencing to confirm complete allelic knockout.

Inducible Knockout Using the Edit-R CRISPR-
Cas9 System for Genome Engineering

EGFR editing in GSC11 cells with Edit-R-inducible lentiviral 
Cas9 (CAS11229, Dharmacon, Lafayette, CO, USA) and 
EGFR sgRNA (GSGH11838-246991992, Dharmacon) was 
performed by inducing Cas9 expression with doxycycline 
using isolated clonal cells according to the manufacturer’s 
instructions (Dharmacon). Edit-R Lentiviral sgRNA Non-
targeting Control also from Dharmacon (GSG11811) was 
used as a control.

Mass Spectrometry

Protein samples of control and EGFR knockout GSC262 
cells were separated by 5% SDS-PAGE. Proteins bands 
were Visualized by Coomassie Brilliant Blue G Colloidal 
(Sigma) and a band of interest was subjected to mass spec-
trometry analysis at Clinical and Translational Proteomics 
Service Centre, University of Texas Health Science Center, 
Houston, Texas. The Exponentially Modified Protein 
Abundance Index (emPAI) was used to show the relative 
quantitation of the proteins in a mixture on the basis of pro-
tein coverage by the peptide matches in a database search 
result.30 The formula is emPAI = 10exp(Nobserved/Nobservable) 
– 1, where Nobserved is the number of experimentally ob-
served peptides and Nobservable is the calculated number of 
observable peptides for each protein.

ROS Measurement

To measure ROS activity, GSCs were stained with a 
CM-H2DCFDA probe, according to the manufacturer’s in-
structions (Molecular Probes, Invitrogen). Cells were sus-
pended in prewarmed HBSS containing a 5–10  μmol/L 
CM-H2DCFDA probe and incubated at 37°C for 30 minutes. 
ROS activity was acquired with FACS (BD Biosciences, San 
Jose, CA, USA) and analyzed using FlowJo software (Tree 
Star, Inc., Ashland, OR, USA).

Intracranial Tumor Studies

All mouse experiments were performed in compliance 
with the National Institutes of Health guidelines for animal 
research and approved by the MD Anderson Cancer Center 
Institutional Animal Care and Use Committee. For intra-
cranial studies, animals were randomly divided into three 
groups (n = 16). GSC11-control and GSC11-EGFRKO35 cells 

https://imagej.nih.gov/ij/


1715Ding et al. EGFR overrides wt-p53 function in glioblastoma
N

eu
ro-

O
n

colog
y

(5 x 105) were implanted in 6- to 8-week-old nude mice 
as described previously.31 Two days after cell implanta-
tion, half of mice were given a normal diet and the other 
half were given a doxycycline diet for conditional EGFR 
knockout. Tumor growth was visualized and quantified 
using the IVIS system. Mice were monitored daily and eu-
thanized when moribund. Whole brains were extracted, 
rapidly frozen in liquid nitrogen, and stored at –70°C or 
stored in formalin.

Statistical Analysis

The statistical analysis was performed using Student’s 
t-test. The results are presented as the mean of three in-
dependent experiments. We used Kaplan–Meier method to 
plot survival curves and used log-rank tests to compare sur-
vival curves between groups. Differences were considered 
statistically significant at P < .05 for all comparisons.

Results

EGFR Amplification and TP53 Alterations Are 
Mutually Exclusive in GBM

Inactivation of p53 in most cancers results from the loss 
or mutation of TP53 or amplification of MDM2 or MDM4 
which encode negative regulators of p53.21 To identify ad-
ditional candidate negative regulators of the p53 pathway, 
we evaluated sequencing data from 543 GBM patients 
from TGCA.5 The analysis showed that in addition to a mu-
tual exclusive relationship between amplification of MDM2 
and TP53 alterations, the amplification of EGFR and TP53 
alterations were also mutually exclusive in GBM patients 
indicating a potential role of EGFR in wt-p53 inhibition 
(Figure 1A and Supplementary Table S1). To explore if this 
relationship could be generalized to other tumor types, 
we evaluated a lung cancer study (as EGFR alterations 
are also recurrent in lung adenocarcinomas) and a pan-
caner study.22,32 We find that in the 1144 patients with lung 
cancer and the pan-cancer study of 10945 patients, EGFR 
amplification co-exists with TP53 alterations and is not 
associated with wt-p53 co-occurrence (Figure 1B, C and 
Supplementary Table S1). Thus, the relationship between 
EGFR and TP53 is unique to GBM. To evaluate this relation-
ship in GBM, we selected five GSC lines and divided them 
into two groups on the basis of TP53 status: wild-type and 
TP53 with alterations (Figure 1D). EGFR amplification was 
evaluated by copy number variation, as determined by an 
OncoScan array, and stratified according to a threshold of 
copy number variation ≥2.33 Western blot analysis further 
confirmed EGFR and p53 protein levels in the GSCs with 
EGFR amplification (Figure 1E).

EGFR Suppresses p53 Activity in GSCs With 
wt-p53 Status

To study the role of EGFR in regulating p53 function, we 
knocked down EGFR expression using siRNA in both 
wt-p53 and mut-p53 GSCs. In wt-p53 GSCs (GSC11 and 

GSC34), p53 protein levels and activity were increased 
after EGFR knockdown, as indicated by increased p21 and 
PUMA protein expression and mRNA expression (Figure 
2A, B, E–H). PUMA and p21 are among the most impor-
tant downstream effectors of p53, and increased p21 and 
PUMA at both the protein and mRNA levels after EGFR 
knockdown indicated that EGFR plays a role in inhibiting 
p53 activity (Figure 2A, B, E–H). In comparison, EGFR 
knockdown in mut-p53 cells (GSC 274 and GSC 262) had no 
effect on p21 and PUMA levels both at the protein as well 
as mRNA level (Figure 2C, D, I–L). These data indicate the 
EGFR regulated p53 activity in GSCs harboring wt-p53 but 
not mut-p53 GSCs. Of note, attempts to delete EGFR was 
lethal to cells with EGFR amplification, indicating an essen-
tial role of EGFR in cell survival.

Further, we used erlotinib, an EGFR inhibitor to study the 
suppression of EGFR function and its effects on p53 regu-
lation. We show that PUMA mRNA levels were increased 
in both wt-p53 and mut-p53 GSCs with erlotinib treatment 
(Figure 2M–P). However, we did not observe a tight regula-
tion of p21 with erlotinib treatment (Supplementary Figure 
S1), which may be due to other signaling mechanism regu-
lating p21other than EGFR.

EGFR Induces Physical Binding Between DNA-
PKcs and p53 In Vitro

p53 associates with many co-factors or binding partners 
that selectively alter its transcriptional activity. In addi-
tion, many proteins such as MDM2, bind both wt-p53 and 
mut-p53. To determine how EGFR regulates p53 activity 
and to identify binding partners of p53 that are EGFR de-
pendent, we performed a p53 immunoprecipitation experi-
ments followed by coomassie blue staining of samples 
from EGFR deleted mut-p53 and control cells. We used 
mut-p53 GSC262 cells to knockout EGFR since EGFR de-
letion in wt-p53 cells killed cells due to essential role 
of EGFR for cell survival. The immunoprecipitation re-
sults revealed a band of 400 KD in control cells; this 400 
KD band was significantly reduced in EGFR knockout 
cell immunoprecipitates, indicating that EGFR alters the 
binding affinity of p53-binding partners to p53 (Figure 3A). 
The other bands in the immunoprecipitates were non-
specific bands as they appeared in both samples. To fur-
ther identify the binding protein, we analyzed the 400 KD 
band using mass spectrometry. A total ion chromatogram 
of the immunoprecipitated band identified DNA-PKcs 
in the presence of intact EGFR (Supplementary Table S2 
and Figure S2). DNA-PKcs refers to DNA-dependent pro-
tein kinase catalytic subunit (cs) for which PRKDC (Protein 
Kinase, DNA-Activated, Catalytic Subunit) is a protein-
coding gene. We next wanted to validate the interaction 
and confirm that DNA-PKcs is indeed a binding partner 
of p53. For that, we performed p53 immunoprecipitation 
followed by Western blot analysis with a DNA-PKcs anti-
body. The results showed that DNA-PKcs clearly forms a 
complex with wt and mut-p53 (Figure 3B). To validate the 
EGFR-dependence of the wt-p53 and DNA-PKcs interaction 
we used short-term knockdown of EGFR in wt-p53 cells. 
Clear interactions were present in scrambled treated cells; 
however, the interaction between DNA-PKcs and p53 was 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac105#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac105#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac105#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac105#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac105#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac105#supplementary-data
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attenuated in knockdown EGFR cells (Figure 3C). These 
data demonstrate the interaction between p53 and DNA-
PKcs is EGFR dependent.

Inhibition of DNA-PKcs Restores wt-p53 Activity 
in GSCs

It is well known that binding of p53 with its partners modu-
lates p53 activity. For that, we knocked down DNA-PKcs 
using siRNA in wt-p53 GSCs. We demonstrated that DNA-
PKcs knockdown increased p53 activity in wt-p53 GSCs, as 
shown by increased p21 and PUMA both at the protein and 

at mRNA levels (Figure 4A–C). We also evaluated if treat-
ment with the DNA-PKcs inhibitor nedisertib would also 
modulate p53 activity. We showed that treatment with the 
DNA-PKcs inhibitor nedisertib activated p53, as shown by 
an increased level of p21 and PUMA. Increased p53 ac-
tivity coincided with increased pp53(S15) phosphorylation 
after nedisertib treatment in wt-p53 GSCs (Figure 4D and 
E. Further, a modest increase in total DNA-PKcs expres-
sion was observed at higher doses of nedisertib treatment 
(Figure 4F). These data indicate that DNA-PKcs binds p53 
and inhibits its activity in wt-p53 GSCs.

To rule out the possibility of the increased p21 and 
PUMA due to DNA damage accumulation response under 
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DNA-PKcs knockdown, we examined accumulation of DNA 
damage after treating cells with nedisertib in two each of 
wt-p53 and mut-p53 cells. We used both cleaved-PARP and 
γ-H2AX expression by WB to assess DNA damage and ap-
optosis (Supplementary Figure S3). Our data revealed no 
clear trend in accumulation of DNA damage and induction 
of p21 and PUMA expression in the context of either wild-
type or mutant p53 cells. Thus, induction of p21 and PUMA 
with either EGFR or DNA-PKcs knockdown in wt-p53 cells 
are primarily associated with p53 regulation by EGFR.

EGFR Inhibits p53 Activity by Affecting the 
Binding Between DNA-PKcs and p53

To determine whether DNA-PKcs is required for EGFR-
mediated p53 inhibition, we first generated a DNA-PKcs 
knockout (KO) GSC with wt-p53 from a single clone, fol-
lowed by second knockdown of EGFR in the DNA-PKcs KO 
cells. p53 was activated following loss of DNA-PKcs alone 
and not further increased with EGFR knockdown; indicating 
that EGFR inhibition of p53 requires DNA-PKcs (Figure 5A).

ROS Regulates EGFR-Mediated DNA-PKc and 
p53 Binding

In previous studies, we showed the role of ROS in regu-
lating EGFR-mediated DNA damage response.33 Elevated 
ROS levels were reported to be associated with EGFR am-
plification.34 Therefore, we next determined whether ROS 
is involved in regulation of p53 function by EGFR. We 
measured ROS levels in EGFR knockdown cells by flow 
cytometry. Knockdown of EGFR by siRNA did not lead to a 
significant decrease in ROS levels (Supplementary Figure 
S4). Further, to determine whether ROS regulates p53 ac-
tivity in GSCs, we treated GSC11 and GSC34 cells with 
YCG063, ROS inhibitor, and showed that both wt-p53 cell 
lines decreased ROS production by DCFDA staining and 
flow cytometry (Figure 5B and C). To further understand 
how ROS suppresses p53 activity in GSCs, we checked the 
binding between DNA-PKcs and p53 after ROS inhibitor 
treatment. We found that ROS inhibitor did not affect either 
the levels of DNA-PKcs or the levels of p53 in GSC11; how-
ever, we observed a decreased binding between DNA-PKcs 
to p53 and increased p53 activity (Figure 5D). In addition, 
we showed that in two wt-p53, ROS inhibition by YCG063 
increased p53 targets genes p21 and PUMA expression, 
clearly showing that ROS regulates p53 activity in GSCs 
(Figure 5D–H). Further, it has been reported that pharmaco-
logical inhibitor of EGFR erlotinib decreases ROS levels in 
GBM, non-small cell lung cancer, LPS-induced inflamma-
tion, and adenine-induced kidney injury.35–38 These findings 
indicate that ROS is involved as a signaling mediator in the 
EGFR-mediated regulation of p53 through the binding of 
DNA-PKcs and p53.

EGFR Functions as the Driver of Tumor 
Maintenance in wt-p53 GSCs

To study whether EGFR plays an essential role in 
tumor maintenance in wt-p53 GSCs, we generated a 

doxycycline-inducible, Edit-R CRISPR-Cas9 system for 
the conditional knockout of EGFR in GSC11 cells (Figure 
6A). EGFR knockout by the Edit-R CRISPR-Cas9 in clone 
35 (EGFRKO35) was confirmed by western blot analysis 
(Figure 6A). EGFR depletion in GSC11 (GSC11-EGFRKO35) 
cells led to cell death with 1 μg/mL doxycycline treatment, 
whereas GSC11 control cells proliferated, demonstrating 
that EGFR was essential for the cell survival (Figure 6B). 
Further, GSC11 control and GSC11 EGFRKO35 cells were 
treated with doxycycline (1  μg/mL) for 10  days and cell 
growth curve showed that EGFR knockout significantly re-
duced cell number (Figure 6C).

We then implanted the inducible EGFR knockout cells in 
the brain. On day 2 after implantation, half mice (n = 8) were 
given a normal diet and remaining half (n  = 8) were fed 
doxycycline diet to delete EGFR. Consistent with in vitro re-
sults, tumor volume in the GSC11-EGFRKO35 group with a 
doxycycline diet was significantly reduced compared with 
the mice fed with normal diet (Figure 6D, E). Furthermore, 
the GSC11-EGFRKO35 group with the doxycycline diet 
showed an extended median survival duration compared 
to GSC11-EGFRKO35 group with a normal diet (Figure 6F). 
Total EGFR protein levels in bulk tumor samples from mice 
after EGFR knockout showed a significant decrease in pro-
tein levels compared with the respective control groups 
(Figure 6G). These findings indicate that EGFR plays an 
essential role in tumor maintenance in wt-p53 GSCs and 
overrides the tumor suppressor function of p53.

Discussion

There is increasing evidence that both the inactivation of 
tumor suppressor genes and the activation of oncogenes 
are involved in the evolution of GBM. The most common 
genetic alterations in GBM include loss of heterozygosity 
on chromosome 10, mutations in TP53, amplification and 
rearrangements of EGFR gene, amplification of MDM2, 
mutations of PTEN, loss of tumor suppressor genes 
p16INK4a/p14ARF, and mutations of retinoblastoma gene.10 
Furthermore, a comprehensive genomic-based classifi-
cation of GBM TCGA database led to the identification of 
three relevant subgroups (proneural, classic, and mesen-
chymal).5,39,40 It also revealed a subgroup with near mu-
tual exclusivity of EGFR amplification and TP53 mutations. 
Despite the high frequency of EGFR and TP53 genetic al-
terations in gliomas, little is known about their crosstalk 
during tumor progression. Therefore, this study was under-
taken to investigate the functional relationship between 
EGFR and p53 in the context of tumorigenesis in GBM. 
Our results demonstrated that wt-p53 activity is attenuated 
downstream of EGFR via the passenger partner DNA-PKcs.

The p53 (tumor suppressor) is a principal mediator of 
cell cycle arrest, senescence, and apoptosis in response to 
stress and cellular damage. Approximately 30% of patients 
with GBM harbor TP53 mutations or deletion. Amplification 
of MDM2 and MDM4 can be identified in 25% of patients 
with wt-p53 GBM. MDM2 and MDM4 are two critical nega-
tive regulators of p53, and amplification of MDM2 or MDM4 
is mutually exclusive with TP53 mutation in various malig-
nant tumors.21,41 Interestingly, amplification of EGFR is also 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac105#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac105#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac105#supplementary-data
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mutually exclusive with TP53 mutation in GBM, which is rare 
in other cancers. EGFR amplification occurs in about 60% of 
primary GBMs, indicating that EGFR has a significant role as 
a driver of tumorigenesis in GBM. The main function of EGFR 
amplification is to stimulate tumor growth by activating its 
downstream signaling pathways, such as the PI3K/AKT and 
MAPK/ERK signaling pathways. However, whether EGFR 
functions to promote tumor proliferation by directly or in-
directly suppressing tumor suppressors, such as p53, was 
unclear.42 Our data showed that EGFR expression overrides 
wt-p53 function, as knockdown of EGFR in GSCs with wt-p53 
restored p53 activity, indicating that alterations of EGFR ex-
pression can affect p53 activity and may play an important 
role in glioma tumorigenesis. Because the cellular localization 
of EGFR and p53 are mainly distant, we explored the possi-
bility that EGFR interacts with p53, either directly or indirectly, 
via an intermediate that acts as a bridge between EGFR and 
p53. Previous studies have shown the existence of a nuclear 
EGFR signaling pathway and gene activation in glioma.14,42,43 
Thus, our current study raised the possibility of the existence 
of overlapping mechanisms that might be influencing the 
subcellular localization of EGFR and regulating p53 function.

The finding that EGFR depletion in wt-p53 cells restored 
p53 activity and function raises the possibility of crosstalk 
between EGFR and p53 in the cytoplasmic compartment, 
since no binding between EGFR and p53 was observed 
in the nucleus (unpublished data). Interestingly, a critical 
kinase in DNA repair pathways (DNA-PKcs) was among 
the candidates that were observed to be p53 binding part-
ners.44 As a key enzyme in the nonhomologous end-joining 
pathway of DSB repair, DNA-PKcs recruits repair proteins 
by phosphorylating its substrates. Activated DNA-PKcs ex-
pression is significantly higher in human glioma and cor-
relates with malignant development and poor prognosis 
in glioma patients.45 A recent study identified DNA-PKcs as 
a key DNA repair enzyme in GSCs, which drives radiation 
resistance in GBM.46 While in the nucleus, EGFR interacts 
with and stimulates the kinase activity of DNA-PKcs, which 
results in the proficient repair of DSBs and provides an 
explanation for the radio-resistance conferred by EGFR.47 
Further prior studies have shown that DNA-PKcs and p53 
can form a stable complex in cells; however, the exact reg-
ulation of the interaction between DNA-PKcs and p53 is 
still unclear and is an important area of investigation.48

In our study, the binding between DNA-PKcs and p53 was 
significantly reduced with EGFR knockdown, which demon-
strates that EGFR signaling, and DNA repair pathways are 
closely related in GBM. p53 function is context-dependent, 
which can either cause cell cycle arrest or induce apoptosis 
and cell senescence. Therefore, p53 plays a crucial role in 
controlling cellular fate, and downregulation of EGFR in 
wt-p53 cells led to the restoration of p53 activity and tumor 
suppressor function of p53. In this aspect, we showed that 
EGFR induces the interaction between p53 and DNA-PKcs; 
this binding suppresses p53 phosphorylation at Ser-15 
residue. Further inhibition of DNA-PKcs by knockdown or 
nedisertib restores wt-p53 anti-tumor function.

In conclusion, our finding demonstrates that EGFR regu-
lates wt-p53 transcriptional activity, mainly by promoting an 
interaction between p53 and DNA-PKcs, thereby maintaining 
tumor growth in GBM. Further, DNA-PKcs also promotes 
cell survival by facilitating DNA repair under various DNA 

damaging conditions. Future investigations are needed to 
elucidate the precise mechanism by which EGFR mediates 
the DNA-PKc and p53 interaction. Considering the role of 
DNA-PKc in complex formation with p53, the use of DNA-
PKcs inhibitors in conjunction with EGFR inhibitors could be 
a promising therapeutic strategy for a subgroup of GBM pa-
tients with EGFR amplification and wt-p53 status.

Supplementary material

Supplementary material is available online at Neuro-
Oncology (http://neuro-oncology.oxfordjournals.org/).
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