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Abstract: This article proposes the Bayesian surprise as the main methodology that drives the cogni-
tive radar to estimate a target’s future state (i.e., velocity, distance) from noisy measurements and
execute a decision to minimize the estimation error over time. The research aims to demonstrate
whether the cognitive radar as an autonomous system can modify its internal model (i.e., waveform
parameters) to gain consecutive informative measurements based on the Bayesian surprise. By assum-
ing that the radar measurements are constructed from linear Gaussian state-space models, the paper
applies Kalman filtering to perform state estimation for a simple vehicle-following scenario. Accord-
ing to the filter’s estimate, the sensor measures the contribution of prospective waveforms—which
are available from the sensor profile library—to state estimation and selects the one that maximizes
the expectation of Bayesian surprise. Numerous experiments examine the estimation performance
of the proposed cognitive radar for single-target tracking in practical highway and urban driving
environments. The robustness of the proposed method is compared to the state-of-the-art for various
error measures. Results indicate that the Bayesian surprise outperforms its competitors with respect
to the mean square relative error when one-step and multiple-step planning is considered.

Keywords: cognitive radar; Bayesian surprise; expectation of Bayesian surprise; linear Gaussian
dynamic systems

1. Introduction

Despite a precipitous drop in driving during the pandemic, the Governors Highway
Safety Association (GHSA) of the United States reported that 2020 had the most significant
annual increase in pedestrian deaths [1]. This shocking report indicated that the fatality rate
for pedestrians spiked by 21% compared to the previous year. Big technology companies
have invested in making autonomous radar an integral part of safety systems to prevent
such accidents [2].

Current driver assistance technologies use a combination of sensors (e.g., radar, LiDAR
(light detection and ranging), camera, GPS, etc.) and software to identify certain safety risks
that help the driver to avoid accidents [3,4]. Compared to video cameras and LiDAR, a
radar sensor is unaffected by bad weather and light conditions, and it can also detect hidden
targets behind other vehicles [5,6]. Undeniably, a well-designed radar system that further
advances safety benefits is indispensable for the evolution of automotive technology.

Cognitive radar, first introduced by S. Haykin [7], is an engineering tool to build
intelligent tracking sensors which will eventually make autonomous driving a reality [8].
The model was inspired by the perception–action process that takes place in the brain [9].
The cognitive radar continuously interacts with its surroundings to gather information
and adapts its operating parameters to ensure accurate target tracking without human
control. The sensor selects a transmit waveform that anticipates a better estimate of the
target’s state (i.e., distance, velocity) based on the information provided by the received
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radar measurements. The challenge in designing cognitive radar arises from the uncertain
environment [10]. The design objective is to achieve an estimate of the target’s state
that minimizes the mean squared error and to gain informative radar measurements
in the presence of such disturbances. To this end, this paper focuses on quantifying
new information from noisy radar measurements to improve the state estimation process
over time.

In the perception and learning literature, surprising events which violate prior ex-
pectations encourage information-seeking behaviors that affect learning and decision
making [11]. Surprise is an emotion resulting from a discrepancy between an expectation
and an actual observation [12]. It measures the amount of information that is associated
with an unexpected event [13]. Several definitions and expressions of surprise have been
proposed in previous studies [14–18]. The most common forms of surprise are the Shannon
surprise [14], the Bayesian surprise [15], and the free energy [16]. For a biological agent, the
Shannon surprise measures the unlikeliness of an outcome [14]. Meanwhile, the Bayesian
surprise measures how much an agent’s expectation changes when a new observation is
made [15]. In [16], the free energy principle suggests that biological agents make deci-
sions by reducing the Shannon surprise, and adjust their (internal) models to make better
predictions by minimizing the Bayesian surprise.

This research adopts surprise as the main methodology to measure the amount of new
information within the received radar measurements. In particular, the paper considers the
Bayesian surprise since it computes how much information a new measurement provides
to estimate future states based on prior knowledge. In previous works, the Bayesian
surprise has been applied to different models and applications to acquire information from
data [13,19–22]. In [13,19], the Bayesian surprise measures attention and anticipates the
human gaze to enhance computer vision applications. A similar attempt is followed in [20],
where the Bayesian surprise detects anomalies for autonomous guided vehicles in an
unsupervised fashion. In associative learning, the Bayesian surprise is also employed as an
error-correction learning rule for the Rescorla–Wagner model [21]. A recent paper considers
a Bayesian interpretation of surprise-based learning to perform model estimation [22].
It should be noted that selecting informative measurements using Bayesian surprise to
improve state estimation can be viewed as active measurement selection for regression
analysis. Similar ideas have been researched and implemented in the literature, and several
previously shown results could be interpreted and re-introduced through the Bayesian
surprise framework. The interested reader may wish to consult [23–25] for input and insight.
Our theory is that the Bayesian surprise framework will help understand commonalities
amongst methods, lead to interesting connections, and inspire future developments.

For a simple vehicle-following scenario, this article proposes a new design of cognitive
radar that operates based on the Bayesian surprise. This research generates radar measure-
ments from a family of linear Gaussian dynamic systems. Assuming that the parameters of
the system are known, the Kalman filter [26] is applied as the optimal estimator in the mean
squared error sense. Given the current estimated target’s state, the sensor plans by measur-
ing how much information each waveform—available from a predefined set—contributes
to state estimation, and selects the one that conveys the maximum information based on the
Bayesian surprise. In addition, the paper investigates the estimation algorithms for one-step
and multiple-step planning. This proposed design assumes that the sensor is equipped
with a predefined set of measurement noise covariances, where each one corresponds to a
distinct waveform. Compared to other forms of surprise [14,16], the authors of this paper
anticipate that the Bayesian surprise provides sufficient information to minimize the state
estimation error.

Despite significant achievements in designing cognitive radar [9,27–29], there remains
limited literature that compares radar designs based on the choice of information measure
and its associated waveform-/measurement-selection procedure. For the first time, this
paper systemically analyzes the works in [16,27,30] as alternative methods for designing
cognitive radar. Except in [27], where the Shannon entropy is used to quantify the informa-
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tion within radar measurements, the free energy principle [16] and the influence matrix [30]
have not been directly addressed to solve the state estimation problem in cognitive radar. In
addition, this work re-introduces these methods in the context of linear Gaussian dynamic
models and shows how they are related to the proposed approach.

Numerous experiments are carried out to comprehensively evaluate and compare
the estimation performance of the proposed cognitive radar with the state-of-the-art. The
millimeter-wave radar sensor presumes transmitting frequency-modulated continuous
wave (FMCW) signals operating in the 77 GHz frequency band [31]. The paper designs the
parameters of the FMCW radar in a manner that supports single-target tracking in highway
and urban environments. The paper considers various error measures to examine different
aspects of estimation performance. The credibility of the proposed estimation algorithm is
ranked based on a pairwise comparison scheme [32]. Simulation results determine whether
the tracking performance is improved when the radar switches from one-step planning to
multiple-step planning.

The rest of this paper is organized as follows. Section 2 presents the model assump-
tions and defines the research objective in designing cognitive radar for a simple vehicle-
following scenario. Section 3 briefly reviews prior works and demonstrates our proposed
method to solve the state estimation problem in cognitive radar. Section 4 evaluates the
estimation performance of the proposed approach by emulating real-life driving scenarios.
Results are compared to alternative designs for different error measures. Finally, Section 5
concludes the paper.

Notation

In this paper, scalar variables are represented by non-bold lowercase letters (e.g., c),
the vectors are denoted by bold lowercase letters (e.g., x), and matrices and sets of vectors
are shown as uppercase bold letters, (e.g., F). In addition, tr{.}, |.|, and ||.|| represent the
trace operator (e.g., tr{A}), the determinant operator (e.g., |A|), and the norm operator
(e.g., ||x||2P−1 = xTP−1x), respectively. Moreover, {.}T applies the transpose operation on
matrices (e.g., FT).

2. Problem Formulation

Figure 1a illustrates a simple vehicle-following scenario, where a cognitive radar is
mounted on the host vehicle, tracking the state dynamics of a target vehicle (i.e., distance,
velocity, etc.). Let us consider that something unexpected occurs, and the dynamics of
the target vehicle change. To avoid a collision, the cognitive radar must be able to detect
these changes to adjust the dynamics of the host vehicle accordingly. The radar signal
received at the host vehicle provides information about the target’s state. According to this
information, the cognitive radar makes a decision and sends a waveform (or signal) that
can provide a better estimate of the target’s state at future time instances.

(a) (b)

Figure 1. (a) A simple vehicle-following scenario [28] and (b) the block diagram of the cognitive
radar as an autonomous system.
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The goal of the cognitive radar is to ensure reliable and accurate tracking of the target
over time. To accomplish this objective, Figure 1b presents a simple design of a cognitive
radar as an autonomous system. Inspired by the cognitive dynamic system [27], the model
consists of a radar environment, a receiver, an information processor, and a transmitter.
The target of interest (i.e., target vehicle) is embedded in the radar environment. It is
assumed that the system is equipped with a sensor profile library containing several types
of waveforms. Let us consider the stages that the cognitive radar undergoes for a single
cycle. Note that the term "cycle" refers to the processes that take place at one time instant.
An estimate of a target’s state is determined at the receiver by processing measurements
from the radar environment. The information processor measures how much information
each waveform—available from the sensor profile library—contributes to estimating the
target’s state for the next cycle by planning multiple time steps. Finally, the transmitter
selects the waveform that leads to informative radar measurements and provides an
improved estimate of the target’s state. The sensor applies the chosen waveform to the
radar environment and repeats the same cycle.

This research proposes a holistic methodology to quantify information and maintain
informative radar measurements that minimize the state estimation error over time. To
this end, the following introduces the assumptions made to model the cognitive radar and
formulates the design objectives of this research.

2.1. Model Assumptions

The following presents the model assumptions to construct radar measurements for
the simple vehicle-following scenario and addresses the sensor profile library.

2.1.1. Linear Gaussian Dynamic System

For the simple driving case depicted in Figure 1a, the radar measurements at time index
k, denoted as zk ∈ Rm, are obtained from a set of linear Gaussian state-space models [26],
expressed as follows:

xk+1 = Fkxk + wk

zk = Hkxk + vk
(1)

where the evolution of the state vector, denoted as xk ∈ Rn, follows a first-order Markov
chain process. In this problem, the state represents the entities of motion regarding the host
and target vehicle, written as

xk =
[
v0

x,k, a0
x,k, dx,k, v1

x,k, a1
x,k

]T
(2)

where v0
x,k and a0

x,k are the velocity and acceleration of the host vehicle; v1
x,k and a1

x,k are
the velocity and acceleration of the target vehicle; dx,k represents the longitude distance
between the two cars. In Equation (1), Fk ∈ Rn×n and Hk ∈ Rm×n are, respectively, the
transition matrix and the measurement matrix. Meanwhile, the state noise wk ∈ Rn and
measurement noise vk ∈ Rm are assumed additive zero-mean white Gaussian processes,
where Qk ∈ Rn×n and Rk ∈ Rm×m are the state noise covariance and the measurement
noise covariance, respectively. Note that the initial state follows a Gaussian distribution,
denoted as x0 ∼ N (x̂(0|0), P(0|0)), and is mutually uncorrelated with the noise elements.

According to the equations of motion that presume constant acceleration, Fk and Qk
are derived as [33]

Fk =


1 Ts 0 0 0
0 1 0 0 0
−Ts −T2

s /2 1 Ts T2
s /2

0 0 0 1 Ts
0 0 0 0 1

, (3)
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and

Qk =


T4

s /4 T3
s /2 −T5

s /12 0 0
T3

s /2 T2
s −T4

s /6 0 0
−T5

s /12 −T4
s /6 T6

s /18 T5
s /12 T4

s /6
0 0 T5

s /12 T4
s /4 T3

s /2
0 0 T4

s /6 T3
s /2 T2

s

σ2
q (4)

where Ts and σ2
q refer to the sample time and the state noise variance, respectively. Since

the dynamics of the target vehicle is of interest, the measurement matrix is assigned as

Hk =

[
0 0 0 1 0
0 0 1 0 0

]
(5)

where the velocity of the target vehicle, v1
x,k, and the longitude distance, dx,k, are the

available radar measurements. The choice of the measurement noise covariance depends
on the waveform that the radar sensor conveys for target tracking. FMCW is the most
well-known modulation format, where linear frequency ramps with different slopes are
transmitted [6]. The FMCW modulation with a Gaussian-shaped pulse is commonly used
in designing autonomous radars since it exhibits excellent range and velocity resolution.
Thus, for a Gaussian-shaped pulse with FMCW modulation, Rk is defined as follows [34]:

Rk(λk−1, bk−1) =

 c2

(2π fc)2η
( 1

2λ2
k−1

+ 2λ2
k−1b2

k−1) −
c2bk−1λ2

k−1
2π fcη

− c2bk−1λ2
k−1

2π fcη

c2λ2
k−1

2η

 (6)

where λk−1, bk−1, c, fc, B, and η are the pulse duration, the chirp rate, the speed of light,
the carrier frequency, the signal bandwidth, and the received signal-to-noise ratio (SNR),
respectively. As shown in Equation (6), the measurement noise covariance depends on
the pulse duration and chirp rate at the k− 1 time index. This indicates that the system’s
selection of the transmitted waveform (i.e., λk−1 and bk−1) at the previous time cycle
influences the radar measurements (i.e., zk) at the current cycle. Both λk−1 and bk−1 are
the design parameters that signify the radar waveform based on the tracking application
(e.g., single- or multiple-target tracking). Since the transmitter and the receiver of the radar
sensor are both positioned on the host vehicle, the received SNR for the target vehicle

located at distance d =
√

d2
x + d2

y may be obtained as [34]

η = (
d0

d
)4 (7)

where dy is the lateral distance and d0 is the distance at which 0 dB SNR is achieved.
Note that linear Gaussian dynamic systems suffice to model the motion dynamics

when simple driving is assumed. However, modeling complex driving situations that
consider multiple targets requires switching dynamic models that may not be necessarily
expressed as in Equation (1).

2.1.2. Sensor Profile Library

For the model illustrated in Figure 1b, the cognitive radar is assumed to be equipped
with a prescribed set of measurement noise covariances, referred to as the sensor profile
library. According to Equation (6), the measurement noise covariance is computed based on
the waveform parameters: pulse duration and chirp rate. The sensor profile library holds
a large set of measurement noise covariances, denoted as R. Since it is computationally
expensive and time-consuming to go through the entire library at each time cycle to
select the informative measurement (or optimum waveform), a localized set is adopted
instead. As a solution, this paper considers a k-nearest neighbors (kNN) method to obtain
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the localized set RLk = {R(1), R(2), . . ., R(NL)} ∈ R, which includes measurement noise
covariances that are neighbors to Rk. The work in [28] views this localization approach
as a form of an attention mechanism, which is one of the basic principles of cognition in
modeling intelligent radar sensors.

2.2. Research Objective

The main goal of the cognitive radar is to estimate the target’s state from the uncertain
radar measurements while maintaining low estimation error on a cycle-by-cycle basis.
Given the model assumptions, this work aims to demonstrate how the cognitive radar
can manipulate the waveform signal parameters to improve the target’s state estimate for
the next time instant. In this regard, we mathematically express the design objective in
terms of a state estimation problem and propose three research questions on modeling the
information processor and the measurement-selection mechanism.

Suppose the motion dynamics of the vehicle-following scenario are expressed by
Equation (1); the state estimation problem becomes finding the estimated state, denoted as
x̂k ∼ p(xk|Zk), that minimizes the following objective function at each time step:

arg min
x̂k∈Rn

E[x̃T
k x̃k] (8)

where x̃k = xk − x̂k is the error between the true state and the estimated state, and p(xk|Zk)
is the probability density function (PDF) of the estimated target’s state. Given that the
radar measurements are available up to time k, Zk = {zi, i ≤ k}, Equation (8) estimates
the target’s state that minimizes the mean squared error. To accomplish this objective,
this paper focuses on modeling the information processor and the measurement-selection
technique by proposing the following research problems.

Research Problem 1. Let us assume that the parameters of the model in Equation (1) are known.
Determine the amount of new information in radar measurements that contribute to estimating the
target’s state x̂k.

The first research problem captures the essence of the information processor. Comput-
ing the information of the estimated target’s state is crucial because the sensor determines
the optimum waveform (or the measurement noise covariance) according to the informa-
tion processor. Meanwhile, the following research problem deals with how the radar sensor
can change to improve the estimate of the target’s state.

Research Problem 2. Let us assume that the measurement noise covariance, Rk, can change
at any time cycle. Based on Research Problem 1, develop an optimal selection methodology to
minimize estimation error and achieve informative measurements with respect to the measurement
noise covariance.

This problem represents the measurement-selection procedure that executes a wave-
form, leading to a better estimate of the target’s state. It solves an optimization problem
that depends on the choice of information measure. Finally, we contemplate a general
setting, which combines Research Problem 1 and Research Problem 2 in designing the
cognitive radar.

Research Problem 3. Let us consider that a set of measurement noise covariancesRLk are available
(i.e., RLk = {R(1), R(2), . . ., R(NL)}). Derive the algorithm for the information processor and the
measurement-selection procedure by looking forward to one time-step ahead. In addition, is it possible
to extend the algorithm to acquire informative measurements by planning L steps in advance?
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3. Proposed Method

This section briefly reviews the state-of-the-art designs to model the information pro-
cessor and its corresponding measurement-selection criteria. The paper addresses Haykin’s
strategy specific to cognitive radar [27] and, for the first time, discusses alternative ap-
proaches that can apply to designing such systems [16,30]. Finally, our proposed solutions
to Research Problems 1, 2, and 3 are presented.

3.1. Prior Works

Multiple measures are suggested in statistics and information theory to quantify
information [14–16,30]. The most common is the Shannon entropy, which measures the
amount of self-information or (Shannon surprise) of a particular observation, averaged over
all possible outcomes [14]. In [27,28], the authors adopt the Shannon entropy to measure the
information of the estimated target’s state and model the information processor as follows:

Hk = −
∫

xk∈Rn
p(xk|Zk) ln p(xk|Zk) dxk (9)

where p(xk|Zk) is the posterior PDF of the estimated state. Haykin derivesHk in terms of
the estimated state covariance, P(k|k), when the Kalman filter is applied for state estima-
tion (i.e., p(xk|Zk) = N (x̂(k|k), P(k|k))). According to [27,28], the measurement-selection
procedure chooses the measurement noise covariance that minimizes the Shannon entropy.

While Haykin considers an information-theoretic approach to design cognitive radar,
refs. [15,16] use surprise as the principal mechanism to acquire information. Surprise
measures ”how much wow” one experiences when encountering uncertain events [13].
The Bayesian surprise measures the Kullback–Leibler (KL) information between a prior
probability distribution and its update when a new observation is made [15]. Based on the
research objective, the Bayesian surprise is defined as

SB
k (zk) = DKL(p(xk|Zk−1), p(xk|Zk)) =

∫
xk∈Rn

p(xk|Zk−1) ln
p(xk|Zk−1)

p(xk|Zk)
dxk (10)

where it determines the effect of the new radar measurement zk on the target’s state
estimation by measuring the KL distance from the predicted PDF to the posterior PDF. In
addition, free energy is another type of surprise that measures the information of a new
measurement by weighting and averaging it over all possible models [16]. The free energy
is determined as follows:

Fk(zk) = −
∫

xk∈Rn
p(xk|Zk−1) ln p(zk|xk, Zk−1)dxk = SB

k (zk)− ln p(zk|Zk−1) (11)

where p(zk|xk, Zk−1) is the probability of the measurements at time k, conditioned on
the state and all past measurements. As shown, free energy is expressed in terms of
Bayesian surprise and − ln p(zk|Zk−1), which refers to the Shannon surprise within the
measurements. Note that the Bayesian surprise and the free energy have been adopted in
many works to explain information-seeking behaviors in biological agents [17,19–22,35,36].
However, these two have not been directly applied to the design of cognitive radar systems.

A classical estimation/control methodology to evaluate the impact of new measure-
ments is computing the trace of the influence matrix that is used in data assimilation for
weather forecasting applications [30]. The influence matrix is also suitable for measuring
radar measurements’ contribution to estimating the target’s state. For a specific configura-
tion in which the Kalman filter is used for state estimation, the influence matrix is obtained
as follows:

Sk =
∂Hk x̂(k|k)

∂zk
= HkKk (12)
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where Kk is the Kalman gain. In [30], the authors determine that the measurement with the
maximum trace contributes more information to state estimation. Thus, the measurement
noise covariance that maximizes the trace of the influence matrix is selected.

3.2. Solution to Research Problem 1

This paper proposes the Bayesian surprise as the main approach to quantifying the
amount of new information within the estimated state. The Bayesian surprise demon-
strates how the uncertainty in measurements improves future state estimations given prior
estimates and provides valuable information to reduce estimation errors over time.

Since the radar measurements are constructed from linear Gaussian state-space models
(see Equation (1)), and it is assumed that the parameters of the model are known, the
Kalman filter is adopted for state estimation [26]. The Kalman filter is the optimal estimator
in the mean square error sense that solves the research objective given in Equation (8).
The filter estimates the state mean, x̂(k|k) = E[xk|Zk], and its covariance matrix, P(k|k) =
E[(xk− x̂(k|k))(xk− x̂(k|k))T |Zk], in an iterative manner. Algorithm 1 presents the two-step
state prediction and estimation of the Kalman filter.

Algorithm 1 Kalman filter [26].
Measurement update (Estimation):
x̂(k|k) = x̂(k|k− 1) + Kk(zk −Hk x̂(k|k− 1))
P(k|k) = (In×n −KkHk)P(k|k− 1)
Kk = P(k|k− 1)HT

k Pz̃(k|k− 1)−1

Time update (Prediction):
x̂(k + 1|k) = Fk x̂(k|k)
P(k + 1|k) = Qk + FkP(k|k)FT

k

Given that p(xk|Zk−1) = N (x̂(k|k− 1), P(k|k− 1)) and p(xk|Zk) = N (x̂(k|k), P(k|k))
are available from the Kalman filter, the following expression for the Bayesian surprise is
achieved [37]:

SB
k (zk) =

1
2

[
ln
|P(k|k)|
|P(k|k− 1)| + tr{P(k|k)−1P(k|k− 1)} − n + ||x̂(k|k)− x̂(k|k− 1)||2P(k|k)−1

]
(13)

where x̂(k|k − 1), P(k|k − 1), and n are the predicted state mean, the predicted state co-
variance matrix, and the state space dimension, respectively. While the above expression
demonstrates the Bayesian surprise in state space, the nature of the research problem
requires rewriting Equation (13) in measurement space. In this regard, we determine the
Bayesian surprise in measurement space as

SB
k (zk) =

1
2

[
ln |RkPz̃(k|k− 1)−1| −m + ||z̃(k|k− 1)||2KT

k P(k|k)−1Kk
+ tr{(RkPz̃(k|k− 1)−1)−1}

]
(14)

where z̃(k|k− 1) = zk−Hk x̂(k|k− 1) is the innovation vector, Pz̃(k|k− 1) = Rk +HkP(k|k−
1)HT

k is the innovation covariance, and m is the dimension of the measurement space. Equa-
tion (14) clearly shows the connection between the Bayesian surprise and the design
parameters of the radar sensor (i.e., Rk); it also indicates how the information in a current
radar measurement influences the Bayesian surprise (i.e., Pz̃(k|k− 1)−1).

As shown in (14), the Bayesian surprise at time k is a function of the measurement
zk. In a case where zk is not available (e.g., multiple-step planning), this paper proposes
computing the expectation of Bayesian surprise instead. The expectation of Bayesian
surprise with respect to p(zk|Zk−1) ∼ N (Hk x̂(k|k− 1), Pz̃(k|k− 1)) is obtained as follows:

Ep(zk |Zk−1)
[SB

k (zk)] =
1
2

ln |RkPz̃(k|k− 1)−1|+ tr{(RkPz̃(k|k− 1)−1)−1} −m (15)
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where Ep(zk |Zk−1)
[||z̃(k|k − 1)||2

KT
k P(k|k)−1Kk

] is simplified to tr{(RkPz̃(k|k − 1)−1)−1} − m.

The measurement noise covariance, Rk, and the information within the innovation, Pz̃(k|k−
1)−1, are the only terms that appear in Equation (15). Equation (15) shows that the uncer-
tainty in measurements, balanced by what the filter thinks about the measurements (i.e.,
RkPz̃(k|k− 1)−1), impacts the expectation of Bayesian surprise.

3.3. Solution to Research Problem 2

This section explores the measurement-selection scheme associated with the choice of
the information processor. Since the Bayesian surprise and its expectation are proposed
to solve Research Problem 1, the challenge of Research Problem 2 becomes achieving an
optimum selection mechanism based on the Bayesian surprise (or its expectation). To this
end, let us first refer to the definition of the influence matrix given in Equation (12). A
connection exists between the expected Bayesian surprise and the influence matrix. This
relation is evident when rewriting Equation (12) in the measurement space. By expressing
the Kalman gain as Kk = P(k|k)HT

k R−1
k and applying the matrix inversion lemma to

Equation (12), the following definition is obtained:

Sk = Im×m − RkPz̃(k|k− 1)−1 (16)

where Im×m is the identity matrix. The term RkPz̃(k|k− 1)−1 appears in the expectation of
Bayesian surprise as well. The influence matrix is a projection matrix (i.e., Sk is symmetric
and idempotent); a positive semi-definite matrix and all its diagonal elements are bounded
between 0 and 1 [30]. Since the magnitude of the diagonal values of Sk corresponds to the
influence of the measurement, the trace of the influence matrix is acceptable for determining
the impact of measurements [30]. An informative measurement that contributes to state
estimation maximizes the trace of the influence matrix.

The influence matrix trace provides insight into how to select informative radar
measurements with respect to the Bayesian surprise. According to the properties of the
influence matrix, its trace does not exceed the dimension of the measurement space m.
Therefore, the maximization of tr{Sk} is equivalent to minimizing tr{RkPz̃(k|k − 1)−1}
(see Equation (16)). In this regard, the measurement-selection procedure concerning the
influence matrix becomes solving the following optimization problem:

Rmin
k = argmin

Rk

tr{RkPz̃(k|k− 1)−1} (17)

where Rmin
k is obtained when tr{RkPz̃(k|k − 1)−1} is minimized. To do so, the trace is

differentiated with respect to the measurement noise covariance and is set equal to zero:

∂

∂Rk

(
tr{RkPz̃(k|k− 1)−1}

)
= Pz̃(k|k− 1)−1 = 0m×m (18)

The following is obtained by substituting the expression for Pz̃(k|k− 1) and employing the
matrix inversion lemma:

R−1
k (Im×m −HkP(k|k)HT

k R−1
k ) = 0m×m (19)

where R−1
k = 0m×m is not applicable; hence, Rmin

k = HkP(k|k)Hk. For Rk = HkP(k|k)Hk,
the trace of the influence matrix reaches its maximum.

To demonstrate how the selection criteria for the expectation of Bayesian sur-
prise changes when Rk = HkP(k|k)Hk, it is suitable to revise E[SB

k (zk)] in terms of
the trace operator:

Ep(zk |Zk−1)
[SB

k (zk)] =
1
2

tr{ln(RkPz̃(k|k− 1)−1)}+ tr{(RkPz̃(k|k− 1)−1)−1 − Im×m} (20)
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where for any positive semi-definite square matrix A (i.e., RkPz̃(k|k − 1)−1), ln |A| =
tr{ln(A)}. According to the bounds of the natural logarithm, if A << Im×m, then
abs(ln A) < (A−1− Im×m). In other words, the growth rate of (A−1− Im×m) is higher than
ln A when A → 0m×m. Applying this condition to Equation (20) for RkPz̃(k|k− 1)−1 →
0m×m makes it safe to say that Ep(zk |Zk−1)

[SB
k (zk)] ≈ tr{(RkPz̃(k|k − 1)−1)−1 − Im×m}.

Therefore, when RkPz̃(k|k − 1)−1 → 0m×m (or Rk = HkP(k|k)Hk), the expectation of
Bayesian surprise reaches its maximum value. In an informative radar measurement that
decreases the state estimation error, the measurement noise covariance is small, and the
inverse of the innovation covariance is maximized.

To further elaborate, we consider a simple example by setting RkPz̃(k|k − 1)−1 =
αIm×m, where 0 ≤ α ≤ 1. We examine two extreme cases of α = 0.01 and α = 0.99. For
α = 0.01, the expectation of Bayesian surprise becomes

E[SB
k (zk)]|α=0.01 =

1
2

ln(|0.01Im×m|) + tr{100Im×m} −m ≈ 97m, (21)

and for α = 0.99, E[SB
k (zk)] is determined as

E[SB
k (zk)]|α=0.99 =

1
2

ln(|0.99Im×m|) + tr{(0.99)−1Im×m} −m ≈ 0.005m. (22)

Evidently, as α→ 0, the expectation of Bayesian surprise reaches a higher value than the
case where α→ 1. Moreover, the final two terms in Equation (21) (i.e., tr{100Im×m} −m =
99m ) are dominant as α approaches zero. Hence, when RkPz̃(k|k − 1)−1 → 0m×m, the
expectation of Bayesian surprise is maximized.

3.4. Solution to Research Problem 3

The solution to the final research problem aligns with the discussions carried out in the
last two sections. As assumed, the sensor profile library, depicted in Figure 1b, withholds a
set of measurement noise covariances, defined asRLk = {R(1), R(2), . . ., R(NL)}. At time cy-
cle k, the cognitive radar estimates the target’s state from the radar measurements. Through
multiple stages of prediction and estimation (i.e., planning), the information processor
measures the contribution of each measurement noise covariance to estimating the target’s
future state based on the expectation of Bayesian surprise. Eventually, the radar selects the
measurement noise covariance with the maximum expectation of Bayesian surprise.

Given that the estimated state covariance, P(k|k), is accessible from the state estimation
process, the proposed algorithm for one-step planning is summarized in Algorithm 2.
Algorithm 2 presents the step-by-step procedure for obtaining the expected Bayesian
surprise values corresponding to the i-th measurement noise covariance, i = 1, . . ., NL.
To this end, the one-step measurement-selection mechanism based on the expectation of
Bayesian surprise is demonstrated as follows:

i? = argmax
i={1,...,NL}

E[SB(i)

k+1] (23)

where Rk+1 = R(i?) ∈ RLk leads to a better estimate of the target’s state for time k + 1. The
waveform associated with Rk+1 is applied to the radar environment and sets a repeat of
the cycle.
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Algorithm 2 Cognitive radar for one-step planning.

1: P(k|k) andRLk = {R(1), R(2), . . ., R(NL)} are available at time k
2: P(k + 1|k) = Qk + FkP(k|k)FT

k
3: for i = 1, . . ., NL
4: P(i)

z̃ (k + 1|k) = R(i)
k+1 + Hk+1P(k + 1|k)HT

k+1

5: Compute E[SB(i)

k+1] from (15)
6: end for
7: i? = argmax

i
E[SB(i)

k+1] for i = 1, . . ., NL

8: Rk+1 = R(i?) ∈ RLk

Table 1 summarizes alternative models of the information processor and its corre-
sponding measurement-selection procedure for one-step planning. The expressions are
derived when the Kalman filter is presumed for state estimation. It is straightforward
to follow Haykin’s design [27,28] and the influence matrix approach [30]. However, a
detailed description of solving the research problems with respect to free energy is carried
out in Appendix A. The authors make a similar case for using the expectation of free
energy to model the information processor instead of the free energy itself. In addition, the
measurement noise covariance that maximizes the expectation of free energy minimizes
the state estimation error for the upcoming cycle. Haykin’s method requires an additional
step to calculate P(k + 1|k + 1), while the other three share the same term and exclude this
extra step. Although Haykin’s design implies the connection to the measurement noise
covariance, his approach is aligned with the research objective. This is because it reduces
the estimation error of the target’s state by minimizing the estimated state covariance,
P(k + 1|k + 1).

Table 1. Information processor and measurement-selection designs for one-step planning.

Method Information Processor Measurement Selection

Haykin’s Approach H(i)
k+1 = 1

2

[
ln |P(i)(k + 1|k + 1)|+ ln(2πe)n

]
i? = argmin

i={1,...,NL}
H(i)

k+1

Expectation of Bayesian Surprise E[SB(i)

k+1] =
1
2 ln |R(i)

k+1P(i)
z̃ (k + 1|k)−1|+ tr{(R(i)

k+1P(i)
z̃ (k + 1|k)−1)−1} −m i? = argmax

i={1,...,NL}
E[SB(i)

k+1]

Expectation of Free Energy E[F (i)
k+1] = E[SB(i)

k+1] +
1
2 [ln |P

(i)
z̃ (k + 1|k)|+ ln(2πe)m] i? = argmax

i={1,...,NL}
E[F (i)

k+1]

Trace of Influence Matrix tr{S(i)
k+1} = m− tr{R(i)

k+1P(i)
z̃ (k + 1|k)−1} i? = argmax

i={1,...,NL}
tr{S(i)

k+1}

This paper also presents the means that extend the one-step planning algorithm to
L steps. Since P(k|k) and the entire sensor profile library are available, the Kalman algo-
rithm is partially applicable to predict the state covariance and to compute the innovation
covariance and the estimated state covariance. The only difference is that the Kalman
algorithm repeats L times to capture the influence of L future measurements. In this regard,
the expectation of Bayesian surprise at time k + L is calculated as follows:

E[SB(ij...l)

k+L ] =
1
2

ln |R(l)
k+LP(ij...l)

z̃ (k + L|k + L− 1)−1|+ tr{(R(l)
k+LP(ij...l)

z̃ (k + L|k + L− 1)−1)−1} −m (24)

where (ij. . .l) represents the L-length sequence of measurement noise covariances. Note
that the expectation is computed with respect to p(zk+L|Zk+L−1), with mean and covari-
ance, Hk+Lx̂(ij...l)(k + L|k + L− 1) and P(ij...l)

z̃ (k + L|k + L− 1), respectively. Consequently,
the sequence with the maximum expectation of Bayesian surprise leads to informative
measurements:

(i? j?. . .l?) = argmax
i,j,...,l={1,...,NL}

E[SB(ij...l)

k+L ] (25)
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where Rk+1 = R(i?) ∈ RLk . Algorithm 3 illustrates the proposed cognitive radar algorithm
for L-step planning. Note that a similar process applies to the other models for L-step
planning with some minor modifications.

Algorithm 3 Cognitive radar for L-step planning.

1: P(k|k) andRLk = {R(1), R(2), . . ., R(NL)} are available at time k
2: P(k + 1|k) = Qk + FkP(k|k)FT

k
3: for i = 1, . . ., NL
4: P(i)

z̃ (k + 1|k) = R(i)
k+1 + Hk+1P(k + 1|k)HT

k+1

5: P(i)(k + 1|k + 1) = P(k + 1|k)− P(k + 1|k)HT
k+1P(i)

z̃ (k + 1|k)−1Hk+1P(k + 1|k)
6: for j = 1, . . ., NL
7: P(i)(k + 2|k + 1) = Fk+1P(i)(k + 1|k + 1)FT

k+1 + Qk+1

8: P(ij)
z̃ (k + 2|k + 1) = R(j)

k+2 + Hk+2P(i)(k + 2|k + 1)HT
k+2

9: P(ij)(k + 2|k + 2) = P(i)(k + 2|k + 1)[In×n −HT
k+2P(ij)

z̃ (k + 2|k + 1)−1Hk+2P(i)(k + 2|k + 1)]
10: . . .
11: for l = 1, . . ., NL
12: P(ij...r)(k + L|k + L− 1) = Fk+L−1P(ij...r)(k + L|k + L− 1)FT

k+L−1 + Qk+L−1

13: P(ij...rl)
z̃ (k + L|k + L− 1) = R(l)

k+L + Hk+LP(ij...r)(k + L|k + L− 1)HT
k+L

14: Compute E[SB(ij...rl)

k+L ] from (24)
15: end for
16: . . .
17: end for
18: end for
19: (i? j? . . .r?l?) = argmax

i
E[SB(ij...rl)

k+L ] for i, j, . . ., r, l = 1, . . ., NL

20: Rk+1 = R(i?) ∈ RLk

4. Numerical Results

In this section, simulation results are presented to compare the state estimation per-
formance of the proposed cognitive radar with the state-of-the-art listed in Table 1. The
following demonstrates the experimental setup and parameter settings for generating radar
measurements that emulate the simple vehicle-following scenario in Figure 1a. The paper
suggests a radar configuration suitable for single-target tracking in highway and urban
driving environments. Several error metrics are introduced to examine various aspects of
the estimation performance. This section compares the system performance of the proposed
one-step planning algorithm to its alternative competitors for different state estimation
errors through a series of experiments. In addition, this section also analyzes the impact
of multiple-step planning in improving state estimation performance. Results are verified
over numerous Monte Carlo runs.

4.1. Simulation Setup and Data Generation

The purpose of the experiment is to evaluate the estimation performance of the
proposed cognitive radar. Since the paper adopts the Kalman filter to accomplish state
estimation, the model parameters in Equation (1) (i.e., Fk, Qk, Hk, Rk, x̂(0|0) and P(0|0))
are assumed available. In this regard, the radar sensor configuration and the parameter
setting for generating radar measurements are presented.

For the vehicle-following scenario depicted in Figure 1a, the simulation assumes that
the two cars are moving forward in the same lane (i.e., dy = 0). In this simulation, the
FMCW radar sensor is mounted on the host vehicle and operates in the 77 GHz frequency
band for short- and long-range applications [31]. The bandwidth of the transmitted radar
signal is set to B = 100 MHz, and 0 dB SNR is achieved at d0 = 2000 m. According
to Equation (6), the measurement noise covariance depends on the choice of pulse duration
and the chirp rate, Rk(λk−1, bk−1). By assuming that the radar sensor maintains a maximum
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range of dmax = 100 m and a maximum velocity of vmax = 100 m/s, the sensor profile
library consists of measurement noise covariances specified for the following values:

λk−1 ∈ [1× 10−6 : 10−7 : 10× 10−6] ∪ [1.1× 10−5 : 10−6 : 10× 10−5],

bk−1 ∈ [−1× 1012 : 0.2× 1012 : −0.2× 1012] ∪ [0.2× 1012 : 0.2× 1012 : 1× 1012].

where λk−1 and bk−1 are configured to simulate a practical radar sensor for single-target
tracking applications [6]. The sensor profile library is composed of N = 1810 measurement
noise covariances, denoted asR = {R(i)(λk−1, bk−1)}N

i=1. Since N is a large number, and
going through the entire library at each time instant is cost-ineffective, this paper adopts
the kNN method to obtain a smaller set with NL = 25 members. Figure 2 illustrates an
example of a localized set of measurement noise covariance,RLk , that is distinguished by
pulse duration and chirp rate.

Figure 2. An example of a neighboring setRLk with 25 members.

This article demonstrates highway and urban driving to examine the state estimation
performance of the proposed cognitive radar for a realistic vehicle-following scenario. Since
the true initial state, x0, and its estimation elements (i.e., x̂(0|0), P(0|0)) depend on the
driving environment, without loss of generality, the true initial state for highway driving is
set to

x0 = [25 m/s, 3 m/s2, 100 m, 23 m/s, 2 m/s2]T ,

while the initial estimation of the state mean and its covariance matrix are assumed as

x̂(0|0) = [24 m/s, 3 m/s2, 80 m, 23 m/s, 2 m/s2]T ,

P(0|0) = diag([100, 1, 100, 100, 1]).

In the meantime, for the urban driving scenario x0, x̂(0|0), and P(0|0) are set to

x0 = [13 m/s, 1 m/s2, 30 m, 12 m/s, 1 m/s2]T ,

x̂(0|0) = [12.5 m/s, 1 m/s2, 28 m, 12 m/s, 1 m/s2]T ,

P(0|0) = diag([100, 1, 100, 100, 1]).

where the values are adjusted according to an in-city driving experience. Note that the
estimated initial state x̂0 ∼ N (x̂(0|0), P(0|0)) is a random value that changes per Monte
Carlo run. This simulation sets the state noise variance to σ2

q = 0.01 and the sample time to
Ts = 0.1 s for computing Fk and Qk to ensure constant acceleration.
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4.2. Evaluation Metrics

This paper considers numerous error measures to evaluate and compare the estimation
performance of the proposed cognitive radar to the alternative design in Table 1. The error
measures include the root mean square relative error (RMSRE), the average Euclidean
relative error (ARE), the harmonic average relative error (HRE), and the geometric av-
erage relative error (GRE) [38]. Due to numerical reasons, the logarithm of the GRE is
calculated instead, log(GRE). Table 2 provides the mathematical expressions of these error
measures. In Table 2, x̃j

k = x̂j(k|k) − xj
k, where xj

k, x̂j(k|k) and x̃j
k are, respectively, the

state vector, the estimated state vector, and the state estimation error of the j-th Monte
Carlo simulation at time step k. Nmc represents the number of Monte Carlo simulations.
The paper considers relative error measures since they are suitable for the performance
evaluation of an estimation algorithm. However, the absolute value of the error metrics
mentioned above—which computes the time average—is justified for ranking the overall
state estimation performance of the cognitive radar. The absolute error counterparts of the
relative error measures are given in Table 2.

Table 2. Relative error measures and absolute values for performance evaluation [38].

Relative Error Metric Absolute of Error Metric

Root mean square relative error (RMSRE)
RMSREk =

(
∑Nmc

j=1 ||x̃
j
k ||2
) 1

2

(
∑Nmc

j=1 ||x
j
k ||2
) 1

2

ARMSRE = 1
K ∑K

k=1 RMSREk

Average Euclidean relative error (ARE) AREk =
∑Nmc

j=1 ||x̃
j
k ||

∑Nmc
j=1 ||x

j
k ||

AARE = 1
K ∑K

k=1 AREk

Harmonic average relative error (HRE) HREk =

(
∑Nmc

j=1 ||x̃
j
k ||−1

)−1

(
∑Nmc

j=1 ||x
j
k ||−1

)−1
AHRE = 1

K ∑K
k=1 HREk

Geometric average relative error (GRE) log(GREk) =
1

Nmc
∑Nmc

j=1 log ||x̃
j
k ||

||xj
k ||

log(AGRE) = 1
K ∑K

k=1 log(GREk)

4.3. Performance Evaluation and Comparison for One-Step Planning

This section demonstrates the estimation response of the proposed radar design by
tracking the velocity of the target vehicle, v1

x,k, and the longitude distance, dx,k, when one-
step planning is involved. The experiment examines target tracking in both highway and
urban driving. Results are obtained for Nmc = 10,000 Monte Carlo runs. Multiple attributes
are considered for ranking the radar designs’ overall estimation performance, as listed in
Table 1. This paper applies a pairwise comparison technique that adopts a ranking vector
(RV) to compare different estimation algorithms [32]. This method exploits comparison
information based on the probability of the relative closeness of competing estimators to
the true quantity. The authors in [32] discuss a variety of approaches for determining a
unique RV. Here, order-preserving mapping is considered to obtain the RV for ranking state
estimation performance. Since this method is straightforward, the paper solely refers to
the results of applying this strategy. In addition, the authors of this paper decided only to
present the RMSRE curves of the estimation performance to avoid unnecessary repetition.
However, the absolute relative error measures (i.e., ARMSRE, AARE, AHRE, and AGRE)
are recorded to evaluate the entire estimation performance.

Figures 3 and 4, respectively, illustrate the RMSRE performance of velocity and longi-
tude distance of the target vehicle for a highway driving experience. The duration of the
experiment is set to 10 s. Although the RMSRE results are plotted in a logarithm scale, the
figures show that the estimation response of the four radar models are in close proximity. In
this regard, the estimation performance is ranked based on a pairwise comparison method
for the mentioned error measures. Table 3 provides the absolute error measure values
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regarding the velocity of the target vehicle. For the results in Table 3, the RV based on
order-preserving mapping is computed as follows:

r1 =
[
0.8086 0.5401 0.1650 0.1650

]T ,

where the order of the elements in r1 is similar to the order shown in Table 3. The magnitude
reflects the goodness of the approach relative to each other. The larger the value, the better
the corresponding estimation performance. According to r1, the rank for the velocity of the
target vehicle in the highway scenario is E[SB

k+1] > tr{Sk+1} > E[Fk+1] = Hk+1, indicating
that the expectation of Bayesian surprise exceeds the alternative designs of the information
processor. r1 also implies that the expectation of free energy and Haykin’s Shannon entropy
rank similarly in estimation performance.

Figure 3. The RMSRE of the target’s velocity for one-step planning in highway driving.

Figure 4. The RMSRE of the longitude distance for one-step planning in highway driving.

Table 3. Performance comparison of radar designs versus multiple error measures for estimating the
target’s velocity in highway driving.

E[SB
k+1] tr{Sk+1} E[Fk+1] Hk+1

ARMSRE 0.0202 0.0203 0.0204 0.0204
AARE 0.0162 0.0162 0.0163 0.0163
AHRE 0.0022 0.0023 0.0023 0.0023

log(AGRE) −4.68 −4.68 −4.67 −4.67



Entropy 2022, 24, 672 16 of 21

Furthermore, Table 4 reports the absolute error measures of the longitude distance
for highway driving. Apparently, the four radar designs present identical outcomes for
10,000 runs of Monte Carlo simulations. This eventually leads to the following RV:

r2 =
[
0.5 0.5 0.5 0.5

]T ,

where it indicates that the estimation performance of the longitude distance ranks the same
for all the radar models.

Table 4. Performance comparison of radar designs versus multiple error measures for estimating the
longitude distance in highway driving.

E[SB
k+1] tr{Sk+1} E[Fk+1] Hk+1

ARMSRE 0.0028 0.0028 0.0028 0.0028
AARE 0.0022 0.0022 0.0022 0.0022
AHRE 3× 10−4 3× 10−4 3× 10−4 3× 10−4

log(AGRE) −6.67 −6.67 −6.67 −6.67

Figures 5 and 6, respectively, depict the RMSRE curves of the velocity and longitude
distance when the vehicle-following scenario takes place in an urban environment. In this
experiment, results are simulated for 7 s. While the RMSRE curves regarding the four
designs converge over time, the estimation response based on the trace of the influence
matrix experiences the lowest error at earlier time instances. Table 5 displays the different
approaches to modeling cognitive radar versus the absolute relative error metrics for
estimating the target’s velocity. As expected, the trace of the influence matrix presents a
minimum level of error compared to the alternative designs. As a result, the following RV
is achieved:

r3 =
[
0.4926 0.7896 0.2587 0.2587

]T ,

where the influence matrix trace ranks the topmost in estimating the velocity. Our proposed
scheme is second on the ranking scale. The expectation of Bayesian surprise experiences a
more significant error than the trace of the influence matrix, with AHRE as the only excep-
tion. The expectation of free energy and Haykin’s design present the poorest estimation.
Table 6 provides the overall performance for longitude distance in urban driving. Table 6
shows that all models offer the same outcome for each error measure. Therefore, all designs
are ranked equally regarding estimation performance, similar to highway driving.

Figure 5. The RMSRE of the target’s velocity for one-step planning in urban driving.
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Table 5. Performance comparison of radar designs versus multiple error measures for estimating the
target’s velocity in urban driving.

E[SB
k+1] tr{Sk+1} E[Fk+1] Hk+1

ARMSRE 0.0081 0.0079 0.0083 0.0083
AARE 0.0059 0.0057 0.006 0.006
AHRE 0.001 0.001 0.001 0.001

log(AGRE) −5.95 −5.98 −5.92 −5.92

Figure 6. The RMSRE of the longitude distance for one-step planning in urban driving.

Table 6. Performance comparison of radar designs versus multiple error measures for estimating the
longitude distance in urban driving.

E[SB
k+1] tr{Sk+1} E[Fk+1] Hk+1

ARMSRE 0.0014 0.0014 0.0014 0.0014
AARE 0.001 0.001 0.001 0.001
AHRE 1× 10−4 1× 10−4 1× 10−4 1× 10−4

log(AGRE) −7.74 −7.74 −7.74 −7.74

According to this experiment, the following remarks can be made for one-step plan-
ning. In the case of highway driving, the expectation of Bayesian surprise outperforms
the other three techniques in estimating the target’s velocity. In the meantime, the trace
of influence matrix is a better choice for modeling the information processor in an urban
environment. Note that both methods only consider Rk+1Pz̃(k + 1|k)−1 as the means to
minimize the state estimation error for the next time instant. This implies that the uncer-
tainty in the measurements balanced by the certainty in innovation provides sufficient
information to predict and estimate the target’s dynamic state ahead of time.

4.4. Performance Evaluation and Comparison for L-Step Planning

This experiment evaluates the estimation performance of the proposed cognitive radar
when the impact of L future measurements are considered in estimating the target’s state
for the upcoming time cycle. The results of this experiment are averaged over Nmc = 1000
Monte Carlo simulations for the highway driving scenario. This section examines how
v1

x,k estimation improves when multiple-step planning is assumed. According to the
figures and tables in the previous section, the longitude distance seems invariant for
the various error measures. To this end, this experiment focuses only on estimating the
target’s velocity. Figure 7 illustrates the RMSRE performance of the proposed radar design
for L = {1, 2, 3}. Figure 7 shows that the estimation error is substantially decreased by



Entropy 2022, 24, 672 18 of 21

increasing the planning step from one to two. Although three-step planning outperforms
them all, the amount of errors reduced by changing L = 2 to L = 3 is negligible compared
to L = 1 to L = 2. Additionally, increasing L is associated with a longer simulation run
time and higher computational complexity. Thus, two-step planning seems the optimum
fit to enhance the state estimation performance of the proposed cognitive radar.

For two-step planning, this section also analyzes the estimation performance of the
proposed cognitive radar with alternative designs. Figure 8 compares the RMSRE curves of
the four radar designs by setting L = 2 and Nmc = 10,000 for highway driving. Accord-
ing to Figure 8, the expectation of Bayesian surprise and the expectation of free energy
present minimum estimation errors with respect to RMSRE, while surpassing the other
two techniques. Table 7 supports this claim in terms of the absolute RMSRE. The results
indicate that, on average, the expectation of Bayesian surprise improves the estimation
process when multiple-step planning is considered.

Figure 7. The RMSRE of the target’s velocity for L = {1, 2, 3} and Nmc = 1000 in highway driving.

Figure 8. The RMSRE of the target’s velocity for L = 2 and Nmc = 10,000 in highway driving.

Table 7. Performance comparison with respect to the ARMSRE of the target’s velocity for two-step
planning in highway driving.

E[SB
k+1] tr{Sk+1} E[Fk+1] Hk+1

ARMSRE 0.0126 0.0182 0.0127 0.0156
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5. Conclusions

This paper proposed a novel design of cognitive radar that plans the estimation re-
sponse of the system based on the expectation of Bayesian surprise and makes a decision
by reducing the estimation error over time. In this work, the radar measurements were
expressed for a set of linear Gaussian state-space models to describe the motion dynamics
of a simple vehicle-following scenario. Assuming that the model parameters are somehow
known, the Kalman filter was applied for state estimation. According to the filter’s estimate,
the radar measures how much information each waveform—available from the sensor
profile library—contributes to estimating the target’s future state (i.e., velocity, distance),
and chooses the one that maximizes the expectation of Bayesian surprise. This research
showed that maximizing the expectation of Bayesian surprise leads to informative mea-
surements and successively decreases the state estimation error. In addition, estimation
algorithms for one-step planning and multiple-step planning are determined. The pa-
per also demonstrated a unified framework to re-introduce and relate different design
methodologies to model cognitive radar systems. Several experiments were carried out to
evaluate and compare the estimation performance of the proposed method to alternative
designs. Numerical results were implemented to emulate real-life highway and urban
driving experiences. The paper examined the credibility of the proposed approach based
on a pairwise comparison method for various error measures. Results indicated that the
balance between uncertainty in the measurements and the certainty in innovations provides
sufficient information for accurate target tracking for one-step planning. The paper also
demonstrated that two-step planning improves the estimation error significantly compared
to one-step planning. Meanwhile, the proposed radar design exceeds its competitors’
overall estimation performance when two-step planning is applied.
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Appendix A

To model the information processor based on the free energy, let us refer to Equation (11).
By replacing p(zk|Zk−1) ∼ N (Hk x̂(k|k− 1), Pz̃(k|k− 1)) in Equation (11), the following
is achieved:

Fk(zk) = SB
k (zk) +

1
2

[
ln(2π)m + ln |Pz̃(k|k− 1)|+ ||z̃(k|k− 1)||2Pz̃(k|k−1)−1

]
(A1)

where SB
k (zk) is given in Equation (14). Similar to the Bayesian surprise, free energy is a

function of zk. In the case that zk is unavailable, the expectation of the free energy with
respect to p(zk|Zk−1) is obtained instead:

Ep(zk |Zk−1)
[Fk(zk)] = E[SB

k (zk)] +
1
2
[ln |Pz̃(k|k− 1)|+ ln(2πe)m] (A2)

where the second term is the expectation of − ln p(zk|Zk−1). Compared to the expectation
of Bayesian surprise, Equation (A2) captures the filter’s uncertainty in interpreting the
radar measurements. A recent study adopts the expectation of free energy as a means to
investigate exploratory behavior in linear Gaussian dynamic systems [39].

An equivalent analysis of the measurement-selection procedure based on the expecta-
tion of Bayesian surprise also applies to the expectation of free energy. With some basic
manipulations of Equation (A2), the expectation of free energy reaches its maximum when
RkPz̃(k|k− 1)−1 → 0m×m (or Rk = HkP(k|k)Hk). In this regard, the measurement noise
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covariance that maximizes the expectation of free energy leads to a better estimate of the
target’s state at the succeeding time instant.
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