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Recently, proteins are gaining attention as potential materials for antibacterial therapy.

Proteins possess beneficial properties such as biocompatibility, biodegradability, low

immunogenic response, ability to control drug release, and can act as protein-mimics

in wound healing. Different plant- and animal-derived proteins can be developed

into formulations (films, hydrogels, scaffolds, mats) for topical antibacterial therapy.

The application areas for topical antibacterial therapy can be wide including bacterial

infections in the skin (e.g., acne, wounds), eyelids, mouth, lips, etc. One of the major

challenges of the healthcare system is chronic wound infections. Conventional treatment

strategies for topical antibacterial therapy of infected wounds are inadequate, and the

development of newer and optimized formulations is warranted. Therefore, this review

focuses on recent advances in protein-based systems for topical antibacterial therapy

in infected wounds. The opportunities and challenges of such protein-based systems

along with their future prospects are discussed.
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INTRODUCTION

The integrity and function of the skin as a physical permeation barrier are crucial for protecting
against the external environment, including particles, exogenous chemicals, and microorganisms
(1). The skin is considered the largest human organ and is composed of two main layers; epidermis
and dermis (2). The epidermis is further divided into five separate layers (in order from most
superficial to deepest: stratum corneum, stratum lucidum, stratum granulosum, stratum spinosum,
and stratum basale) (3). The barrier function and transportation of compounds into the skin can be
attributed to the most superficial layer, stratum corneum, and is governed by a brick-like structure
of corneocytes (4). The second skin layer is the dermis, which is responsible for the strength and
elasticity of the skin. The dermis consists mainly of fibroblast cells and fibrous proteins, such as
collagen and elastin (5). The skin has a microbiota composed of numerous bacteria and fungi with
an essential role in the protection against invading pathogens (6). A breach of the skin barrier can
disturb the balance between commensals and pathogens, resulting in skin disease and infection (7).

The barrier function of the skin can be reduced by trauma, such as accidental injury, cuts, scrapes
and burns, or skin disease. Disruption of the skin can lead to impaired protection against the
external environment, including the risk of infections and compromised immunity (8). Diseased
skin, such as common acne and atopic dermatitis is associated with dysbiosis between common
commensal species, resulting in inflammation and epidermal barrier impairment (6). Changes
in the skin microbiota can also be the result of diseases, such as immunodeficiency diseases and
diabetes (9, 10).
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Wounds that do not heal by an orderly sequence of events
and within a predictable amount of time are defined as chronic
(11). The pathophysiology of chronic wounds is characterized by
a disturbance in the normal physiological conditions, including
the colonization of opportunistic pathogens (Figure 1). Bacterial
infections may cause wound deterioration, which will slow
down the healing process and prevent wound closure (13, 14).
Opportunistic pathogens, such as the Gram-positive bacterium
S. aureus and the Gram-negative bacterium P. aeruginosa are
prevalent in chronic wounds (13, 14) which can form biofilms

FIGURE 1 | Schematic of the differences between acute and chronic wounds illustrated by an increased imbalance between proteolytic enzymes and their inhibitors,

and invasion of opportunistic bacteria leading to delayed wound healing in chronic wounds. Adapted with permission from Krishnaswamy et al. (12).

characterized by an aggregation of immobilized bacterial cells
in an adhesive extracellular matrix (15, 16). Biofilm formation
affects the wound healing process by delaying epithelialization
and granulation tissue formation. Such wounds express lower
levels of inflammatory markers, thus disturbing the mechanisms
of recovery (17). Further, the production of destructive enzymes
and toxins may promote a chronic inflammatory state of the
wound and prevent the healing process (18).

Topical drug delivery can be used for delivery of drugs
through the skin, i.e., transdermal drug delivery, or formulations
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may be applied for local action, i.e., retention of the active
ingredient on the skin surface or within the epidermal
layers without systemic absorption (19). Topical antibiotics
and antiseptics are commonly prescribed to treat superficial
bacterial infections (20, 21). However, clinical guidelines have
been focused on systemically or intravenously administered
antibiotics (20). The clinical usage of topical antibacterial
treatment has been limited to superficial skin infections, such
as impetigo, chronic wounds and burns, and the prevention
of postsurgical wound infections and minor traumatic wound
infections (20). Conventional antibacterial agents used for
topical treatment include antiseptics, such as chlorhexidine,
triclosan, and hydrogen peroxide, and antibiotics such as
mupirocin, bacitracin, polymixin B, neomycin, gentamicin,
silver sulfadiazine, and fusidic acid (20, 22). A major concern
regarding the use of antibiotics includes the potential resistance
development by the infecting bacteria (23). Thus, an optimal
formulation is required to effectively kill the pathogens and lower
the risk of resistance development. Commercial formulations for
topical antibacterial therapy have been based on conventional
formulation techniques, such as emulsions (creams and lotions),
ointments, and hydrogels, andmoisture-retentive dressings, such
as hydrocolloids and poly-urethane foams (20, 22, 24). The
major advantages of topical formulations are their local effects
without systemic absorption leading to fewer side effects, ease
of application, moisturizing properties, low cost of production,
and inexpensiveness for patients (25). However, the topical
application may interfere with the wound healing process and
the normal microbiota. Further, the residence time of the active
ingredient may be too short for a proper effect, and the dose
accuracy may be low. Some patients may find the application
of the formulations painful (22, 25). Thus, there is a need for
modified formulations suitable for topical applications.

PROTEINS: ROLES IN WOUND HEALING
AND TOPICAL ANTIMICROBIAL THERAPY

Wound healing is a complex biological process involving
damaged tissue replacement with a living one (26). The tissue
integrity is restored as a result of interactions of platelets,
cells (e.g., monocytes/macrophages, neutrophils, fibroblasts,
keratinocytes, and endothelial cells), and extracellular matrix
(ECM) components (27, 28). The ECM not only provides
essential physical scaffolding for the cellular constituents but
also initiates crucial biochemical and biomechanical cues
that are required for tissue morphogenesis, differentiation,
and homeostasis (29). The ECM is composed of two main
classes of macromolecules: proteoglycans and fibrous proteins
(30). Collagen, elastin, fibronectin, and laminin are the
main fibrous proteins in the ECM (31). Collagen is the
most abundant fibrous protein within the interstitial ECM
(constitutes up to 30% of total protein mass) with important
functions including regulation of cell adhesion, provide
tensile strength, support chemotaxis and migration, and
directs tissue development for wound healing (32). Collagen
further associates with elastin fibers that provide recoil to

tissues undergoing repeated stretch (33). Fibronectin protein
is involved in directing the organization of interstitial ECM
and has a crucial role in mediating cell attachment and
function (34).

Some proteins and peptides have inherent antimicrobial
properties. Such antimicrobial proteins and peptides have been
studied for their potential in the treatment of bacterial wound
infections in addition to their wound healing properties (35).
Antimicrobial peptides (AMPs) are the host-defense peptides
produced by animals, plants, fungi, bacteria, and protozoa.
Detailed information on potent AMPs for topical application
in wounds is available elsewhere (36). Several AMPs (e.g.,
Pexiganan, Omiganan, Lytixar, Dalbavancin, and Brilacidin) with
potential as antibacterial agents are in different phases of clinical
trials for future commercial developments (37). Additionally,
there are some enzymes (e.g., lysozyme, phospholipase A2) that
possess antibacterial properties. These proteinaceous molecules
have a different mechanism of actions e.g., lysozyme breaks
the bond between the N-acetylglucosamine (NAG) and N-
acetylmuramic acid (NAM) which make up the peptidoglycan
backbone (38), and phospholipase A2 penetrate the bacterial
cell wall and hydrolyzes the phospholipids in the bacterial
cytoplasmic membrane (39).

Besides the inherent antimicrobial properties of proteins and
peptides, they can be used in the preparation of formulations
for the treatment of topical infections in wounds. Different
plant- and animal-derived proteins have been studied for
their potential in wound healing. Protein wound dressings,
such as hydrogels, sponges, and sheets have advantages in
wound healing by adhering to the tissue and absorbing excess
wound exudate. Protein formulations may further protect
the wound against secondary infections and retain a moist
wound healing environment (40–42). Such protein formulations
are prepared by different methods including desolvation,
nanoprecipitation, coacervation, emulsification, self-assembly,
layer-by-layer assembly, and electrospinning (43). Among these
methods, electrospinning has gained recent interest in the
preparation of protein-based systems for topical drug delivery.
The electrospinning process generates ultrathin fibers by utilizing
electrostatic force to the protein or polymeric solution (44), and
these fibers can be used for the modification and control of drug
release (45).

PROTEINS AND THEIR FORMULATIONS
FOR TOPICAL ANTIBACTERIAL THERAPY
OF INFECTED WOUNDS

Proteins such as collagen, silk fibroin, zein, albumin, and casein
can be used as a carrier (e.g., hydrogels, films, wafers, and
electrospun fibers, and mats) for antimicrobial agents to support
antimicrobial action and promote healing of infected wounds
(Figure 2).

The protein-based systems loaded with antimicrobial
agents and investigated for their antibacterial activity are
summarized below:
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FIGURE 2 | A schematic representation of different proteins used as delivery

systems for antimicrobial agents to exhibit antibacterial and anti-biofilm effects

upon application to infected wounds.

Collagen
Collagen is the main component of connective tissue composed
of a triple helix formed by three α-chains (repeating triplets of the
amino acids glycine-X-Y where X and Y are often proline and the
imino acid hydroxyproline, respectively) (46). It has been isolated
from bovine, porcine, equine, avian, and aquatic species (47–49).
Collagen derived from aquatic sources (fish and jellyfish) and
plant-derived recombinant collagen has further been investigated
as potential alternatives to mammalian collagen to mitigate
issues on transmissible diseases and religious preferences (49–
51). Additionally, collagen from marine sources has also gained
attention because of the AMPs derived from their collagen. An
example of such AMP is collagencin which is derived from
fish collagen (52). The exogenous collagen is biocompatible,
biodegradable, non-toxic, and weakly antigenic compared to
other natural polymers (53). Collagen can cross-link and self-
aggregate to form fibers with high tensile strength and stability
(46). These fibers can be formulated into different scaffolds for
wound dressing. Collagen has an ability to attract proteases,
which have been exploited in commercial products acting as
sacrificial substrates, protecting the endogenous collagen in the
wound bed (54, 55). Gelatin is a hydrolyzed form of collagen
which can also be utilized for topical application in infected
wounds (56). Collagen is a highly versatile material with potential
applications for burn/wound cover dressings (57). Recently, the
drug delivery properties of collagen have been widely studied.
Collagen-based drug delivery systems for potential topical
application in infected wounds include microspheres based on
gelatin, collagen scaffolds, collagen hydrogels, collagen/collagen-
synthetic polymer hydrogels, and collagen films. Most of the
commercial formulations of collagen are available only as skin
substitutes for wound healing application but do not possess
antibacterial activity (58). There are only two commercial
collagen-based antimicrobial dressings containing silver as an
antimicrobial agent: collagen/oxidized regenerated cellulose
(ORC)-silver (Promogran R© Prisma, Systagenix) and collagen-
silver (Puracol R© Plus Ag+, Medline) (59). However, collagen
dressings containing other antimicrobial agents are still lacking in
the commercial market. Different studies exploring the potential
of collagen-based systems as topical antibacterial agents have

been published. The examples of such collagen-based systems for
topical antibacterial therapy of infected wounds are presented
in Table 1. The combination of wound healing and controlled
drug release properties of collagen can effectively kill the infecting
bacteria and assist in the wound healing process. However, a
potential disadvantage is the protease-mediated growth of S.
aureus under nutrient-limited conditions while using collagen in
an antibacterial system (68). Therefore, rigorous in vitro and in
vivo studies are required to optimize and establish the potential
use of collagen-based systems as topical antibacterial therapy for
infected wounds.

Silk Fibroin
Silk fibroin is a biologically-derived protein polymer purified
from domesticated silkworm (Bombyx mori) or non-mulberry
(Antheraea assama) cocoons (69) with unique properties
including biocompatibility (70), biodegradability (71),
mechanical strength (72), high water and oxygen uptake (73),
and excellent properties for drug delivery and tissue engineering
(74). The regulation of beta sheet content (crystallinity) can
control the degradation time course of silk implants from days
to years (75, 76). Furthermore, the incorporation of sensitive
compounds (e.g., proteins) without loss of bioactivity is possible
in silk attributable to its ability to be processed in aqueous
systems under mild and ambient conditions of temperature and
pressure (77, 78). There are reports on the use of silk fibroin
as an antibacterial biomedical nanotextile for wound dressing
(79) and as a controlled release system for antibiotics (80).
However, there are no commercial antibacterial products based
on silk fibroin. Several studies exploring the topical antibacterial
potential of silk fibroin-based systems have been published.
The examples of such systems for topical antibacterial therapy
of infected wounds are presented in Table 2. Rigorous studies
are warranted to establish the in vivo antibacterial potential of
topical silk fibroin-based systems for commercial development
in the treatment of infected wounds.

Zein
Zein is a plant protein found in maize endosperm (84) composed
of nonpolar and uncharged amino acids glutamine, leucine,
proline, and alanine (85). The solubility of zein is determined
by its amino acid composition and are accordingly classified
as α, β, γ, and δ zein (86). Zein is a biocompatible and
biodegradable polymer with potential applications in biomedical
and pharmaceutical fields (87). It is widely used in the food
and pharmaceutical industry attributable to its ability to form
a tough, glossy coating with antibacterial activity (84, 88). Zein
can be prepared as nanoparticles, microspheres, films, fibers,
and composites with other natural polymers (87) using the
evaporation-induced self-assemblage mechanism for controlled
delivery of drugs (89). So far, there are no commercial products
of zein for topical antibacterial therapy of infected wounds.
Published literature suggest the potential of zein-based systems
as potent topical antibacterial formulations. Examples of such
systems are presented in Table 3.

Frontiers in Medical Technology | www.frontiersin.org 4 June 2021 | Volume 3 | Article 685686

https://www.frontiersin.org/journals/medical-technology
https://www.frontiersin.org
https://www.frontiersin.org/journals/medical-technology#articles


T
h
a
p
a
e
t
a
l.

P
ro
te
in
-B

a
se

d
To

p
ic
a
lA

n
tib

a
c
te
ria

lT
h
e
ra
p
y

TABLE 1 | Collagen-based systems for topical antibacterial therapy of infected wounds.

Collagen-based

formulation

Active ingredient Preparation method Additional

polymer/

nanoparticle

Treatment

purpose

Target

microorganism

Outcomes References

Film Pexiganan Simple mixing of active ingredient and

collagen, and air drying

- Infected rat wound

model (in vivo)

S. aureus and P.

aeruginosa

The sustained pexiganan release was observed

for 72 h; in vivo wound bacteria inhibition was

3-5 fold higher compared to open wound or

blank collagen film

(60)

Scaffold Silver sulfadiazine Simple mixing of silver sulfadiazine

loaded alginate microspheres in

pepsin-solubilized collagen

Alginate

microspheres

In vitro

antibacterial

studies

K. Pneumoniae, E.

coli, P. aeruginosa,

and S. aureus

The collagen scaffold controlled drug release

for up to 72 h. Minimum inhibitory

concentrations (MIC) and minimum bactericidal

concentration (MBC) were K. Pneumoniae

(MIC: 32µg/mL and MBC: 40.2µg/mL), E. coli

(MIC: 32µg/mL and MBC: 40.2µg/mL), P.

aeruginosa (MIC: 44.8µg/mL and MBC:

51.2µg/mL), S. aureus (MIC: 57.6µg/mL and

MBC: 57.6µg/mL)

(61)

Scaffold Doxycycline Simple mixing of doxycycline loaded

gelatin microspheres in

pepsin-solubilized collagen

Gelatin

microspheres

Infected rat wound

model (in vivo)

P. aeruginosa Early subsidence of infection (99.9%) by day 9

for collagen scaffold treated infected wounds

whereas, for the control group, the microbial

load exceeded 103 CFU even on day 15

(62)

Hydrogel Lysostaphin Mixing of solubilized chitosan and

collagen, and subsequently

incorporating lysostaphin into the

purified hydrogels

Chitosan Infected rabbit

burn wound model

(in vivo)

Methicillin resistant

S. aureus (MRSA)

The MIC of chitosan-collagen hydrogel

incorporating lysostaphin (CCHL) was 0.053

U/mL. No bacteria were detected in the

wounds by the second week of CCHL

application on MRSA infected third-degree

burn wounds.

(63)

Wafers Gentamicin Electrospinning of

polycaprolactone/collagen nanofibers

and subsequent coating with micelles

composed of polypeptide-based

block copolymer

Polycaprolac-

tone/polypeptide

based block

copolymer micelle

In vitro

antibacterial

studies

S. aureus The gentamicin-loaded wafers were able to kill

>99.99% of S. aureus

(64)

Nano-composite Gentamicin sulfate

and sodium

rifamycin

Resuspending drug loaded silica

particles in collagen gel

Silica particles Infected rat wound

model (in vivo)

S. aureus Sustained antibacterial effects over 10 days in

vitro and 2 log reduction in the bacterial

population following treatment with

nanocomposites

(65)

Scaffold Silymarin and

silver nitrate

Mixing of chitosan and collagen along

with silymarin, and addition of bi-layer

scaffolds of silver incorporated

chitosan and collagen

Chitosan No in vitro or in

vivo antibacterial

studies were

performed

- Antibacterial studies are warranted for further

assessment of in vitro and in vivo antibacterial

activity of the scaffold

(66)

Scaffold Zinc oxide

nanoparticles

Homogenized mixing of zinc oxide

nanoparticles in collagen gel

Zinc oxide

nanoparticles

In vitro

antibacterial

studies

S. aureus and E.

coli

Growth inhibition zones of the scaffold were

comparable to those obtained for tested

antibiotics (methicillin, trospectomycin, and

ceftolozane/tazobactam for S. aureus; and

colistin, streptomycin, and rifampin for E. coli.

(67)
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TABLE 2 | Silk fibroin-based systems for topical antibacterial therapy of infected wounds.

Silk

fibroin-based

formulation

Active ingredient Preparation method Additional

polymer/

nanoparticle

Treatment

purpose

Target

microorganism

Outcomes References

Hydrogel Ampicillin Prepared from an aqueous solution of silk

fibroin protein polymer and bulk loaded

ampicillin

- Infected mouse

wound model (in

vivo)

S. aureus Sustained ampicillin release was observed

for 72 h; in vivo wound bacteria inhibition

was 20 fold higher compared to untreated

wound

(80)

Electrospun mats Polyethylene-imine

(PEI)

PEI and silk fibroin were dissolved in

formic acid to achieve a final concentration

of 15% w/v

PEI In vitro

antibacterial

studies

S. aureus and P.

aeruginosa

Potent antibacterial activity against both

bacteria and their complete inhibition

(79)

Film Ciprofloxacin

Amoxicillin

Nystatin

Simple mixing of antibiotics to 8% w/v silk

fibroin solution prior to casting

- In vitro

antibacterial

studies

S. aureus, P.

aeruginosa, K.

pneumonia, A.

baumannii, E. coli,

and C. tropicalis

The antibacterial activity of free drug

solutions was maintained by the

mucoadhesive silk fibroin films

(81)

Composite film Gold nanoparticles Simple mixing of silk fibroin solution and

gold nanoparticles prior to casting

Gold nanoparticle Infected rat wound

model (in vivo)

Multidrug resistant

E. coli

Complete inhibition of multidrug resistant

bacteria in vitro and efficiently combat

infection in in vivo wound model

(82)

Layer-by-layer

deposited

nanofibers

Lysozyme Composite nanofibrous mats were

prepared from mixed solutions of silk

fibroin and nylon 6 using electrospinning.

Lysozyme and collagen were alternately

assembled on the prepared mats by

layer-by-layer deposition.

Lysozyme and

collagen alternate

deposition of 10

layers on silk

fibroin and nylon 6

composite

nanofibrous mat

In vitro

antibacterial

studies

E. coli, and S.

aureus

>80% and >98% reduction in the viable

count of E. coli, and S. aureus

(83)
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Albumin
Albumin is the most abundant plasma protein (35–50 g/L human
serum) with a molecular weight of 66.5 kDa (95). It is produced
by the liver and has an important role in maintaining the osmotic
pressure of plasma and transporting endogenous compounds
(proteins, cholesterol, and bile pigments) (96). Albumins (bovine
serum albumin and human serum albumin) are widely utilized
for a variety of clinical and biomedical research applications
attributable to their advantageous intrinsic properties such as
biocompatibility, biodegradability, low immunogenicity, and
non-toxicity (95, 97). Albumin possesses non-specific protein
adsorption property that has led to its design as an antimicrobial
material to reduce the adhesion of pathogenic bacteria (98, 99).
Coating of a polystyrene membrane with human serum albumin
inhibited biofilm formation by E. coli (100) and pneumococcal
strains (101). Nevertheless, the inhibitory effect of albumin is
still limited to certain bacterial species (102) and can even
stimulate bacterial growth in other species (100, 101). Such
inhibitory effect of albumin can be utilized in the preparation
of topical films or patches with albumin coatings to promote
anti-biofilm activity once applied to susceptible wounds. The
triggered release behavior of albumin nanoparticles (103) can be
potentially utilized for the on-demand antibacterial release upon
application to infected wounds. Furthermore, albumin coatings
on nanoparticles can facilitate the targeting and trafficking during
drug delivery (104). Similar strategies can be used for topical
application of albumin coated nanoparticles to facilitate uptake
inside the cells infected with bacteria for the induction of
antibacterial effects. There are limited literature about the use of
albumin-based systems for topical antibacterial therapy. Further
research in this field is warranted to explore the potential use of
albumin-based systems for the topical antibacterial therapy.

Casein
Casein is a milk phosphoprotein that constitutes a major
(≈ 80%) proportion of cow milk protein content (105). It is a
proline-rich, amphiphilic protein, which can self-assemble into
micellar structures (106). Casein is inexpensive, non-toxic, and
heat-stable, and can form film attributable to its random coil
conformation (107). Although there are reports on different
formulations of casein [nanoparticles (108), microparticles
(109), micelles (110), films (111), hydrogels (112)] in drug
and enzymatic delivery; there are negligible studies about
casein-based antimicrobial preparations for topical applications.
The high availability, biocompatibility, and biodegradability
properties of casein make it a suitable protein for the potential
delivery of bioactive molecules and antimicrobial agents for
topical delivery in tissue engineering and wound healing. The
film formation of casein is attributable to polar amino acid groups
(≈ 55%) responsible for the hydrogen bond formations but
this property leads to poor electrospinnability arising from low
viscoelasticity in solution (113). Addition of suitable synthetic
polymers such as polyethylene oxide (113) and polyvinyl alcohol
(114) can solve the electrospinning problem. There is a single
study on the casein-based topical antimicrobial preparation
performed by Selvaraj et al. based on electrospinning of casein
nanofibers with silver nanoparticles (113). In this study, the
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blended mixture of casein, polyethylene oxide, and silver
nanoparticles was electrospun to prepare nanofibrous mats that
were crosslinked with glutaraldehyde vapor. The incorporation
of silver nanoparticles led to the potent antimicrobial activity
against S. aureus, E. coli, and B. subtilis. Further casein-based
topical antimicrobial formulations need to be developed to assess
their potential in the treatment of topical infections, especially in
chronic wounds.

PROTEIN-BASED DELIVERY SYSTEMS
FOR ANTIBACTERIAL THERAPY

Based on the available literature, as presented above, different
delivery systems (hydrogels, films, wafers, and electrospun fibers
and mats) have been prepared for the antibacterial therapy. An
overview of these delivery systems is presented below:

Hydrogels
Hydrogels are three-dimensional polymeric networks capable of
absorbing large amounts of water or biological fluids (up to
1,000 times their dry weight). Their insolubility is attributed
to the presence of cross-links between the constituents that
form the polymeric network (115, 116). Hydrogels have several
advantages including biocompatibility, tunable biodegradability,
mechanical strength, and porous structure suitable for topical
applications (117). Proteins can be suitable building blocks for
hydrogels since they are biocompatible and easily degraded by
the body (118). More importantly, different chemical reactions
including click chemistry, UV-initiated cross-linking, Michael
addition of cysteine residues to vinyl sulfones or maleimides,
and native chemical reactions can be performed with proteins to
form hydrogels (119). Collagen is widely used as a biomaterial
in its native fibrillar form as well as after denaturation to form
hydrogel (120). The factors influencing self-assembly of collagen
to hydrogel include temperature, ionic conditions, pH, and
cross-linking agent (121). Silk fibroin forms β-sheets due to the
presence of the highly repetitive amino acid motif GAGAGS.
These sheets are responsible for silk fibroin’s insolubility in
water. The hydrophobic interactions among the protein chains
in fibroin result in the assembly of the material into hydrogels.
Gelation can be enhanced by an increase in temperature or
fibroin concentration, a decrease in pH or by addition of a
hydrophilic polymer. Furthermore, addition of Ca2+ ions also
accelerates the formation of hydrophobic interactions with the
COO− ions of the amino acid side chains (122). Different
antimicrobials can be incorporated into these protein hydrogels
for inducing the antibacterial effects on infected wounds.

Films
Film dressings are adhesive, durable, comfortable, transparent,
and cost-effective materials used for covering the wounds
and providing antibacterial effects. Films can be made up of
different materials including proteins. Protein films are one of
the most widely synthesized protein-based materials. Different
strategies are employed in generating protein films which
include: natural self-assembly of proteins (123), cross-linking
of proteins via physical or chemical approaches (124), and

thermal treatment for initiation of the reorganization of proteins
(125, 126). Furthermore, post-functionalization of the surface
or incorporation of additives can impart new characteristics
or enhance native properties of the film (127). Structural
proteins with highly repetitive amino acid sequences such
as silk and collagen naturally self-assemble into water-stable
protein films using different processing methods like casting or
printing (123, 128). Silk fibroin films possess properties including
biocompatibility, slow degradation, and robust mechanical
properties (129, 130). Silk fibroin self-assembles into β-
sheets resulting in water-stable films. Mechanical strength and
biodegradability of silk fibroin films can be enhanced by
controlling β-sheet percentage using different strategies such as
methanol annealing, water annealing, and drying speed (131,
132). Collagen consists of three parallel polypeptide-α chains in
a right-handed triple helical structure that self-associates to form
highly ordered cross-linked fibrils (133) resulting in collagen film
insolubility in water. Collagen is usually purified and can be
dissolved in acid solutions to form films (134) or alternatively,
collagen fibers are directly used to prepare films (135).

Wafers
Wafers are prepared as freeze-dried or electrospun forms of
proteins consisting of porous structures (136). Collagen can be
used to form wafers in freeze-dried form, which can absorb fluid
upon application to the wound surface and change their state
from a dehydrated porous solid to a viscous gel permitting the
diffusion of antimicrobial agent to the wounds (137, 138). Silk
fibroin porous wafers can be prepared using porogens, freeze-
drying, gas forming, and electrospun fibers (139) for application
to the wounds.

Electrospun Fibers and Mats
Electrospinning is a process of applying a high voltage to
a polymer solution for transforming a drop at the needle
tip into a cone shape in order to generate a jet (140). The
ejected jet undergoes a number of instabilities, during which
the solvent from the solution is evaporated and dry fibers are
collected on the grounded or oppositely charged plates (141).
The diameter size, distribution, and morphology of electrospun
fibers can be adjusted and tuned according to the solution
(e.g., molecular weight, concentration, viscosity, surface tension,
conductivity, and dielectric constant) and process parameters
(e.g., temperature, flow rate, humidity, working distance, and
voltage) (142). Proteins are widely used for the preparation
of electrospun wound dressings alone or in combination with
other natural and/or synthetic polymers. Zein is extensively
utilized in the preparation of electrospun fibers and mats for
antimicrobial delivery to infected wounds. A major advantage
of electrospinning zein is the avoidance of toxic solvents and
cross-linkers due to its solubility in aqueous ethanol and self-
assembling nature (143, 144). However, aqueous ethanol is not
an ideal solvent for electrospinning (145) because of its high
evaporation rate that leads to needle clogging, formation of
ribbon-shaped fibers and results in poor water solubility of
the fibers (146, 147). This problem can be overcome by co-
axial electrospinning with ethanol (146) or polyethylene oxide
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(PEO) as a shell solution (148) or by cross-linking zein with UV
radiation (149). Casein has recently gained attention as a starting
material for electrospinning. It’s 55% is constituted of polar
amino groups which allow the formation of hydrogen bonds.
This property leads to poor electrospinnability of casein which
is further compromised due to its low viscoelasticity in solution
(113, 150, 151). Therefore, electrospinning is only possible
upon addition of synthetic polymers such as polyethylene oxide
(PEO) (113) and polyvinyl alcohol (PVA) (114). Furthermore,
the high hydrophilicity of casein leads to weak mechanical
strength and water stability, which requires the use of toxic cross-
linking agents such as silane and glutaraldehyde (113, 114). Silk
fibroin protein has a low weight (1.3 g cm−3) and high tensile
strength (∼ 4.8 GPa) which makes it ideal for the production
of electrospun fibers (152). The mechanical properties of silk
fibroin fibers can be altered through methanol treatment after
electrospinning, which increases β-sheet crystallinity and reduces
water solubility (153). In case of collagen protein, care needs to be
taken during electrospinning because denaturation may occur at
high voltage (154). Collagen is often co-electrospun with other
synthetic polymers such as polycaprolactone (PCL) to increase
fiber stability (155).

OPPORTUNITIES AND CHALLENGES OF
PROTEIN-BASED SYSTEMS FOR TOPICAL
ANTIBACTERIAL THERAPY

Proteins possess a number of benefits for topical application
in the treatment of infected wounds. The biocompatibility
of proteins makes them suitable as a topical formulation for
antibacterial therapy (156). Furthermore, the biodegradability
of proteins, irrespective of their origin (plant or animal),
is possible via physiological mechanisms (157). For example,
collagen is naturally degraded in chronic wounds by matrix
metalloproteinases (158) and zein is degraded by enzymatic,
microbial, or cell phagocytosis pathways (159). Proteins such
as collagen, gelatin, and elastin possess cell-recognition motifs
like RGD (Arginine-Glycine-Aspartate) that can facilitate
recognition by cells to promote cell adhesion and cell migration
across the wound bed for promotion of wound healing (160)
in addition to their antimicrobial potential. Other proteins
such as lactoferrin (161) and lysozyme (38) possess innate
antimicrobial, anti-inflammatory, and anti-oxidant activity to
facilitate antibacterial and wound healing effects. A great
diversity of antimicrobial agents (antibiotics, antimicrobial
nanoparticles, antimicrobial peptides, antimicrobial polymers),
as mentioned above, can be integrated into protein-based systems
to elicit antimicrobial responses against Gram-positive and
Gram-negative bacteria.

Besides several benefits, there are still some challenges in the
use of protein-based systems for topical antibacterial therapy.
The treatment of biofilms on infected wounds is still challenging.
Protein based systems can control or sustain the release of
antibacterial agent, however, penetration into the biofilm is still
limited (162). Therefore, suitable modifications in the protein-
based systems (e.g., inclusion of biofilm disassembly agents

like nuclease and extracellular protease within the protein
formulation) could enhance the antibacterial activity of the
system (163). The lack of regulations to ensure structural
homogeneity and purity of protein-based materials has led
to variations in their quality (164). The purity, composition,
and activity of proteins are affected by the diversity in
extraction and purification methods that can influence the
formulation characteristics. The preparation methods for topical
formulations require the use of different solvents (water or
organic solvents) with proteins that can affect protein stability
and activity (165). Sterilization of the proteins is another
challenge (166). Conventional sterilization techniques based on
high temperature or gamma radiation have limitations, such as
protein denaturation and changes in the amino acid structure
(166–168). Proteins can be susceptible to UV radiation as
well (169). Viable alternative sterilization methods that can
preserve protein structure and properties include supercritical
CO2, acid treatment (with peracetic acid), and the use of gas
plasma (166, 170–172). Most common protein-based systems
for topical antibacterial therapy include films, hydrogels, and
electrospun matrices. The preparation of films and hydrogels
requires a simple blend of proteins with antimicrobial agents
and thus does not have a greater impact on the stability and
activity of proteins (81, 173). However, the electrospinning of
proteins requires the use of different components including
cross-linking agents, organic solvents, and a high voltage that
can potentially damage protein structure and subsequent loss
of its activity (174). Electrospinning of hydrophilic proteins
like silk fibroin and casein is also challenging due to its
surface tension in water leading to non-continuous processes
and artifacts in fibers in addition to their aggregation and
low degree of protein unfolding in water (175). Furthermore,
for proteins with amphiphilic nature such as zein, the final
product loses its fibrous structure and becomes more elastic
upon contact with water (148). Therefore, choice of protein
and suitable modifications in the formulation methods are
necessary to maintain protein’s functions and stability as a
potent protein-based antibacterial system. So far, there are
few reports on the use of different protein-based systems
for topical antibacterial therapy. Wide varieties of proteins
(plant- and animal-based) besides mentioned in this review are
available. However, studies on their use for topical antibacterial
therapy are still lacking. Therefore, extensive research on such
proteins is warranted to explore their potential as topical
antibacterial formulations.

CONCLUSIONS AND FUTURE
PROSPECTS

Protein-based systems are emerging as potential formulations for
topical delivery of antimicrobial agents. The beneficial properties
of proteins including biocompatibility, biodegradability, and
low immunogenic response make them suitable carriers for
different antimicrobial agents. The preparationmethod of topical
formulations (films, hydrogels, and mats) requires different
treatment conditions that can affect protein stability and activity.
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Hence, proper optimization of the preparation method to ensure
stability and activity of proteins along with potent antimicrobial
delivery is required. Protein-based systems are capable of
controlling the release of active ingredients once applied topically
to the infected wound and can act as wound protein mimics
to support the wound healing process. Furthermore, the ability
of proteins to absorb wound exudates and prevent secondary
infections makes them suitable candidates for topical application
as an antibacterial system for infected wounds. However,
treatment of the biofilms is still challenging attributable to
limited penetration of the antibacterial agents. Therefore, suitable
modifications in the protein-based formulations for enhancing
the antibacterial efficacy is warranted. There are several in vitro
studies performed for the evaluation of the antibacterial activity
of protein-based topical antibacterial formulation, however, in

vivo studies are still lacking. More in vivo studies of such
potent formulations are required in the future to support the
clinical translation of the prepared protein-based systems as
topical anti-bacterials.
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