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Abstract
Polyploidization, whereby an organism inherits multiple copies of the genome of
their parents, is an important evolutionary event that has been observed in plants and
animals. One way to study such events is in terms of the ploidy number of the species
that make up a dataset of interest. It is therefore natural to ask: Howmuch information
about the evolutionary past of the set of species that form a dataset can be gleaned
from the ploidy numbers of the species? To help answer this question, we introduce
and study the novel concept of a ploidy profile which allows us to formalize it in terms
of a multiplicity vector indexed by the species the dataset is comprised of. Using the
framework of a phylogenetic network, we present a closed formula for computing
the hybrid number (i.e. the minimal number of polyploidization events required to
explain a ploidy profile) of a large class of ploidy profiles. This formula relies on the
construction of a certain phylogenetic network from the simplification sequence of a
ploidy profile and the hybrid number of the ploidy profile with which this construction
is initialized. Both of them can be computed easily in case the ploidy numbers that
make up the ploidy profile are not too large. To help illustrate the applicability of our
approach, we apply it to a simplified version of a publicly available Viola dataset.
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1 Introduction

Datasets such as the Viola dataset considered in Marcussen et al. (2012) arise when
species inherit multiple sets of chromosomes from their parents. Generally referred to
as polyploidization, this can be due towhole genome duplication (also called autopoly-
plodization) as in the case of e.g. watermelons and bananas Varoquaux et al. (2000),
or by obtaining an additional complete set of chromosomes via hybridization (also
called allopolyploidization), as in the case of the frog genus Xenopus Ownbey (1950).
This poses the following intriguing question at the center of this paper: How much
information about the evolutionary past of a set of species can be gleaned from the
ploidy number (i.e. the number of complete chromosome sets in a genome) of the
species? Evoking parsimony to capture the idea that polyploidization is a relatively
rare evolutionary event we re-phrase this question as follows: What is the minimum
number of polyploidization events necessary to explain a dataset’s observed ploidy
profile. For a set X of species that make up a dataset, we define such a profile to be
the multiplicity vector (m1, . . . ,mn) for n = |X |, indexed by the species in X where,
for each 1 ≤ i ≤ n, the ploidy number of species i ∈ X is mi ≥ 1.

As it turns out, an answer to this question is well-known if the ploidy profile in
question is presented in terms of a multi-labelled tree (see e.g. Huber and Moulton
2006; Huber et al. 2006;Marcussen et al. 2015, 2012). Since it is, however, not always
clear how to derive a biologically meaningful multi-labelled tree from the dataset in
the first place Huber et al. (2012), we focus here on ploidy profiles for which such a
tree is not necessarily available.

Due to the reticulate nature of the signal left behind by polyploidization Sagitov
et al. (2013), Wagner et al. (2017), Waight et al. (2020), phylogenetic networks offer
themselves as a natural framework to formalize and answer our question. Although
we present a definition of such structures (and all other concepts used in this section)
below, from an intuition development point of view, it suffices to observe at this
stage that a phylogenetic network can sometimes be thought of as a rooted directed
bifurcating tree T with a pre-given set X as leaves to which additional arcs have been
added via joining subdivision vertices of arcs of T so that the following property
holds. The resulting graph is a rooted directed acyclic graph with leaf set X such that a
subdivision vertex v of T either only has additional arcs starting at it or only additional
arcs ending at it. For our purposes we only allow the case that v has one additional
outgoing arc. Subdivision vertices that have at least one additional incoming arc are
called hybrid vertices and are assumed to represent reticulate evolutionary events
such as polyploidization. If a hybrid vertex in a phylogenetic network N also has
overall degree three then N is generally called a binary phylogenetic network. We
refer the interested reader to Fig. 1i for an example of a binary phylogenetic network
on X = {x1, x2, x3, x4} that is obtained from the tree depicted in Fig. 1ii and to
Gusfield (2014), Huber and Moulton (2013), Huson et al. (2010), Steel (2016) for
methodology and construction algorithms surrounding phylogenetic networks. Note
that to be able to account for autopolyploidization, we deviate from the usual notion of
a phylogenetic network by allowing our phylogenetic networks to have parallel arcs
(but no loops) – see e.g. Huber et al. (2021), Van Iersel et al. (2020) and the references
therein for further results concerning such networks.
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By taking for every leaf x of a binary phylogenetic network N on some finite set
X the number of directed paths from the root of N to x , every phylogenetic network
induces a multiplicity vectorm indexed by the elements in X . Saying that N realizes
m in this case (see Sect. 3 for an extension of this concept to phylogenetic networks)
allows us to formalize our question as follows. Supposem is a ploidy profile indexed
by the elements of some finite set X . What can be said about the minimum number
of hybrid vertices required by a binary phylogenetic network on X to realize m? We
call this number which is central to the paper the hybrid number ofm and denote it by
h(m). If a binary phylogenetic network N has h(m) hybrid vertices then we also say
that N attains m (see again Sect. 3 for an extension of this concept to phylogenetic
networks). The interested reader is referred to Steel (2016) for an overview of the
related concept of the hybrid number of a set of phylogenetic trees (i.e. leaf-labelled
rooted trees without any vertices of indegree and outdegree one whose leaf set is a
pre-given set).

Before proceeding with presenting an example to help illustrate this question we
remark that multiplicity vectors realized by binary phylogenetic networks have been
used inRossello et al. (2008) to define ametric for a certain class of binary phylogenetic
networks. Furthermore, the stronger assumption that the number of directed paths from
every vertex of a binary phylogenetic network N to every leaf of N is known, has led
to the introduction of the concept of an ancestral profile for N Steel et al. (2019).

Returning to our question, consider the ploidy profilem = (12, 6, 6, 5) indexed by
X = {x1, x2, x3, x4}where themultiplicity of x1 is 12, that of x2 and x3 is 6, and that of
x4 is 5. Since no binary phylogenetic network on one leaf and two hybrid vertices can
realize the ploidy profile m′ = (5) because it has at most 22 = 4 directed paths from
the root to the leaf, it follows that a binary phylogenetic network that realizesm′ and
therefore also m must have at least three hybrid vertices. In fact, the subnetwork N ′
in bold of the phylogenetic network depicted in Fig. 1i is the unique (subject to letting
the arc a finish at a subdivision vertex of an outgoing or incoming arc of the hybrid
vertex h or letting a start at a subdivision vertex of an outgoing or incoming arc of the
vertex t) binary phylogenetic network that realizes m′ and uses a minimum number
of hybrid vertices. To be able to realize the ploidy profile (6, 5) and therefore also
the ploidy profile m′′ = (6, 6, 5) at least four hybrid vertices are therefore needed.
By counting directed paths from the root to each leaf of the phylogenetic network
depicted in Fig. 1i with x1, the hybrid vertex h′ above x1, the two incoming arcs of
h′, and the arc (h′, x1) removed and any resulting vertices of indegree and outdegree
one suppressed clearly realizes m′′. Calling that phylogenetic network N ′′ then, in a
similar sense as N ′, we also have that N ′′ is unique. To obtain a binary phylogenetic
network from N ′′ that realizes m at least one further hybrid vertex is needed. Again
by counting directed paths from the root to each leaf, it is easy to check that the binary
phylogenetic network N (m) depicted in Fig. 1i realizes m and postulates five hybrid
vertices. As we shall see as a direct consequence of Theorem 2, h(N ) = 5. As a further
consequence of that theorem, we obtain a closed formula for the hybrid number of a
ploidy profile (Corollary 1).

The outline of the paper is as follows. In the next section, we present some relevant
basic terminology and notation concerning phylogenetic networks. This also includes
an unfold-operation for phylogenetic networks and a fold-up operation that generates
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Fig. 1 i One of potentially many phylogenetic networks that realize the ploidy profilem = (12, 6, 6, 5) on
X = {x1, x2, x3, x4}. To improve clarity of exposition, we always assume that arcs are directed downward,
away from the root. ii A (phylogenetic) tree to which subdivision vertices and arcs have been added to
obtain the phylogenetic network in i – see the text for details

phylogenetic networks, both of which were introduced originally in Huber and Moul-
ton (2006). In Sect. 3, we extend the concept of attainment from binary phylogenetic
networks to phylogenetic networks and study structural properties of phylogenetic
networks that attain ploidy profile. As part of this, we introduce the two main con-
cepts of the paper: a simple ploidy profile and an attainment of a ploidy profile. In
Sect. 4, we associate two binary phylogenetic networks to a simple ploidy profile m
which we denote by D(m) and B(m), respectively. As we shall see, the former is
based on the prime factor decomposition of a positive integer m and the latter on a
binary representation of m.

In Sect. 5, we associate a sequence σ(m) to a ploidy profile m which we call the
simplification sequence ofm (Algorithm 1). As part of this, we also present some basic
results concerning such sequences. This includes an infinite family of ploidy profiles
that shows that such a sequence cangrowexponentially large.Denoting the last element
of the simplification sequence for m by mt , we then employ a traceback through
σ(m) to obtain the aforementioned binary phylogenetic network N (m) from a binary
phylogenetic network that attains mt (Algorithm 2). Motivated by our partial results
for binary phylogenetic networks that realize a simple ploidy profile summarized in
Theorem 1, we provide an upper bound on the hybrid number h(m) of a ploidy profile
m for special cases of m (Proposition 2).

After collecting some preliminary results for N (m) in Sect. 5, we establish in
Sect. 6 that N (m) attains m for a large class of ploidy profiles m (Theorem 2). In
Sect. 7, we turn our attention to computing the hybrid number of the ploidy profile of
a simplified version of the aforementioned Viola dataset fromMarcussen et al. (2012).
We conclude with Sect. 8 where we outline potential directions of further research.
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2 Preliminaries

We start with introducing basic concepts surrounding phylogenetic networks. Sub-
sequent to this, we briefly describe two basic operations concerning phylogenetic
networks that are central for establishing a key result (Proposition 1). For the con-
venience of the reader, we illustrate both operations in Figs. 2 and 3 by means of an
example. Throughout the paper we assume that X is a non-empty finite set. We denote
the size of X by n.

2.1 Basic concepts

Suppose for the following that G is a rooted directed connected acyclic graph which
might contain parallel arcs but no loops. Then we denote the vertex set of G by V (G)

and its set of arcs by A(G). We denote an arc a ∈ A(G) starting at a vertex u and
ending in a vertex v by (u, v) and refer to u as the tail of a and to v as the head of a.
We call an arc a ∈ A(G) a cut-arc if the deletion of a disconnects G. We call a cut-arc
a of G trivial if the head of a is a leaf. Following Van Iersel et al. (2020), we call an
induced subgraph of G with two vertices u and v and two parallel arcs form u to v a
bead of G.

Suppose v ∈ V (G). Then we refer to the number of arcs coming into v as the
indegree of v, denoted by indegG(v), and the number of outgoing arcs of v as the
outdegree of v, denoted by outdegG(v). If G is clear from the context then we will
omit the subscript in indegG(v) and outdegG(v), respectively. We call v the root of
G, denoted by ρG , if indeg(v) = 0, and we call v a leaf of G if indeg(v) = 1 and
outdeg(v) = 0. We denote the set of leaves of G by L(G). We call v a tree vertex if
outdeg(v) = 2 and indeg(v) = 1. And we call v a hybrid vertex if indeg(v) ≥ 2
and outdeg(v) = 1. We denote the set of hybrid vertices of G by H(G). We call any
two leaves x and y of G a cherry, denoted by {x, y}, if x and y share a parent. We say
that G is binary if, outdeg(ρG) = 2 and, for all v ∈ V (G) − L(G) other than ρG , we
have that the degree sum is three. We say that a vertex w ∈ V (G) is above v if there
exists a directed path P from w to v. In that case, we also say that v is below w. If, in
addition, v �= w then we say that w is strictly above v and that v is strictly below w.

We call G a (phylogenetic) network (on X ) if L(G) = X , every vertex v ∈ V (G)−
L(G) other than ρG is a tree vertex or a hybrid vertex and outdeg(ρG) = 2. Note that
phylogenetic networks in our sense were called semi-resolved phylogenetic networks
in Huber and Moulton (2006). Also note that our definition of a phylogenetic network
differs from the standard definition of such an object (see e.g. Steel 2016) by allowing
beads. To emphasise that a phylogenetic network has no beads, we will sometimes
refer to it as a beadless phylogenetic network.

SupposeG is a phylogenetic network on X . Then following Bordewich and Semple
(2007), we define the hybrid number h(G) of G to be

h(G) =
∑

h∈H(G)

(indeg(h) − 1).

123



30 Page 6 of 27 K. T. Huber, L. J. Maher

Fig. 2 i The MUL-tree M obtained by unfolding the phylogenetic network on X = {x, y} in iv. The trees
T (u) and T (v) rooted at u and v and indicated with a double arrow, respectively, are equivalent. In fact,
they are maximal inextendible. ii Subdivision of the incoming arcs of u and v by hu and hv , respectively.
iii Identifying the vertices hu and hv . iv Deleting the subtree T (v) and the incoming arc of v (indicated by
dotted lines in iii)

We refer to a phylogenetic networkG (on X ) as a phylogenetic tree (on X) if h(G) = 0.
For a phylogenetic tree T on X and a non-root vertex v ∈ V (T ) we denote by T (v)

the subtree of T obtained by deleting the incoming arc of v and the subsequently
generated connected component that does not contain v.

Suppose that N is a phylogenetic network on X . Then we denote the number of
directed paths from the root ρN of N to a leaf x of N by mN (x). In case N is clear
from the context, we will writem(x) rather thanmN (x). For N ′ a further phylogenetic
network on X , we say that N and N ′ are equivalent if there exists a graph isomorphism
between N and N ′ that is the identity on X . Furthermore, we say that N ′ is a (binary)
resolution of N if N ′ is obtained from N by resolving all vertices in H(N ) so that
every vertex in H(N ′) has indegree two. Note that for any resolution N ′ of N , we
have h(N ) = |H(N ′)| = h(N ′).

2.2 The fold-up F(U(N)) of the unfold U(N) of a phylogenetic network N

Phylogenetic trees on X were generalized in Huber and Moulton (2006) to so called
multi-labelled trees (on X) or MUL-trees (on X ), for short, by replacing the leaf set
of a phylogenetic tree by a multiset Y on X . Put differently, X is the set obtained
from Y by ignoring the multiplicities of the elements in Y . As was pointed out in the
same paper, every phylogenetic network N gives rise to a MUL-tree U (N ) on X by
recording, for every vertex v of N , every directed path from the root ρN of N to v.
More precisely, the vertex set of U (N ) is, for all vertices v ∈ V (N ), the set of all
directed paths P from ρN to v where we identify P with its end vertex v. Two vertices
P and P ′ in U (N ) are joined by an arc (P ′, P) if there exists an arc a ∈ A(N ) such
that P is obtained from P ′ by extending P ′ by the arc a. For example, the vertex u
in Fig. 2i is the directed path ρ, s, u in the phylogenetic network in Fig. 2iv which
crosses the arc a. The vertex v in Fig. 2i is the directed path ρ, s, u in Fig. 2iv which
crosses the arc a′.

123



The hybrid number of a ploidy profile Page 7 of 27 30

Reading Fig. 2 from left to right suggests that the unfolding operation can also
be reversed. We next briefly outline this reversal operation which may be thought
of as the fold-up of a MUL-tree M into a phylogenetic network F(M) (see Huber
and Moulton 2006 for details, Huber et al. 2016; Huber and Scholz 2020 for more
on both constructions, and Fig. 3 for an example). To make this more precise, we
require further terminology. Suppose that M is a MUL-tree on X . Then we denote
for a non-root vertex v of M the parent of v by v. Extending the relevant notions
from phylogenetic trees to MUL-trees, we say that a subMUL-tree T with root u of
M is inextendible if there exists a subMUL-tree T ′ of M with root vertex w �= u
such that T and T ′ are equivalent and either v = w or v �= w and T (v) and T (w)

are not equivalent. By definition, every subMUL-tree of M that is equivalent with an
inextendible subMUL-tree of M is necessarily also inextendible. In view of this, we
refer to an inextendible subMUL-tree T of M asmaximal inextendible if no subMUL-
tree of M that is equivalent with T is a subMUL-tree of an inextendible subMUL-tree
ofM . So, for example, the subMUL-tree T (u) of theMUL-treeM depicted in Fig. 3i is
inextendible but the subMUL-tree T (u′) is not. In fact, T (u) is maximal inextendible
because the only equivalent copy of T (u) in M that is not T (u) is T (v) and neither
T (u) nor T (v) is a subMUL-tree of an inextendible subMUL-tree in M .

To construct F(M), we first construct a sequence γM of subMUL-trees of M which
we call a guide sequence for F(M) and which we initialize with the empty sequence.
Let T denote a maximal inextendible subMUL-tree of M . Let u denote the root of T ,
and letU = Uu ⊆ V (M) denote the set of vertices v ∈ V (M) such that the subMUL-
tree rooted at v is equivalent with T (u). Note that, by definition, |U | ≥ 2. Then, for
all v ∈ U , we first subdivide the incoming arc of v by a vertex hv (cf Fig. 2ii and then
identify all vertices hv , v ∈ U , with the vertex hu (cf Fig. 2iii. By construction, hu
clearly has |U | incoming arcs and also |U | outgoing arcs. From these |U | outgoing arcs
of hu , we delete all but one arc and, for each deleted arc a, we remove the subMULtree
T (v) rooted at the head v of a (Fig. 2iv. We then grow γM by adding an equivalent
copy of T (u) at the end of γM in case γM is not the empty sequence. Otherwise we add
T (u) as the first element to γM . Replacing M with the resulting graph NU , we then
find a new maximal inextendible subMUL-tree in NU and proceed as before (where
we canonically extend the notions of a maximal inextendible subMUL-tree and of a
subMUL-tree rooted at a vertex to NU ). In the case of the example in Fig. 3, the next
maximal inextendible subMUL-tree in Fig. 3ii is one of the leaves labelled x1.

By construction, the process of subdividing (cf Fig. 2ii, identifying (cf Fig. 2iii,
and deleting (cf Fig. 2iv terminates in a phylogenetic network on X . That network is
F(M). We depict F(M) in Fig. 3(iv) for the MUL-tree M pictured in Fig. 3i.

As was pointed out in (Huber and Moulton (2006), Section 6), F(M) is indepen-
dent of the order in which ties are resolved when processing maximal inextendible
subMUL-trees. Also, all tree vertices of F(M) have outdegree two because M is a
binary MUL-tree. However, F(M) might contain hybrid vertices whose indegree is
two or more since when processing a maximal inextendible subMUL-tree T there
might be more than two subMUL-trees in the graph generated thus far that are equiva-
lent with T . Finally, F(M) cannot contain arcs whose tail and head is a hybrid vertex
because the hybrid vertices of F(M) are in bijective correspondence with the elements
in the guide sequence for F(M).
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Fig. 3 i The MUL-tree M obtained by unfolding the phylogenetic network on {x1, x2} pictured in iv. The
vertices u and v as indicated in i are the root of the maximal inexendible subtrees of M to which the
subdivision, identification and deletion process described in Fig. 2 is applied to obtain the rooted directed
acyclic graph G presented in iii. The two leaves labelled x1 in G are the roots of two equivalent maximal
inextendible subtree of G and applying the subdivision, identification, and deletion process to it results in
F(M). In each case, the equivalent subMUL-trees are indicated by a double arrow

We conclude the outline of both constructions with the following remark. Suppose
N is a phylogenetic network on X . Then we call two tree vertices u and v in V (N )

distinct an identifiable pair if the subMUL-trees of U (N ) rooted at the vertex that is
a directed path in N from the root ρN of N to u is equivalent with the subMUL-trees
of U (N ) rooted at the vertex that is a directed path in N from ρN to v. Let C(N )

denote the compressed phylogenetic network obtained from N i. e. the phylogenetic
network obtained from N by contracting all arcs (u, v) for which both u and v is a
hybrid vertex. Bearing in mind that the phylogenetic network F(M) associated to a
MUL-tree M was denoted D(M) in Huber and Moulton (2006), the following holds

(R1) F(U (N )) does not contain an identifiable pair of vertices (Huber and Moulton
2006, Theorem 3).

(R2) If N and N ′ are phylogenetic networks such that the MUL-trees U (N ) and
U (N ′) are equivalent then h(F(U (N ))) ≤ h(N ′) (Huber and Moulton 2006,
Corollary 2(ii)).

(R3) If N is a phylogenetic network that does not contain an identifiable pair of
vertices then the compressed phylogenetic networks C(F(U (N ))) = F(U (N ))

and C(N ) are equivalent (Consequence of (R1) and (Huber and Moulton 2006,
Theorem 2)).

3 Properties of phylogenetic networks that attain the hybrid number
of a ploidy profile

In this section, we collect structural properties of phylogenetic networks that attain
the hybrid number of a ploidy profile. For ease of readability, we will assume from
now on that for a ploidy profilem = (m1, . . . ,mn) on X the elements in X are always
ordered in such a way that m(xi ) = mi holds for all 1 ≤ i ≤ n and that m is in
descending order, that is, mi ≥ mi+1 holds for all 1 ≤ i ≤ n − 1.

We start with some notations and definitions. Suppose that N is a phylogenetic
network on X = {x1, . . . , xn} and that m = (m1, . . . ,mn) is a ploidy profile on X .
Then we call m simple if mi = 1 for all 2 ≤ i ≤ n (i. e. m1 is the only component of
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Fig. 4 A phylogenetic network
on X = {x1, . . . , xn} that
realizes the ploidy profile
m = (m1, . . . ,mn) on X . For
all 1 ≤ i ≤ n, the number of
curved lines is mi − 1

m that is at least 2). Moreover, we call m strictly simple if m is simple and |X | = 1.
We say that N realizes a ploidy profilem if the elements in X can be ordered in such a
way thatmi = m(xi ) holds for all 1 ≤ i ≤ n. In this case, we also call N a realization
ofm. Furthermore, we say that N is a binary realization ofm if N is binary. We say
that N attains m if N realizes m and h(m) = h(N ) = ∑

h∈H(N )(indeg(h) − 1). In
this case, we refer to N as an attainment of m. If N is an attainment and also binary
then we call N a binary attainment of m.

As is straight-forward to verify using the construction of the phylogenetic network
indicated in Fig. 4 and the definition of m(x), x ∈ X , every ploidy profile m =
(m1, . . . ,mn) on X = {x1, . . . , xn} with n ≥ 1 is realized by a phylogenetic network
that contains at most

∑n
i=1(mi − 1) hybrid vertices. Thus, the hybrid number of

a ploidy profile always exists. As we shall see in Proposition 2, this bound can be
improved for many ploidy profiles.

To be able to collect some simple properties of attainments which we will do next,
we require further terminology and notation. Suppose N is a binary phylogenetic
network on X . Then we say that N is semi-stable if N is equivalent to a resolution
of F(U (N )). Motivated by the fact that a beadless phylogenetic network N that is
equivalent to F(U (N ))was called stable in Huber et al. (2016), we canonically extend
this concept to our types of phylogenetic networks by saying that a phylogenetic
network N is stable if N is equivalent with F(U (N )).

For example, the binary phylogenetic network N depicted in Fig. 5i is semi-stable
but not stable since U (N ) is the MUL-tree depicted in Fig. 5ii and F(U (N )) is the
phylogenetic network depicted in Fig. 5iii. The phylogenetic network N ′ pictured in
Fig. 5iv is not semi-stable. In fact, for a binary phylogenetic network N to be stable it
cannot contain the phylogenetic network N ′ pictured in Fig. 5iv as an induced subgraph
(where x1 and x2 need not be leaves in N ′) since F(U (N ′)) is the phylogenetic
network depicted in Fig. 5v.Aswe shall see below, certain types of binary phylogenetic
networks called beaded trees are examples of stable phylogenetic networks. Although
introduced in Van Iersel et al. (2020) in the context of a study of binary phylogenetic
networks whose root have indegree one and not zero as in our case, the main feature
of beaded trees is that a hybrid vertex must be contained in a bead. In view of this, we
call a binary phylogenetic network N on X a beaded tree if N is either a phylogenetic
tree on X or every hybrid vertex is contained in a bead (see e. g.Huber et al. 2021 for
more on such graphs). Then since a beaded tree N cannot contain an identifiable pair
of vertices, it follows by (R3) that the compressed phylogenetic networks C(N ) and
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Fig. 5 The phylogenetic network N depicted in i is semi-stable but not stable since it is not equivalent
with F(U (N )) i. e. the phylogenetic network depicted in iii. the MUL-tree U (N ) is pictured in ii. The
phylogenetic network pictured in iv is not semi-stable. For a phylogenetic network to be stable it cannot
contain the phylogenetic network N ′ pictured in iv as an induced subgraph since F(U (N ′))

F(U (N )) are equivalent. Since N is a beaded tree and so does not contain arcs whose
tail and head are hybrid vertices, it follows that C(N ) is in fact N . Thus, N must be
stable.

Suppose N is an attainment of a ploidy profile m on X that contains a cut-arc
a. Then deleting a results in two connected components N1 and N2, one of which
contains the root of N , say N1, and the other is a phylogenetic network on X − L(N1).
For x /∈ L(N1) we let Nx

1 denote the phylogenetic network on L(N1) ∪ {x} obtained
from N1 by adding a pendant arc a′ to tail(a) and labelling the head of a′ by x . For any
phylogenetic network N on X , we denote by m(N ) the ploidy profile on X realized
by N .

Lemma 1 Suppose that N is an attainment of a ploidy profile m on X. Then the
following holds.

(i) F(U (N )) and any resolution of F(U (N )) is an attainment of m.
(ii) N is semi-stable.
(iii) Suppose N contains a cut-arc a and N1 and N2 are the connected components

of N obtained by deleting a. If ρN ∈ V (N1) and x /∈ L(N1) then N x
1 is an

attainment of m(Nx
1 ) and N2 is an attainment ofm(N2).

Proof (i): Clearly, U (N ) is the unfold of N and also of F(U (N )). In view of (R2),
we obtain h(F(U (N ))) ≤ h(N ). Since N is a attainment ofm and F(U (N )) realizes
m it follows that h(N ) ≤ h(F(U (N ))) must hold too. Thus, h(F(U (N ))) = h(N ).
Consequently, F(U (N )) is an attainment of m. To see the remainder, suppose for
contradiction that F(U (N )) has a resolution D that is not an attainment of m. Then
h(D) = h(F(U (N ))) < h(D); a contradiction.

(ii): Since N is an attainment of m it cannot contain a pair of identifiable vertices
as otherwise h(F(U (N ))) < h(N ) would hold which is impossible in view of Asser-
tion (i). By (R3) it follows that the compressed networks C(N ) and C(F(U (N ))) are
equivalent. Hence N must be a resolution of F(U (N )).

(iii): Since a is a cut-arc of N and therefore cannot have a head that is a hybrid
vertex, we have h(m) = h(m(Nx

1 )) + h(m(N2)). Since every directed path from the
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root of N to a leaf of N2 must cross a because a is a cut-arc of N it follows that
mN (y) = mNx

1
(x) × mN2(y) holds for all y ∈ L(N2). This implies the statement. 	


The unfold and fold-up operations described in Sect. 2.2 lie at the heart of the proof
of Proposition 1.

Proposition 1 Suppose m is a ploidy profile on X = {x1, . . . , xn} and that N is an
attainment ofm. Then there must exist a directed path P from the root of F(U (N )) to
x1 in F(U (N )) such that every hybrid vertex in F(U (N )) lies on P. If, in addition,
N is stable then P must be a directed path in N.

Proof Putm = (m1, . . . ,mn). Suppose for contradiction that there exists no directed
path from the root ρ of F(U (N )) to x1 in F(U (N )) that contains all hybrid vertices of
F(U (N )). Then since N is an attainment ofm, Lemma 1 implies that F(U (N )) is also
an attainment ofm. Consequently, h(N ) = h(F(U (N ))). Let γU (N ) : T1, T2, . . . , Tl ,
some l ≥ 1, denote a guide sequence for F(U (N )). Without loss of generality we may
assume that l ≥ 2 since otherwise F(U (N )) only contains one hybrid vertex and, so,
the proposition holds. Then there must exist some i ∈ {2, . . . , l} such that Ti is not
a subMUL-tree of Ti−1 as otherwise all hybrid vertices of F(U (N )) would lie on a
directed path from ρ to x1. Without loss of generality, we may assume that i is as small
as possible with this property, i. e. Tj+1 is a subMUL-tree of Tj , for all 1 ≤ j ≤ i −2.

Let M denote the MUL-tree obtained from U (N ) as follows. For j ∈ {1, i} let t j
denote the number of equivalent copies of Tj in U (N ). Let t = min{t1, ti }. Then
t ≥ 2. Choose t equivalent copies R1, . . . , Rt of Ti inU (N ). For all 1 ≤ j ≤ t , delete
the incoming arc of the root r j of R j . Next choose t equivalent copies of T1 in U (N )

and, for all 1 ≤ j ≤ t , subdivide the incoming arc of the root of Tj by a vertex s j .
Note that this is possible since T1 is the first element in γU (N ) and so cannot beU (N ).
Last-but-not-least, add the arcs (s j , r j ), for all 1 ≤ j ≤ t . Since this might have
resulted in arcs whose head is not contained in X and also vertices that have indegree
one and outdegree one, we clean the resulting MUL-tree by removing the former and
repeatedly suppressing the latter. Also we repeatedly identify the root with its unique
child if this has rendered it a vertex with outdegree one.

By construction, F(M) is a phylogenetic network that realizes m. Furthermore,
h(F(M)) = h(F(U (N )))− (t −1) = h(N )− (t −1) < h(N )must hold since t ≥ 2;
a contradiction as N is an attainment of m.

The remainder of the proposition is an immediate consequence because N and
F(U (N )) are equivalent in this case. 	


Since, asmentioned above, beaded trees are stable phylogenetic networks the corre-
sponding result for beaded trees in (Van Iersel et al. 2020, Lemma 13) is a consequence
of Proposition 1 (once an incoming arc has been added to the root).

Lemma 2 Supposem = (m1, . . . ,mn) is a simple ploidy profile on X such that m1 is
a prime number. Then any cut-arc in an attainment of m must be trivial.

Proof Suppose N is an attainment of m. Then the phylogenetic network N ′ obtained
from N by removing, for all 2 ≤ i ≤ n, the cut arcs ending in a leaf xi of N as well
as the leaves xi (suppressing the resulting vertices of indegree one and outdegree one
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Fig. 6 For a strictly simple ploidy profilemwe depict in i, iii, v and viii the phylogenetic network B = B(m)

and in ii, iv, and vi the phylogenetic network D = D(m). i and ii: m = (15) and h(B) = 6 > 5 = h(D);
iii and iv: m = (9) and h(B) = 4 = h(D); v and vi: m = (265) and h(B) = 10 < 11 = h(D). vii A
realization of the ploidy profile m = (47) that uses eight hybrid vertices. viii The realization of the ploidy
profile in vii in terms of B(m)

and also the root in case this has rendered it an outdegree one vertex) is a phylogenetic
network on X ′ = {x1}. Note that since none of the elements xi indexingmi , 2 ≤ i ≤ n,
contributes to h(N ), we have h(N ) = h(N ′). Thus, N ′ is an attainment of the ploidy
profile m1 = (m1). Put m = m1 and x = x1. If m ∈ {2, 3} then the lemma clearly
holds since the only cut arc of N ′ is the incoming arc of x1 and therefore is trivial. So
assume that m ≥ 4.

Assume for contradiction that N ′ has a non-trivial cut-arc a. Let N1 and N2 denote
the connected components of N ′ obtained by deleting a. Assume without loss of
generality that the root of N ′ is contained in V (N1). Let y /∈ L(N1). Then since
for all leaves z in a phylogenetic network M the number of directed paths from the
root of M to z is mM (z) it follows that m = mN ′(x) = mNy

1
(y) × mN2(x). Since

1 /∈ {mNy
1
(y),mN2(x)} and m is prime this is impossible. 	


4 Realizing simple ploidy profiles

Westart this sectionwith associating to a simple ploidy profilem a binary phylogenetic
network D(m) that is based on the prime factor decomposition ofm1 and also a binary
phylogenetic network B(m) that is based on the unique bitwise representation of m1.
As we shall see, other ways to define binary realizations of m that are based on the
prime factor decomposition of m1 or on the bitwise representation of m1 and that are
similar in spirit to the definitions of D(m) and B(m) are conceivable. Furthermore, the
ploidy profiles considered in Fig. 6 suggest that the relationship between the number
of hybrid vertices in D(m) and in B(m) is not straight forward.

Suppose that m = (m1, . . . ,mn), n ≥ 1, is a ploidy profiles on X = {x1, . . . , xn}.
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4.1 The phylogenetic networkD(m)

Webeginwith introducing further terminology. Suppose thatm is a positive integer and
that, for all 1 ≤ i ≤ k, pi is a prime and αi ≥ 1 is an integer such that pα1

1 pα2
2 · . . . · pαk

k
is a prime factor decomposition of m. Without loss of generality, we may assume
throughout the remainder of the paper that the primes p1, . . . , pk are indexed in such
a way that pi > pi+1 holds for all 1 ≤ i ≤ k − 1.

For all 1 ≤ i ≤ k, let pi = (pi ) denote the strictly simple ploidy profile on
Y = {x1}. Also let A(pi ) denote a binary phylogenetic network on Y that attains
pi . Note that A(pi ) need not be unique. For all 1 ≤ i ≤ k, we then define a binary
phylogenetic network A(pi )αi on Y as follows:

4.1.1 The phylogenetic networkA(pi)˛i

We take the root ρi ofA(pi ) to be the root ofA(pi )αi . If αi = 1 then we takeA(pi )αi
to be A(pi ). If αi ≥ 2 then we make αi equivalent copies of A(pi ) and order them
in some way. Next, we identify the unique leaf of the first of the αi copies of A(pi )
under that ordering with the root of the second copy of A(pi ) and so on until we
have processed all αi copies of A(pi ) this way. The resulting directed acyclic graph
is A(pi )αi in this case.

To illustrate this construction, assume that m = 4. Then k = 1, p1 = 2 = α1, and
Y = {x1}. Furthermore, the phylogenetic network depicted in Fig. 3iv with the leaf x2
and its incoming arc removed, and the resulting vertex of indegree and outdegree one
suppressed, is A(p1)α1 .

4.1.2 FromA(pi)˛i to D(m) in casem is strictly simple

Suppose m is strictly simple. Then we obtain D(m) by ‘stacking’ the networks
A(p1)α1 , . . . ,A(pk)αk obtained as described above for a prime factor decomposi-
tion pα1

1 pα2
2 · . . . · pαk

k of m = m1 and a choice of attainment A(pi ) of pi = (pi ), for
all 1 ≤ i ≤ k. If k = 1 then D(m) isA(p1)α1 . So assume k ≥ 2. Thenwe define D(m)

to be the phylogenetic network on {x1} obtained by identifying, for all 1 ≤ i ≤ k − 1,
the unique leaf of A(pi )αi with the root of A(pi+1)

αi+1 .
For the convenience of the reader, we depict D(m) for the strictly simple ploidy

profile m = (9) on {x} in Fig. 6iv.

4.1.3 FromA(pi)˛i to D(m) in casem is not strictly simple

For all primes p in the prime factor decomposition of m1, choose a binary attainment
A(p) of the strictly simple ploidy profile p = (p) and construct the network D(m′)
for the strictly simple ploidy profile m′ = (m1) as described above. That network
we then process further as follows. First, we choose an outgoing arc a of the root of
D(m′) and subdivide it with n − 1 subdivision vertices s2, . . . , sn where, starting at
the tail of a, the first subdivision vertex is s2, the next is s3, and so on. To the vertices
si , 2 ≤ i ≤ n we then add the arcs (si , xi ) to obtain D(m).
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As an immediate consequence of the construction of D(m), we have that D(m)

does not contain an identifiable pair of vertices. In view of (R1) it follows that D(m)

is semi-stable. In summary, we therefore have the following result.

Lemma 3 Suppose m is a simple ploidy profile on X. Then D(m) is a binary, semi-
stable phylogenetic network on X that realizesm.

Note that as the strictly simple ploidy profile m = (m) with m = 265 shows, the
phylogenetic network depicted in Fig. 6v uses fewer hybrid vertices to attain m than
the phylogenetic network D(m) depicted in Fig. 6vi. Thus, an attainment of a simple
ploidy profile m need not be obtained from a prime factor decomposition of the first
component of m.

For the reaminder of this section, assume again that m = (m1, . . . ,mn), n ≥ 1 is
a simple ploidy profile on X = {x1, . . . , xn}.

4.2 The phylogenetic network B(m)

We start with associating two vectors to a positive integer m which we call the bitwise
representation (of m) and the binary representation (of m), respectively. For m a
positive integer, the first is the 0-1 vector vm = (v

f
m, . . . , v1m, v0m) such that m =∑ f

i=0 2
ivim . For ease of presentation, and unless stated otherwise, we denote by v

f
m

the most significant bit that is one. The second is the vector (i1, . . . , iq), q ≥ 1
and i j �= 0, for all 1 ≤ j ≤ q − 1, such that m = ∑q

j=1 2
i j holds. Informally

speaking, the j-th entry of that vector is the exponent of the term 2i j in the bitwise
representation of m. Note that 2i1 indexes the component v f

m of vm . For example, the
bitwise representation of m = 11 is (1, 0, 1, 1) and the binary representation of m is
(3, 1, 0).

4.2.1 The phylogenetic network B(m) in casem is strictly simple

Then m = (m1) and X = {x1}. Let B(q) denote the beaded tree with unique leaf x1
and q ≥ 0 hybrid vertices. Let (i1, . . . , iq) denote the binary representation of m1.
Then B(m) is obtained from the beaded tree B(i1) as follows. Choose one the two
outgoing arcs of the root of B(i1) and subdivide it with q − 1 vertices s2, . . . , sq not
contained in B(i1) so that s2 is the child of the root of B(i1), s3 is the child of s2, and so
on. For all 1 ≤ j ≤ q, we then add an arc a j to s j whose head is a subdivision vertex
of the outgoing arc of the hybrid vertex of B(i1) that has precisely i j hybridization
vertices of B(i1) strictly below it.

We refer the interested reader to Fig. 6iii for an illustration of B(m) for the strictly
simple ploidy profile m = (9).

4.2.2 The phylogenetic network B(m) in casem is not strictly simple

Wefirst construct the phylogenetic network B(m′) for the strictly simple ploidy profile
m′ = (m1) on {x1}. Next, we choose one of the two outgoing arcs of the root of B(m′)
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and subdivide that arc with n − 1 subdivision vertices t2, . . . , tn such that t2 is the
child of the root of B(m′), t3 is the child of t2 and so on. Finally, we attach to each ti
the arc (ti , xi ), 2 ≤ i ≤ n.

To illustrate this construction, consider the simple ploidy profile m1 = (5, 1) on
X ′ = {x1, x2}. Then m′ = (5) and the phylogenetic network D depicted in Fig. 8 is
B(m). In fact, B(m) is a binary attainment of m.

As indicated in Fig. 6, the relationship between D(m), B(m), and a binary attain-
ment of a simple ploidy profile m is far from clear in general. This holds even if
m = (m) is strictly simple and m is a prime. Indeed for m = 47 the hybrid number
of m is at most eight since the phylogenetic network depicted in Fig. 6vi realizes m.
However h(B(m)) = 9. This implies that, in general, B(m) with m = (p) and p
a prime cannot be used as an attainment with which to initialize the construction of
D(m).

As an immediate consequence of the construction of B(m), we have the following
companion result of Lemma 3 since similar arguments as in the case of D(m) imply
that B(m) is semi-stable.

Lemma 4 Suppose m is a simple ploidy profile on X. Then B(m) is a binary, semi-
stable phylogenetic network on X that realizesm.

To gain insight into the structure of B(m), we next present formulae for counting,
for a simple ploidy profilem, the number b(m) of vertices in B(m) and also the number
of hybrid vertices of B(m). Note that such formulae are known for certain types of
phylogenetic networks without beads (see e.g. McDiarmid et al. 2015; van Iersel and
Kelk 2011 and Steel 2016 for more). To state them, we require further terminology.
Supposem ≥ 1 is an integer and vm is the bitwise representation ofm. Then we denote
by p(m) the number of non-zero bits in vm bar the first one. For example, if m = 6
then p(m) = 1. Furthermore, we denote the dimension of a vector v by dim(v).

Armed with this, the construction of B(m) from a simple ploidy profilem implies
our first main result.

Theorem 1 Suppose that m = (m1,m2, . . . ,mn), n ≥ 1, is a simple ploidy profile.
Let im1 = (i1, i2, . . . , il), some l ≥ 1, denote the binary representation of m1. Then

b(m) = 2(i1 + dim(im1) − 1 + n − 1) + 1= 2(dim(vm1) − 1 + p(m1) + n − 1) + 1

Furthermore, B(m) has i1 + dim(im1) − 1 hybrid vertices.

We remark in passing that in case m = (m) is strictly simple then any binary
phylogenetic network N that realizesm has 2h(N ) + 1 vertices since N has only one
leaf and, so, the number of tree vertices of N plus the root must equal its number of
hybrid vertices. Note that in case N is B(m) then this also follows from Theorem 1
since n = 1 and i1 +dim(im1)−1 is the number of hybrid vertices of N and therefore
also the number of tree vertices of N plus the root.
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5 Realizing general ploidy profiles

To help establish a formula for computing the hybrid number of a ploidy profile, we
start by associating a binary phylogenetic network N (m) on X to a ploidy profilem on
X that realizesm. This network is recursively obtained via a two-phase process which
we present in the form of pseudo-code in Algorithms 1 (Phase I) and 2 (Phase II). We
next outline both phases and refer the reader to Fig. 7 for an illustration of the three
cases considered in Algorithm 2 and to Fig. 8 for an illustration of the construction of
N (m) from the ploidy profile m = (12, 6, 6, 5). The phylogenetic network D in that
figure is the phylogenetic network with which the construction of N (m) is initialized.

Supposem = (m1, . . .mn) is a ploidy profile on X . Then, in Phase I, we iteratively
generate a simple ploidy profile mt from m. This process is captured via a sequence
σ(m) of ploidy profiles which we call the simplification sequence form and formally
define as the output of Algorithm 1 when givenm as input. The first element of σ(m)

ism and the last element is a simple ploidy profile which we call the terminal element
of σ(m) and denote bymt . We denote the number of elements of σ(m) other thanm
by s(m). Note that ifm is a simple ploidy profile then s(m) = 0 asm = mt holds in
this case. Informally speaking, the purpose of σ(m) : m0 = m,mi , . . .ms(m) = mt

is to allow us to construct, for all 0 ≤ i ≤ s(m), the network N (mi ) from N (mi+1)

by reusing N (mi+1) (or parts of it) as much as possible (see Huber and Maher 2022
for more on such sequences).

To formally state Algorithm 1, we require further notations. Suppose m =
(m1, . . . ,mn) is a ploidy profile on X . Then we denote for all 1 ≤ i ≤ n the ele-
ment of X that indexesmi by x(mi ). Furthermore, for any non-empty sequence σ and
any z, we denote by σ ∪ {z} the sequence obtained by adding z to the end of σ .

Algorithm 1 The simplification sequence of a ploidy profile.
Input: A ploidy profilem = (m1,m2, . . . ,mn) on X = {x1, x2, . . . , xn}, n ≥ 1.
Output: The simplification sequence σ(m) for m and a set X(m) that contains, for all ploidy profiles m′

in σ(m), the set X ′ that indexesm′.
1: Put m0 ← m, σ(m0) ← m0, X0 ← X , X(m0) ← {X0}, and k ← n.
2: if m0 is simple then
3: Return σ(m0) and X(m0).
4: while m = (m1, . . . ,mk ) is not simple do
5: Put α = m1 − m2 and compute a ploidy profile m′ on a set X ′ as follows:
6: if α = 0 then
7: m′ = (m2,m3, . . . ,mk ) and X ′ = {x(m2), x(m3), . . . , x(mk )}.
8: if α > m2 then
9: m′ = (α,m2,m3, . . . ,mk ) and X ′ = {x(α), x(m2), x(m3), . . . , x(mk )}.
10: if α ≤ m2 then
11: if there exists some j ∈ {1, . . . , k − 1} so that m j+1 < α ≤ m j then
12: m′ = (m2,m3, . . . ,m j , α,m j+1, . . . ,mk ) and X ′ = {x(m2), x(m3), . . .,

x(m j ), x(α), x(m j+1), . . . , x(mk )}.
13: if α = mk then
14: m′ = (m2,m3, . . . ,mk , α) and X ′ = {x(m2), x(m3), . . . , x(mk ), x(α)}.
15: Put σ(m0) ← σ(m0) ∪ {m′}, X(m0) ← X(m0) ∪ {X ′}, k ← |X ′|, and m ← m′ and return to

Line 4.
16: Return σ(m0) and X(m0).
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Phase II is concerned with generating the phylogenetic network N (m) from the
simplification sequence ofm and the set X(m) (for both see Phase I), and an attainment
A(mt ) of mt . Note that in case an attainment for mt is not known, we can always
initialize the construction of N (m)with D(m) or B(m). The number of hybrid vertices
of the generated network in this case is an upper bound on h(N (m)) and therefore
also on the hybrid number of m.

Toobtain N (m),weuse a trace-back throughσ(m) startingwithmt .More precisely,
assume that mi = (m1, . . . ,mk), some k ≥ 2 and mi+1 are two ploidy profiles in
σ(m), some 0 ≤ i ≤ s(m) − 1. Then to obtain N (mi ) from N (mi+1) we distinguish
again between the cases that α := m1 − m2 = 0, α > m2 and α ≤ m2, see Fig. 7.
Note that there might be non-equivalent attainments ofmt with which to initialize the
construction of N (m).

Algorithm 2 The construction of the phylogenetic network N (m) from a ploidy profie
m and an attainment formt .
Input: A ploidy profilem on X , an attainment A(mt ) ofmt , and the output of Algorithm 1
Output: The phylogenetic network N (m) constructed fromA(mt ).
1: Put m0 ← m, m′ ← mt , and N (m′) ← A(mt ).
2: if m′ = m0 then
3: return N (m′).
4: while m′ �= m0 do
5: letm = (m1, . . . ,ml ) denote the predecessor ofm′ = (m′

1, . . . ,m
′
k ) in σ(m0), some k and some

l. Put α = m1 − m2 and construct the phylogenetic network N (m) from N (m′) as follows.
6: if α = 0 then
7: for all 2 ≤ i ≤ k, relabel the leaf x(m′

i ) of N (m′) by x(mi+1). Replace the leaf x(m′
1) of

N (m′) by the cherry {x(m1), x(m2)}.
8: if α > m2 then
9: for all 1 ≤ i ≤ k, relabel the leaf x(m′

i ) of N (m′) by x(mi ). Subdivide the incoming arcs of
leaves x(m1) and x(m2) by vertices u and v, respectively, and add the arc (v, u).

10: if α ≤ m2 then
11: let j be such that m j+1 < α ≤ m j . Subdivide the incoming arc of x(m′

j ) by a new vertex

v and replace x(m′
1) by the cherry {x(m1), x(m2)}. Subdivide the incoming arc of x(m1) by a new

vertex u. Add the arc (v, u) and delete x(m′
j ) as well as its incoming arc (v, x(m′

j )) (suppressing v as

indeg(v) = 1 = outdeg(v) now holds). For all 2 ≤ k ≤ j − 1, put x(mk+1) ← x(m′
k ) and, for all

remaining k, put x(mk ) ← x(m′
k ).

12: Put m′ ← m and return to line 4.
13: Return N (m).

To illustrate the construction of N (m), consider the ploidy profilem = (12, 6, 6, 5)
on X = {x1, . . . , x4}. Thenm, (6, 6, 6, 5), (6, 6, 5), (6, 5), (5, 1) is the simplification
sequence σ(m) associated to m because, by definition, the first element of σ(m) is
alwaysm. The ploidy profile (5, 1) ismt . The phylogenetic network D on X = {x1, x2}
on the left of Fig. 8 is an attainment ofmt in the formof B(mt ). InitializingAlgorithm2
with B(mt ) yields the phylogenetic network N (m) at the right of that figure. Apart
from the second arrow which is labelled (6, 5) → (6, 6, 6, 5) as it combines the
steps (6, 5) → (6, 6, 5) and (6, 6, 5) → (6, 6, 6, 5), each arrow is labelled with the
corresponding traceback step in σ(m).
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Fig. 7 The three cases in the construction of the network N (m) from a ploidy profilem = (m1,m2 . . . ,mn)

considered in Algorithm 2. For α = m1 −m2, the case α = 0 is depicted in i, the case α > m2 in ii, and the
case α ≤ m2 in iii. In iii, the dashed arc and the vertex x(m′

j ) are deleted and the vertex v is suppressed.
In each case, the grey disk indicates the part of the phylogenetic network of no relevance to the discussion

Fig. 8 The construction of N (m) for the ploidy profilem = (12, 6, 6, 5) on X = {x1, x2, x3, x4}where we
have combined the steps (6, 5) → (6, 6, 5) and (6, 6, 5) → (6, 6, 6, 5) into the step (6, 5) → (6, 6, 6, 5).
The leftmost network D on X ′ = {x1, x2} is an attainment of mt = (5, 1) in the form of B(m) and
initializes the construction of N (m). The network N (m2) on X ′ realizes the ploidy profilem2 = (6, 5) and
the network N (m1) on X realizes the ploidy profile m1 = (6, 6, 6, 5). The rightmost network is N (m).
The arrow labels indicate how a ploidy profile in σ(m) was obtained

For any attainmentA(mt ) of the terminal elementmt of the simplification sequence
σ(m) of a ploidy profilem on X , the graph N (m) is a phylogenetic network on X that
realizesm. Also, at each step in the traceback through σ(m) the number of vertices is
increased by exactly two. Denoting the number of vertices of N (m) by n(m) and the
number of vertices in a binary attainment A(mt ) ofmt by a(mt ), we obtain our next
result.

Lemma 5 Suppose m is a ploidy profile on X. Then for any binary attainment of mt

used in the initialization of the construction of N (m), we have that N (m) is a binary
phylogenetic network on X that realizes m. Furthermore, n(m) = a(mt ) + 2s(m).

In combination with Theorem 1, it follows that N (m) has at most b(mt )+2s(m) =
2(i1 + dim(im1)+n+s(m)+l)−3 vertices and also atmost i1 + dim(im1) − 1+s(m)

hybrid vertices where mt = (m1, . . . ,ml), some l ≥ 1, and i1 is the first component
in the binary representation im1 of m1. Furthermore, we have

Proposition 2 Suppose m = (m1, . . . ,mn) is a ploidy profile on X such that B(mt )

is a binary attainment ofmt . For all 1 ≤ k ≤ n, let (ik,1, . . . , ik,lk ) denote the binary
representation of mk, some lk ≥ 1. Then the following holds.

(i) h(m) ≤ ∑n
k=1(ik,1 + lk − 1). In case m is simple, h(m) = i1,1 + l1 − 1 which

is sharp.
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(ii) If mi = 2ik,1 holds for all 1 ≤ k ≤ n then h(m) = i1,1.

Proof (i) To see the stated inequality, we construct a binary phylogenetic network
B on X = {x1, . . . , xn} from m as follows. For all 1 ≤ k ≤ n, we first construct
Bk = B(mk) where mk is the strictly simple ploidy profile (mk). Next, we add
a new vertex ρ and, for all 1 ≤ k ≤ n, an arc from ρ to the root of Bk . If the
resulting phylogenetic network on X is binary then that network is B. Otherwise, B
is a phylogenetic network obtained by resolving ρ so that ρ has outdegree two.

By construction, B realizes m because Bk realizes mk , for all 1 ≤ k ≤ n. By
Theorem 1, it follows that h(Bk) = ik,1 + lk −1. Thus, h(m) ≤ h(B) = ∑n

k=1(ik,1 +
lk − 1), as required. Ifm is simple then k = 1 and so h(B) = h(B1) = i1,1 + l1 − 1.

(ii) This is a straight forward consequence of (i) and the fact that in this case Bk is
the beaded tree B(ik,1). 	


Note that as the example of the ploidy profile (kl , k) for some l, k ≥ 2 shows, there
exists an infinite family of ploidy profilesm for which the length of the simplification
sequence for m is at least kl−1 + 1 and therefore grows exponentially in l. As a
consequence of this, we also have, for any attainment of mt , that the number of
hybrid vertices in N (m) can grow exponentially in l. In view of this, we next study
simplification sequences for special types of ploidy profiles. To this end we call an
element j ∈ {1, . . . , n} maximum if m j is the last component of a ploidy profile
m = (m1, . . . ,mn), n ≥ 1, that is not one.

Proposition 3 Suppose m = (m1, . . . ,mn) is a ploidy profile on X. Let q denote the
maximum index of m. Then the following holds

(i) If k ≥ 2 is an integer such that mi = k holds for all 1 ≤ i ≤ q then s(m) = q −1.
(ii) If k ≥ 1 and l ≥ q+2 are integers such that mi = k(l− i) holds for all 1 ≤ i ≤ q

then s(m) = l + q − 3.

Proof Note first that for both statements, we may assume without loss of generality
that q = n since elements in X with ploidy number one do not contribute to s(m).

(i): Since mi = mi+1 holds for all 1 ≤ i ≤ n − 1, the difference in dimension
between any two consecutive ploidy profiles in σ(m) is one. Hence, q − 1 operations
are needed to transformm into mt . Consequently, s(m) = q − 1.

(ii): Sincemi−1−mi = k holds for all 2 ≤ i ≤ q, it follows that q−1 operations are
needed to transformm into a ploidy profilem′ of the form (k(l−q), k, . . . , k, 1, . . . , 1)
where the components after the last k may or may not exist. To transform m′ into a
ploidy profilem′′ of the from (k, k, . . . , k, 1, . . . , 1) a further l −q −1 operations are
needed. By Assertion (i), a further q − 1 operations are needed to transformm′′ into a
simple ploidy profile. Since σ(m) is the concatenation of the underlying simplification
sequences it follows that s(m) = q − 1 + l − q − 1 + q − 1 = q + l − 3. 	


Together with Lemma 5, the next result may be viewed as the companion result of
Lemmas 3 and 4 for general ploidy profiles.

Proposition 4 For any ploidy profilem on X and any binary attainment of the terminal
element in σ(m), the graph N (m) is a binary, semi-stable phylogenetic network on X
that realizes m.
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Proof In view of Lemma 5, it suffices to show that N (m) is semi-stable. Assume for
contradiction that there exists a ploidy profilem = (m1, . . . ,mn) on X such that N (m)

is not semi-stable. Since the construction of N (m) is initialized with an attainment
of the terminal element mt of σ(m) : m0 = m,m1, . . . ,ml = mt , some l ≥ 0 and,
by Lemma 1(ii), an attainment is semi-stable there must exist some 0 ≤ i ≤ l such
that the network N (mi ) is not semi-stable but all networks N (m j ), i + 1 ≤ j ≤ l are
semi-stable. Without loss of generality, we may assume that i = 0. Put m′ = m1.

We claim first that m1 �= m2. Indeed, if m1 = m2 then α = 0. Hence, Line 6 in
Algorithm 2 is executed to obtain N (m) from N (m′). Since, by assumption, N (m)

is not semi-stable it follows that N (m′) is not semi-stable; a contradiction. Thus,
m1 �= m2, as claimed.

We next claim that m1 > m2 cannot hold either. Assume for contradiction that
m1 > m2. Put α = m1 − m2. Assume first that α > m2. Then Line 8 in Algorithm 2
is executed to obtain N (m) from N (m′). Since N (m′) is semi-stable, and this does
not introduce an identifiable pair of vertices in N (m), it follows that N (m) is also
semi-stable which is impossible.

So assume that α ≤ m2. Then Line 10 in Algorithm 2 is executed to obtain N (m)

from N (m′). Similar arguments as in the previous two cases imply again a contradic-
tion. This completes the proof of the claim.

Thus,m1 < m2 must hold. Consequently,m is not a ploidy profile; a contradiction.
Thus, N (m) must be semi-stable. 	


6 The hybrid number of a ploidy profile

In this section, we prove Theorem 2 which implies a closed formula for the hybrid
number of a ploidy profile (Corollary 1). To help illustrate our theorem, we remark
that for Line 8 in Algorithm 2 not to be executed we must have for every element
m′ = (m′

1, . . . ,m
′
n′), some n′ ≥ 2, in the simplification sequence ofm thatm′

1 > 2m′
2

does not hold.

Theorem 2 Suppose m is a ploidy profile on X such that, for every ploidy profile in
σ(m), Line 8 in Algorithm 2 is not executed. If A(mt ) is an attainment for mt with
which the construction of N (m) is initialized then N (m) is an attainment for m.

Proof Putm = (m1, . . . ,mn) and assume thatm is such that A(mt ) is an attainment
of mt . Suppose X = {x1, . . . , xn}, 1 ≤ n. Note that we may assume that n ≥ 2 as
otherwisem is simple. Hence,m = mt and, so, the theorem follows by assumption on
mt . Similar arguments as before imply that we may also assume thatm is not simple.

Assume for contradiction that N (m) is not an attainment of m. Let Q denote an
attainment of m. Then h(Q) < h(N (m)). In view of Proposition 1, there must exist
a directed path R in F(U (Q)) from the root ρ of F(U (Q)) to x1 that contains all
hybrid vertices of F(U (Q)). Since h(Q) = h(F(U (Q))) as C(Q) and F(U (Q)) are
equivalent by (R3), it follows that we may also assume that Q is binary and that R
gives rise to a path P from ρ to x1 that contains all hybrid vertices of Q.

Since the construction of N (m) is initialized with an attainment of mt , there must
exist a ploidy profilem in σ(m) such that there exists a binary phylogenetic network
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Q that realizes m and for which h(Q) < h(N (m)) holds. Without loss of generality,
we may assume that m is such that for all ploidy profiles m′′ succeeding m in σ(m)

we have h(N (m′′)) ≤ h(Q′′) for all binary phylogenetic networks Q′′ that realize
m′′. For ease of presentation we may assume that m = m.

Putm′ = m1 = (m′
1, . . . ,m

′
l ′), some l ′ ≥ 1. Also, put α = m1 −m2, N = N (m),

and N ′ = N (m′). Since Line 8 in Algorithm 2 is not executed for any element in
σ(m), it follows that either α = 0 or that α ≤ m2 since either Line 6 or Line 10 of
that algorithm must be executed in a pass through the algorithm’s while loop.
Case (a): Assume that α = 0. Let x1 = x(m1) and x2 = X(m2) as in Line 7
in Algorithm 2. Let 2 ≤ r ≤ n such that m1 = mr holds. By the minimality of
h(Q) it follows that the induced subgraph T of Q connecting the elements in X1 =
{x1, . . . , xr } must be a phylogenetic tree on X1 where, for all 3 ≤ j ≤ k, we put
x j = x(m j ). Subject to potentially having to relabel the leaves of T , we may assume
that {x1, x2} is a cherry in T . Since α = 0 the directed acyclic graph Q′ obtained from
Q by deleting x1 and its incoming arc (suppressing resulting vertices of indegree and
outdegree one) and renaming xi+1 by x(m′

i ), for all 1 ≤ i ≤ n − 1, is a phylogenetic
network on {x(m′

1), . . . , x(m
′
n−1)}. Clearly, Q′ realizes m′ since Q realizes m. By

assumption on m it follows that N ′ is an attainment of m′. Hence, h(N ′) ≤ h(Q′).
Since N is obtained from N ′ by executing Line 6 in Algorithm 2 it follows that
h(Q) < h(N ) = h(N ′) ≤ h(Q′) = h(Q) because T is a tree; a contradiction.
Consequently, N must attain m in this case.
Case (b): Assume that α ≤ m2. Let j , x1, and x2 be as in Line 11 in Algorithm 2. We
start with analyzing the structure of Q with regards to x1 and x2. To this end, note first
that m2 ≥ 2 must hold since otherwise m is simple and the theorem follows in view
of our observation at the beginning of the proof.

By assumption on Q, there must exist a hybrid vertex h on P such that there is a
directed path Ph from h to x2 because m2 ≥ 2. Without loss of generality, we may
assume that h is such that every vertex on Ph other than h is either a tree vertex or a
leaf of Q. Let t be the last vertex on P that is also contained in Ph .

We next transform Q into a new phylogenetic network Q′′ that is an attainment
of m′ (see Fig. 9 for an illustration). To do this, note first that since m2 �= m1 there
must exist a hybrid vertex on P below t . We modify Q as follows to obtain a further
attainment Q′ of m. If t is the parent of x2 then Q′ is Q. So assume that t is not the
parent of x2. Then we delete the subtree T of Q that is rooted at the child of t not
contained in P . Note that T must have at least two leaves. Next, we subdivide the
incoming arc of t by |L(T )| − 1 subdivision vertices. To each created subdivision
vertex we add an arc and bijectively label the heads of these arcs by the elements
in L(T ) − {x2}. Next, we add an arc to t and label its head by x2 so that t is now
the parent of x2. By construction, Q′ is a phylogenetic network on X that attains m
because h(Q) = h(Q′).

Let h∗ be a hybrid vertex on the subpath P∗ of P from t to x1 so that no vertex
strictly below h∗ is a hybrid vertex of Q′. Let a∗

1 denote the incoming arc of h∗ that
lies on P∗. Furthermore, let a∗

2 denote the incoming arc of h∗ that does not lie on P∗.
For i = 1, 2, let pi denote the tail of a∗

i . Note that p1 = p2 might hold. Also note
that the assumptions on Q imply that p1 must be below t . Finally, note that p1 must
be a hybrid vertex unless p1 = p2.
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Fig. 9 The transformation of Q i into the phylogenetic networks Q′ ii and Q′′ iii as described in Case (b)
of Theorem 2 for p1 �= p2. In each case, the dashed lines indicate paths. Note that in iii the dashed line
could also start at ρQ

We claim that if p1 �= p2 then any vertex v on P∗ other than t and x1 must be
a hybrid vertex. Assume for contradiction that there exists a vertex v /∈ {t, x1} on
P∗ that is a tree vertex. We show first that p2 must also be below t . Since all hybrid
vertices of Q lie on P , it follows that, v contributes at least 2m2 to the number of
directed paths from ρ to x1 as m2 is the number of directed paths from ρ to x2 and
therefore, also from ρ to t . Since h∗

1 contributes at least one further directed path from
ρ to x1 in case p2 is not below t , it follows thatm1 ≥ β +2m2 for some β ≥ 1. Hence,
m2 ≥ α = m1 − m2 ≥ β + 2m2 − m2 ≥ m2 because β ≥ 1. Thus, m2 = β + m2; a
contradiction as β ≥ 1. Hence, p2 must also be below t , as required.

We next show that p2 must be a vertex on P∗. Indeed, if p2 were not a vertex of P∗
then it cannot be a hybrid vertex in view of our assumptions on Q. Thus, p2 must be
a tree vertex in this case. Since p1 �= p2 we obtain a contradiction as the choice of h∗
implies that h∗ is the parent of x1. Thus, p2 must be a vertex of P∗, as required. Since
p2 is a tree vertex it contributes at least 2m2 directed paths from ρ to x1. Since p1
contributes at least a further m2 directed paths from ρ to x1, we obtain a contradiction
using similar arguments as before. Thus any vertex on P∗ other than t and x1 must be
a hybrid vertex in case p1 �= p2, as claimed.

We claim that if p1 = p2 then P∗ has precisely 4 vertices and there exists two arcs
from p1 to h∗. To see this claim, note that p1 contributes at least 2m2 directed paths
from ρ to x1 because it is a tree vertex. If there existed a vertex v on P∗ distinct from
x1, h∗, p1, t then v would contribute at least m2 further directed paths from ρ to x1.
Thus, we have again at least 3m2 directed paths from ρ to x1. Similar arguments as in
the previous claim yield again a contradiction. By the choice of h∗ it follows that t ,
p1, h∗ and x1 are the only vertices on P∗. Since p1 and p2 are the parents of h∗ and
p1 = p2, it follows that there are two parallel arcs from p1 to h∗. This concludes the
proof of our second claim.

Bearing in mind the previous two claims, we next transform Q′ into a new phyloge-
netic network Q′′ on X as follows. If p1 �= p2 then we first delete a∗

2 from Q′ and add
an arc from p2 to the child t1 of t on P∗. Next, we remove the arc (t, t1) and suppress
h∗ and t as they are now vertices with indegree one and outdegree one. The resulting
directed acyclic graph is Q′′. By construction, Q′′ is clearly a phylogenetic network
on X . Furthermore, the construction combined with our two claims, implies that Q′′
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Fig. 10 i The phylogenetic
network N (m) for the ploidy
profilem = (8, 2) on X = {a, b}
obtained via Algorithms 1 and 2.
ii A phylogenetic network on X
that attains m and has fewer
hybrid vertices than N (m)

realizesm′ because the arc (t, t1) contributes m2 directed paths from ρ to x1 in Q and
therefore also in Q′. By construction, h(Q′′) = h(Q′) − 1 = h(Q) − 1. Furthermore,
h(N ) = h(N ′) + 1 by the construction of N from N ′. By the minimality of h(Q) and
the choice of m, it follows that h(Q) < h(N ) = h(N ′) + 1 ≤ h(Q′′) + 1 = h(Q); a
contradiction. This concludes the proof of the theorem in case p1 �= p2.

If p1 = p2 then we delete one of the two parallel arcs from p1 to h∗ and suppress
p1 and h∗ as this has rendered them vertices of indegree one and outdegree one. The
resulting directed acyclic graph is Q′′ in this case. As before, Q′′ is a phylogenetic
network that, in view of our second claim, realizes m′. Similar arguments as in the
case that p1 �= p2 yield again a contradiction. This concludes the proof of the theorem
in this case, and therefore, the proof of the theorem. 	


To illustrate Theorem 2, note that the ploidy profile m = (12, 6, 6, 5) in Fig. 1
satisfies the assumptions of Theorem2.Consequently, the phylogenetic network N (m)

depicted in that figure is an attainment of m.
As the example depicted in Fig. 10 indicates, the assumption that Line 8 in Algo-

rithm 2 is not executed is necessary for Theorem 2 to hold. In fact, if m is a ploidy
profile such that N (m) contains the subgraph highlighted by the dashed rectangle in
the network in Fig. 10, then N (m) can in general not be an attainment of m.

Theorem 2 and Case (b) in its proof combined with Theorem 1 and Proposition 2
implies our next result since l − 1 additional hybrid vertices are inserted into B(i1) to
obtain B(m) where m is a simple ploidy profile and (i1, . . . , il), l ≥ 1, is the binary
representation of the first component of m. To state it we require a further definition.
Let m,m1, . . . ,mi = (m1,i , . . . ,mpi ,i ), . . . ,mt denote the simplification sequence
of a ploidy profile m. Then we denote by c(s(m)) the number of steps in σ(m), for
which m1,i > m2,i holds where 0 ≤ i ≤ s(m) and pi ≥ 1.

Corollary 1 Supposem is a ploidy profile such that Line 8 inAlgorithm1 is not executed
when constructing σ(m). Then h(m) = h(mt ) + c(s(m)). If B(mt ) is an attainment
of mt and (i1, . . . , il) is the binary representation of the first component of mt , some
l ≥ 1, then h(m) = i1 + l − 1 + c(s(m)).
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7 A Viola dataset

In this section, we turn our attention to computing the hybrid number of the ploidy
profile of a Viola dataset that appeared in more general form in Marcussen et al.
(2012). Denoting that dataset by X , the authors of Marcussen et al. (2012) constructed
a MUL-tree M on X and then used the PADRE software Huber et al. (2006) to derive
a phylogenetic network N to help them shed light on the evolutionary past of their
Viola species (Marcussen et al. 2012, Figure 4). We depict a simplified network N ′
representing that past in Fig. 11i the only difference being that we have removed
species that are not below a hybrid vertex of N as they do not contribute to the number
of hybrid vertices of N . If more than one species were below a hybrid vertex of N ,
then we have also randomly removed all but one of them thereby ensuring that the
hybrid vertex is still present in N ′. The resulting simplified dataset comprises the
taxa x1 =V.langsdorffii, x2 =V.tracheliifolia, x3= V.grahamii, x4 =V.721palustris,
x5 =V.blanda, x6 =V.933palustris, x7 =V.glabella, x8 =V.macloskeyi, x9 =V.repens
x10 =V.verecunda, x11 =Viola, and x12 =Rubellium (see Huber and Maher 2022
for more details on the simplified dataset). The labels of the internal vertices of N ′
represent the ploidy number of the ancestral species represented by that vertex where
we canonically extend the concept of a ploidy profile to the interior vertices of a
phylogenetic network. By counting directed paths from the root to each leaf, it is easy
to check, h(N ′) = 9.

By taking directed paths from the root to the leaves of N ′, we obtain the ploidy
profile m = (9, 7, 7, 4, 4, 4, 2, 2, 2, 2, 2, 1) on X . Note, since the root is diploid
(labelled 2×), multiplying each component ofm by two results in the ploidy numbers
induced by the hybrid vertices in the network. The simplification sequence for m

Fig. 11 Aphylogenetic network on leaf set X = {V.langsdorffii, V.tracheliifolia, V.grahamii, V.721palustris,
V.blanda, V.933palustris, V.glabella, V.macloskeyi, V.repens, V.verecunda, Viola, Rubellium} adapted from
a more general phylogenetic network that appeared as Figure 4 in Marcussen et al. (2012). Hybrid vertices
are indicated with a filled circle and labelled by their corresponding ploidy number i. e. the number of
directed paths from the root to the vertex times two because the root is assumed to be diploid. Leaves are
labelled by the first two characters of their names (omitting ’V.’, where applicable)
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contains twelve elements andmt = (2, 1, 1, 1). Since an attainment ofmt must have
one hybrid vertex and D(mt ) are equal B(mt ) and have one hybrid vertex each, it
follows that B(mt ) is an attainment formt . The phylogenetic network N (m) obtained
by initializing Algorithm 2 with B(mt ) is depicted in Fig. 11ii. Since at no stage in the
construction of N (m) Line 8 of that algorithm is executed, it follows by Theorem 2
that N (m) is an attainment ofm. Counting again directed paths from the root to each
leaf, it is easy to check that N (m) has five hybrid vertices implying that h(m) = 5.
To compute the hybrid number of a ploidy profile whose components are not too
large and, thererfore, we can find an attainment of its terminal element, we refer the
interested reader to our R-function ‘ploidy profile hybrid number bound (PPHNB)’
which is obtainable from [1].

8 Discussion

Motivated by the signal left behind by polyploidization, we have introduced and stud-
ied the problem of computing the hybrid number h(m) of a ploidy profile m. Our
arguments apply, however, to any type of dataset that induces a multiplicity vector.
Although stated within a phylogenetics context, the underlying optimization problem
is, at its heart, a natural mathematical problem: “Given a multiplicity vector m find a
rooted, leaf-labelled, directed acyclic graph G so thatm is the path-multiplicity vector
of G and the cyclomatic number of G is minimum”. Our results might therefore be
also of relevance beyond phylogenetics.

Using the framework of a phylogenetic network, we provide a construction of a phy-
logenetic network N (m) that is guaranteed to attain a ploidy profilem for a large class
of ploidy profiles provided the construction of N (m) is initialized with an attainment
A(mt ) of the terminal element mt of the simplification sequence σ(m) associated to
m. Members of that class include the ploidy profiles described in Proposition 3(ii). As
a consequence, we obtain an exact formula for the hybrid number of m and also the
size of the vertex set of N (m) in terms of the length s(m) of σ(m) and the number
a(mt ) of vertices of A(mt ) for the members of our class. In case the ploidy numbers
that make upm are not too large, both c(s(m)) and a(mt ) can be computed easily by
computing σ(m) to obtain c(s(m)) and using, for example, an exhaustive search for
a(mt ). Having said this, we also present an infinite family of ploidy profiles m for
which σ(m) grows exponentially. Motivated by this, we provide a bound for h(m) and
show that that bound is sharp for certain types of ploidy profiles. To help demonstrate
the applicability of our approach, we compute the hybrid number of a simplified ver-
sion of a Viola dataset that appeared in more general form in Marcussen et al. (2012).
Our result suggests that the authors ofMarcussen et al. (2012) potentially overestimate
the number of polyploidization events that gave rise to their dataset.

Despite these encouraging results, numerous questions that might merit further
research remain. These include “What can be said about h(m) if the ploidy profile
m is not a member of our class?”, and “Can we shed more light on the length of
σ(m) and also into attainments of the terminal element of σ(m)?”. Looking a little bit
further afield, it might also be of interest to explore the relationship between so called
accumulation phylogenies introduced in Baroni and Steel (2006) and ploidy profiles

123



30 Page 26 of 27 K. T. Huber, L. J. Maher

and also the relationship between ploidy profiles and ancestral profiles introduced in
Steel et al. (2019).
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