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Abstract

Induction of a specific transcriptional program by external signaling inputs is a crucial aspect of intracellular network
functioning. The theoretical concept of coexisting attractors representing particular genetic programs is reasonably adapted
to experimental observations of ‘‘genome-wide’’ expression profiles or phenotypes. Attractors can be associated either with
developmental outcomes such as differentiation into specific types of cells, or maintenance of cell functioning such as
proliferation or apoptosis. Here we review a mechanism known as speed-dependent cellular decision making (SdCDM) in a
small epigenetic switch and generalize the concept to high-dimensional space. We demonstrate that high-dimensional
network clustering capacity is dependent on the level of intrinsic noise and the speed at which external signals operate on
the transcriptional landscape.

Citation: Nené NR, Zaikin A (2012) Interplay between Path and Speed in Decision Making by High-Dimensional Stochastic Gene Regulatory Networks. PLoS
ONE 7(7): e40085. doi:10.1371/journal.pone.0040085

Editor: Jürgen Kurths, Humboldt University, Germany

Received February 29, 2012; Accepted May 31, 2012; Published July 16, 2012
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Introduction

The conceptual framework of attractors in phase space

representing particular transcriptional programs has been dem-

onstrated in experimental observations of ‘‘genome-wide’’ expres-

sion profiles, e.g. in neutrophil differentiation [1,2]. An attractor or

dynamical regime is a stable solution to the set of mathematical

equations that describe a dynamical system: that is, it represents

the state of equilibrium to which a system will tend to move.

Dynamical systems often have more than one solution, or

attractor. In gene regulatory systems these can be either

developmental outcomes such as specific types of differentiated

cells, or maintenance of cell functioning such as proliferation or

apoptosis. Each attractor, in normal circumstances, represents the

adequate response to the combination of external signals and

corresponds to a particular mRNA and protein concentration

pattern [1–3]. Cell fate commitment has been correlated with both

external signal duration and amplitude [4]. Additionally, the speed

at which external signals induce changes on transcriptional

landscapes has also recently been explored as an important

mechanism for cell fate decision [5]. In fact, one of the

mechanisms reported here explores this in connection with

Speed-dependent Cellular Decision Making (SdCDM) observed

in low order circuit models [5], but in a high-dimensional circuit.

In Fig. 1 the main aspects of this mechanism are reviewed for the

low order circuit explored in [5]. The combination of external

signals S1,2 (see Fig. 1A and B) in the low order circuit takes the

system from a state where the cell has only one possible end state

(point Pi), to a situation of bistability (Pm), and finally to a point

(Pf ) (see Fig. 1D) where the system ends up in one of two possible

states. This constitutes the result of cellular decision making.

Depending on the maximum of the time-dependent asymmetry

between external signals (see Fig. 1C), the system will enter the

bistability region at a different point of the IH?IIA border (see

Fig. 1D). Because the external signals end in the same values, one

only has a transient asymmetry which biases the cellular decision

making towards one of the available states in region IIA.

Therefore, the interval the system is exposed to that asymmetry

influences the outcome of the decision. In the case of the

simulations represented in Fig. 1, because S1 had always a smaller

rising time (TS1
) than S2 (TS2

), the final state selected with the

highest probability was (X ,Y )~(H,L) (H corresponds to high

concentration values and L to low concentration values). The

values of all parameters associated with transcription or translation

processes were assumed to be symmetric in the circuit of Fig. 1A,

in order to focus on the bias provided by external signals [5]. If the

two signals S1 and S2 were identical and evolved in time at equal

rates, the cell would undergo a transition to bistability through the

straight line segment PiPf . Along this segment there is complete

symmetry, and consequently the cell would choose its fate

stochastically between the two equally possible steady states. An

interesting mechanism that was found in [5], the SdCDM effect

(Fig. 1D), is associated with the fact that the combination of

external signals is most efficient in selecting the attractor

(X ,Y )~(H,L) in the face of fluctuations when the rising times

TS1,2
are larger (for a constant maximum asymmetry A respecting

Eq. (1), where Smax stands for the maximum amplitude allowed for

each external signal). This is a consequence of larger TSi
’s
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corresponding to smaller sweeping speeds through the critical

region.
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As in canonical models of nonequilibrium statistical physics [6] or

dynamic bifurcations [7], the probability that during the sweeping

process the system forced by noise jumps across the potential

barrier located at the basin of attraction boundary separating the

desired end state (X ,Y )~(H,L) from (X ,Y )~(L,H), is reduced

when the system goes slowly through its critical region.

Figure 1. Paradigmatic integrated low order signaling–transcriptional circuit switch and speed-dependent cellular decision
making. (A) Schematic representation: Nodes represent proteins, regulated by protein kinases with concentrations S1 and S2 , where X and Y stand
for transcription factors that can be phosporylated to generate X a and Y a . Black lines represent transcriptional interactions, while grey lines stand for
protein-protein interactions. (B) Time evolution of the input signals S1(t) (black) and S2(t) (grey), with Smax~10. In [5] S1 was considered to have a
rising time TS1

smaller than S2 . (C) Amplitude of the transient asymmetry between signals DS(t)~S1(t){S2(t). Here the maximal asymmetry is given
by Eq. (1). (D) Phase diagram for X in the space (S1,S2). Thin lines represent borders between different regimes: IL,H stands for monostability, with X
having a low or a high value, respectively. IIA denotes bistability between two states at which X and Y have opposite concentrations, (high, low) or
(low, high). Pi , Pm and Pf correspond to the initial (t~0), intermediary (t~TS1

), and final (t~TS2
) points of the signaling (see Fig. 1B and C). (E)

Dependence of the fraction R of cells that end up in the (X ,Y )~(H,L), on the speed of the transition (measured by TS1
) for different values of the

maximum asymmetry A (see Fig. 1C). Noise intensity equals 0.01 for Fig. 1E, Smax~10 and there is no time scale difference between phosphorylation
and transcription reactions. For further details see [5].
doi:10.1371/journal.pone.0040085.g001
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In the present work, we extend the findings reviewed above, and

fully explored in [5], to a high-dimensional genetic switch (see

Fig. 2) in the presence of fluctuations (see also Methods). High-

dimensional switches have been used before to model generalized,

switch-like competitive basic Helix-Loop-Helix heterodimerization

networks in the context of differentiation [8–10]. A set of rules for

the clustering capacity of this type of network was devised as a

function of competition between synthesis, degradation and

complex formation rates of different elements. In our work we

will focus on a specific type of network parameters that induce

multistability but in a different class of models (see Methods) from

those previously explored in [8–10].

The high-order transcriptional circuit chosen will be stimulated

by a set of external signals (S1,:::,S5) (see Fig. 2) driving gene

expression, a common assumption in gene regulatory network

models [2,4,5]. For simplicity, each external signal combination

(S1,:::,S5) will only differ on their rising times TSi
(see for

illustration purposes the example presented in Fig. 1B for the low

order circuit). As with the bistable switch previously studied [5],

the differences in rising times impose time-dependent asymmetries

which are processed by the network. Unlike the low order decision

genetic switch, here we additionally consider an extra layer of

nodes (TF11,:::,TF15) that should respond to the activity of the

‘‘genomic gateway’’ set of nodes (TF6,:::,TF10) (see Fig. 2). We

chose to work with five inputs because it stands as the number of

nodes most often associated in the literature with competing

attractor selection by signals [11]. Usually, the external signals

studied are: Akt, whose activity has been correlated with apoptosis;

Erk, which is linked with proliferation; Rac, which regulates the

cytoskeletal activity; Sapk and p38, which are cellular stress related

nodes [11]. For simplicity purposes and in order to generalize the

structure of the genetic switch studied before [5], we limited the

number of nodes to five in both layers of transcription factors

represented in Fig. 2. An important feature of our model is the fact

that only half of the transcription factors (from TF6 to TF10, see

Fig. 2) need to go through an activation reaction before being able

to act on a downstream promoter region. This models generically

the action of signaling molecules on Immediate Early Gene

products (IEGs) such as c-jun, c-fos and c-myc [12]. The rest of the

transcription factors (from TF11 to TF15, see Fig. 2) operate even if

no signal is present. They stand for Delayed Early Gene products

(DEGs), the second wave of transcription initiated by the signal

[12]. Although this scenario is a condensed approach to modeling

the interface between the signaling module and the transcriptional

machinery, it serves our objective: observe and generalize the

effects of parameter sweeping speed and transient external

asymmetries on high-dimensional attractor selection in phase

Figure 2. Representation of the high-dimensional genetic decision switch with external stimulation. Nodes 6 to 15 represent proteins,
transcription factors. Signals Si represent protein kinases. Only nodes 6 to 10 need to be activated (phosphorylated) to act on any promoter region of
the rest of the transcription factors in the network. Each transcription factor reinforces its own expression (black arrows) and represses (red links) all
other nodes. Phosphorylation reactions are represented by grey arrows. See also figure legend on right hand side.
doi:10.1371/journal.pone.0040085.g002
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space, here equated with the space of concentrations of each of the

transcription factors.

The combinations of external signals are expected to be

associated with particular transcriptional programs [1,12,13].

The progression from an initial state or phenotype to the outcome

of cell fate decision is performed by a sequence of steps or path in

phase space [1,2,14]. This path is determined to an extent by

(S1,:::,S5) (see Fig. 2), in the case of our model. Due to the fact

that gene expression is affected by fluctuations [15], the path

forced by the external inputs may suffer substantial alterations

which may affect cellular decision making. Therefore, not only

external signal amplitudes and duration [4,16,17] but also their

shapes determined by rising and decay times may become

relevant.

Results and Discussion

High-dimensional Regulatory Network Exhibits
Multistability

An extensive study of all sets of parameters (see Methods and

Table 1) and Si{TFj connectivity matrices (with i~1,:::,5 and

j~6,:::,10) was performed for the high-dimensional genetic

switch. We selected the network that exhibited the highest number

of attractors in phase space in order to generate, potentially,

maximum discrimination between combinations of inputs. The

resultant connectivity between the set of signaling inputs (S1,:::,S5)
and the set of transcription factors activated by phosphorylation

(see Fig. 2) was the following (see Eq. (2)):

VS{TF ~ vTF6,½S2,S3,S4,S5�w,vTF7,½S2,S5�w,f

vTF8,½S1,S3�w,vTF9,½S1,S3,S5�w,vTF10,½S3,S4�wg ð2Þ

Each link between Si’s and TFj ’s (see Eq. (2)), with i~1,:::,5
and j~6,:::,10, is stimulatory. As in the study performed on the

low order genetic switch with external stimulation [5] (see also

Fig. 1), we will focus on the bias produced by the set of external

signals Si stimulating the high-dimensional genetic switch.

Therefore, any parameters representing activation or transcription

and translation of proteins will be assumed to be equal for each

transcription factor node in Fig. 2 (see also Methods and Table 1).

The existence of multistability can be verified, for example, in

bifurcation diagrams generated by assuming S~S1~S2~S3

~S4~S5 (see Fig. 3A). For each value of critical parameter S the

attractors emerging from initiating the system at 100 random

initial conditions were recorded and plotted (see also Methods for

the equations behind the computations performed). One can

clearly verify the existence of multiple attractors for all network

nodes. For the set of nodes activated by the external signals Si, i.e.

(TF6,:::,TF10) (see Fig. 2), only when the signal amplitude crosses

a certain threshold, S&0:5 for TF6,9 and S&1 for TF7,8,10, do

multiple attractors above zero become clear. Actually, even before

the amplitude reaches this point there’s a very fine set of states very

close to zero (see Fig. 3B). For the remaining set of transcription

factor nodes that do not directly interact with any Si, i.e.

(TF11,:::,TF15) (see Fig. 2), the existence of multiple high

concentration stable states is clear even for low values of parameter

S. Additionally, there is also a very fine set of attractors very close

to zero for nodes TF11,12,13,14,15 (see Fig. 3B). As the control

parameter S is raised the nodes from TF6 to TF10 tend to show

higher and higher stable state concentrations. Nevertheless, a set of

low concentration steady states is still observed for all values of S
and for all nodes with the exception of TF6. Regarding the nodes

from TF11 to TF15, higher levels of S reduce the stable state

concentration levels (Fig. 3A). The finer structure of stable states

close to zero is also maintained for this set of transcription factors

(Fig. 3B).

The bifurcation diagrams in Fig. 3 show that for the chosen set

of parameters the system seems to go through a subcritical type of

bifurcation, due to the disconnection between emerging branches.

Indeed, this class of models and set of parameters has shown to

induce in 2 dimensional genetic switches a transition between a

region of 1 stable state with low concentration values, and another

with three stable states with high concentration values [4].

Although the model in [4] was slightly different (only homodimers

Table 1. Parameters in the high-dimensional decision genetic switch with external stimulation model.

Parameter Interpretation Value

Si External signal i Smax

TSi

t, 0ƒtƒTSi
and Smax , t§TSi

Smax Maximum amplitude of any Si 2

TSi
Rising times of Si –

Aij Maximum asymmetry between Si and Sj
Smax 1{

TSi

TSj

� �

g Basal transcription rate multiplied by translation rate divided by mRNA and protein degradation rates 0:1

ki
i

Ratio between binding and unbinding affinities of dimers to promoter regions for self-activation, respectively 1

ki
j

Ratio between binding and unbinding affinities of dimers to promoter regions for cross-inhibition, respectively 10

ci
i

Ratio between rate of expression of the respective gene when homodimers are bound and basal transcription 20

tT Combined dimensionless time scale for transcription and translation of proteins 0:001 and 0:005

tS Dimensionless time scale for phosphorylation processes 0:001

M Allowed order of dimers, homo and hetero, in the high-dimensional genetic switch model 2

s Intensity of Gaussian noise ji,j (t) with zero mean and Sji(t),jj (t’)T~s2dijd(t{t’) 0:01, 0:05 and 0:5

Parameters used in Eqs. (6) to (10) and their respective interpretation and values. See also [39].
doi:10.1371/journal.pone.0040085.t001
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were allowed), if a similar process is present in our circuit then the

disconnection is indeed caused by a subcritical type of bifurcation.

On the other hand, the type of bifurcation present may be

supercritical and further sampling of the state space is necessary to

dismiss other options. Although the mechanism of SdCDM has

been explored in supercritical systems and relies on both the

intrinsic dynamics of the system and the dynamics of the external

driving signal near the bifurcation point [5,6], subcritical systems

may also reveal speed-dependent effects when control parameters

are made time-dependent [18].

For the time-dependent external signals studied ahead, the

asymmetries DSiklmn(t) (with i,k,l,m,n~1,:::,5) between each of

the inputs influence the available attractors in the system at each

time step, as was the case of the small genetic switch studied in [5]

and summarized in Fig. 1. Further ahead we will focus on three

specific input combinations. Their bifurcation diagrams show

relatively small differences (compare Figs. S1, S2 and S3). Yet, as

will be seen in following sections, this is sufficient to induce

differences in long-term distributions over stable states when

fluctuations are considered.

Clustering of Input Signal Combinations
In order to understand if differences in time-dependent input

signal profiles force the system to converge to different attractors,

we tested the response of the high-dimensional decision switch to a

batch of 100 combinations of inputs, Ik(t)~(S1(t),:::,S5(t))k,

Figure 3. Bifurcation diagram for each of the transcription factors for S~S1~S2~S3~S4~S5. (A) Complete bifurcation diagram. Inset:
detail of branches near S~2. (B) Amplification of states represented in (A) close to zero. Parameters: M~2, g~0:1, ci

i~20, ki
i~1 (self-activation) and

ki
j~10 (cross-repression), tT=tS~1, for i,j~6,:::,15 (see Methods). S is the horizontal axis for all the figures, from TF6 to TF15. ½TFi�~Xi , i.e. the

concentration of each transcription factor is represented here by ½TFi� and associated with Xi in Eqs. (7) and (8) with i~6,:::,15 (see Methods). In the
construction of the bifurcation diagrams 100 initial conditions were randomly selected for each S and the long term trajectories recorded and
plotted.
doi:10.1371/journal.pone.0040085.g003
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generated by randomly selecting TSi
’s (see Fig. 1B for illustration

purposes) for each input Si. The maximum amplitude Smax

allowed for each signal Si was 2. This value arose from the initial

investigations that led to the choice of a set parameter values (see

Table 1) and Si{TFj connectivity matrices, with i~1,:::,5 and

j~6,:::,10 (see Eq. (2)), that generated the highest number of

attractors. For each combination Ik the system was randomly

initiated at 100 initial conditions, with Xi(0)[½0,g�, for i~6,:::,15
(see Methods and Table 1). Subsequently, the asymptotic stable

states were recorded for each of the combinations Ik(t) and each of

the initial conditions long after the largest TSi
had been reached.

For all input combinations the set of initial conditions was exactly

the same.

In order to quantify the differences in the number of trajectories

converging to each stable state forced by each combination Ik, the

average Euclidean distance (AED, see Eq. (3)) between the set of

concentrations Xi, in the limit of large times, was compared for all

possible pairs (Ik,Ik’) and averaged over the number of initial

conditions tested (Nic in Eq. (3)). Further investigations will be

performed in subsequent studies by applying other distance

metrics in high-dimensional phase space, e.g. the ISOMAP

[2,19] or extensions thereof [20]. Here we must stress that the

bifurcation diagrams shown in Figs. 3, S1, S2 and S3 represent

only the available stable states at each amplitude of the external

signals. When time-dependent signals are considered the config-

uration of the phase space changes with time. Despite the fact that

the available stable states for each amplitude, at each time instant,

are the same as those determined in the respective bifurcation

diagrams, the dynamics arising from changing the phase space in

time will not be the same as that arising from holding the signal

amplitudes at a certain level and letting the system converge to its

asymptotic state. Further analysis is necessary to quantify exactly

the differences in the dynamics stemming from both situations.

Here, we will focus only on the end state of the sweeping process.

We will assert if possible differences in the dynamics arising from a

phase space changing with time result in significant changes in the

selectivity of attractors.

AED(Ik ,Ik’)
~

1

Nic

XNic

m~1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX15

l~6

X
Ik
l {X

Ik’
l

� �2

vuut ð3Þ

In Fig. 4A and B, the results obtained from the application of

Eq. (3) can be visualized for two time scale ratios tT=tS (see

Methods and Table 1). Because the matrices presented are

symmetric we need only to observe values below the diagonal. In

both matrices one can verify that certain pairs (Ik,Ik’) force the

system to converge to different attractors even if the initial

conditions and the initial and final amplitudes for each Si are the

same (red pixels, higher AED distance). Others, for the same

initial conditions, select exactly the same attractors, on average

(blue pixels, lower AED). This indicates that certain combinations

Ik of signals Si are clustered together due to the incapacity of the

network to memorize the transient asymmetries DSiklmn(t) (with

i,k,l,m,n~1,:::,5) intrinsic to each of them. In order to verify if the

pairs (Ik,Ik’) inducing the same attractors were doing it because

their differences were very reduced, we calculated the distances

between the input vectors (S1,:::,S5) corresponding to each pair of

input combinations (see Fig. 4 C), by applying a correlation based

metric. By visual inspection (see for example Fig. 4A and C) we

can conclude that no clear correlation exists between the distance

between input vectors Ik and the average euclidean distances

(AED, see Eq. (3)). Indeed, the correlation between the vectors

obtained by concatenation of the lines of each of the matrices

represented in Fig. 4A and C, and Fig. 4B and C, is 0.1283 and

0.1588, respectively.

Observing Fig. 4B we see that overall the AED distance (Eq. (3))

for each pair of input combinations is decreased if the time scale

ratio (tT=tS ) (see Methods) of transcription over phosphorylation

processes is raised. This effect had been seen already in the low-

order decision genetic switch [5], although in the presence of

fluctuations. In real biological systems the time scale differences

between phosphorylation and transcription reactions can be

substantial [21]. If genetic circuits are not sensitive to slight

differences between driving external signals when time scale

separation is significant, then integration of signals is only

successful when very pronounced external asymmetries occur.

Ultimately, only considerable differences in amplitude held for an

interval compared to the characteristic relaxation time scale of the

system will be discriminated efficiently.

Path-dependent Effects on Attractor Selectivity in the
Presence of Multiplicative Noise

In order to prove the existence of path-dependent effects in

attractor selectivity in the presence of fluctuations, first we

analyzed the inter-trajectory distance for every pair (Ik,Ik’)

generating the same end attractors when tT=tS~1 (see Fig. 4A,

dark blue pixels) and noise intensity is zero. For this calculation we

used the correlation based distance metric ITD(t) represented in

Eq. (4), where rt
(Ik ,Ik’)

(t) stands for correlation between trajectories

induced by vectors Ik and Ik’. Throughout our work selectivity

represents the fraction of trajectories in a stochastic simulation that

converge to a specific attractor.

ITD(Ik ,Ik’)
(t)~1{rt

(Ik ,Ik’)
(t) ð4Þ

The pair (Ik,Ik’) with input combinations inducing the same

end attractors that had, at a particular instant, the highest

maximum for the inter-trajectory distance ITD(t) (Eq. (4))

amongst all the pairs was (I15,I75) (see Fig. 5B). On the other

hand, the pair exhibiting the smallest maximum was (I75,I94) (see

Fig. 5B). The time-dependent profiles for I15, I75 and I94 can be

visualized in Fig. 5A. A typical trajectory in time can also be

observed in Fig. 5C. The trajectory presented corresponds to the

evolution of the system by applying I15. Yet, it represents the

typical dynamics observed for any input combination Ik, the only

difference being the allocation of nodes per stable state. Regarding

the switching dynamics, usually the trajectories converge very

rapidly to high or low concentration values (Fig. 5D). Subsequent-

ly, for nodes migrating to low concentration values there is a

further reorganization of states (Fig. 5E). In the vicinity of the

instant when all Si’s have reached their maximum amplitude

there’s further reorganization of states with certain nodes reaching

intermediate concentration values (see Fig. 5C and E). Although

for the example shown in Fig. 5C it is not clear the existence of

multiple attractors at high concentration values, these do exist as

can be visualized in the bifurcation diagrams of Figs. 3, S1, S2 and

S3.

The probability of each attractor when all Si
’s are held at an

amplitude of 0 and Smax can be seen in Fig. 6. One should

remember that each of the selected combinations I15,75,94 has

exactly the same initial and final signal amplitudes. Therefore the

phase space looks exactly the same. If any differences arise due to

path-dependent effects forced by the time-dependent asymmetries

DSiklmn(t), then the frequencies observed for each attractor when

High-Dimensional Speed-Dependent Cell Decision
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the selected input combinations are applied will be different

(discussed ahead). Fig. 6 was obtained by collecting the stable-state

values for the concentration of each TFi (see Fig. 2) starting at 100

initials conditions, and in the absence of noise.

One can observe that, when every Si is equal to Smax, the nodes

TF6,7,8,9,10 (Fig. 6B) show propensity to converge to attractors with

intermediate and high concentrations. Regarding this set of nodes

it is possible to verify that there is also some probability of reaching

attractors close to zero. These low concentration attractors are

very close to each other (see Fig. 3B). One should add that

regarding node TF6 the presence of attractors states close to zero

at high external signal amplitudes is inconsistent with what we

observed for the bifurcation diagram in Fig. 3. For node TF8 the

opposite of what is verified for TF6 occurs. We must then conclude

that this discrepancy arises from initial condition sampling issues.

For nodes corresponding to the DEG layer, i.e. (TF11,:::,TF15)
(see Fig. 2), higher selectivity frequencies for most of the nodes are

registered for attractors with higher concentrations. However,

there is still a high number of trajectories with asymptotic states

near zero (Fig. 6B).

The three input combinations I15, I75 and I94 were once again

applied to the circuit but in the presence of fluctuations. Overall,

the data from 5000 trajectories for each selected input combina-

tion was collected, including random starting points in phase

Figure 4. Pair-wise average distance between asymptotically stable states induced by input combinations. (A) Results for time scale
ratio (tT=tS)~1 calculated through Eq. (3) and (B) (tT=tS)~5. (C) Distance between pairs of vectors Ik~(S1,:::,S5)k , calculated through the distance
metric 1{rv(Ik,Ik’), with rv(Ik,Ik’) being the Pearson coefficient of correlation between the actual vectors Ik and Ik’. Parameters: M~2, g~0:1,
ci

i~20, ki
i~1 (self-activation) and ki

j~10 (cross-repression)(see Methods), for i,j~6,:::,15.

doi:10.1371/journal.pone.0040085.g004
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space. Several observable changes in the attractors selected were

noticed. For the IEG layer of transcription factors, i.e.

(TF6,:::TF10) (see Fig. 2), there was a considerable transfer of

probability mass to states located near zero (figure not shown).

These were not identified as being very probable in the

deterministic scenario (see Fig. 6B). The addition of noise forces

the system to jump across potential barriers, located at the basin of

attraction boundaries, to stronger attractors which, in this case, are

closer to zero. As was seen in the one dimensional canonical model

[22], according to Kramer’s classical theory [23] the transition

time for a system in one dimension to jump across the potential

barrier decreases with noise intensity. There are several aspects of

the attractor selection process that might be occurring here. First,

let us recall the probability distribution shown in Fig. 6. These

results are dependent only on differences in attractor basins and

number of initial conditions tested. The basin of attraction in

dynamical system theory is taken as the percentage of points

converging to a specific attractor [24]. Sampling 100 initial points

randomly may not have probed completely the phase space.

Higher sampling could have revealed finer aspects of attractor

basins. A second aspect of the selection process arises as a function

of the fact that different externals signals are exerting different

changes on the attractor landscape. If the probability mass transfer

to attractors located near zero was only a consequence of the

combination of input signals, then the differences observed in the

presence of noise should have been more pronounced. The only

clear differences recorded had very low probabilities (figure not

shown). We can conclude from these observations that, although

the asymmetries induced by each combination Ik play a significant

part in the high frequencies found for low concentration values for

the set of nodes TF6 to TF10, this occurrence is also intrinsically

related to the concept of attractor strength. This concept is defined

as the minimum size of a perturbation (in our case noise) that

results in a very low probability of return [24]. Regarding the

frequency of the attractors found for the DEG layer of

transcription factor nodes, i.e. TF11,:::,TF15, the distribution does

not differ considerably in terms of location from that generated in

the deterministic scenario. The differences between applying each

Figure 5. Inter-trajectory distance, profile of specific input combinations and typical switching dynamics. (A) Time-dependent profile
for each input Si for 3 input combinations: I15, I75, I94. (B) Inter-trajectory distance for pairs (Ik,Ik’) inducing the same attractors (see Fig. 4A). Pairs
exhibiting the highest value for max(ITD(Ik ,Ik’)(t)) (Eq. (4)) and the lowest value for max(ITD(Ik ,Ik’)(t)). Inset: zoom of ITD(t) curve for (I75,I94). (C)
Typical evolution of concentrations for all the nodes TFi , i~6,:::,15. This particular trajectory was generated by applying I15 and noise intensity s~0
(see Methods). (D) Amplification of (C) for early times t. (E) Amplification of (C) for concentrations TFi½ � close to zero. ½TFi�~Xi , i.e. the concentration
of each transcription factor is represented here by ½TFi� and associated with Xi in Eqs. (7) and (8) with i~6,:::,15 (see Methods). Parameters: M~2,
g~0:1, ci

i~20, ki
i~1 (self-activation) and ki

j~10 (cross-repression), tT=tS~1 (see Methods), for i,j~6,:::,15.

doi:10.1371/journal.pone.0040085.g005
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pair of combinations, (I15,I75) or (I75,I94), occur mostly in the

same set of attractors at high concentration values. Actually,

applying one or another input combination shifts the probability

maximum to an attractor in the vicinity. We conclude that

regarding the DEG layer the differences arising from the

application of each of the selected input combinations induces

smaller changes in the final distribution of trajectories across

attractors.

We further evaluated the distance between distributions for

several noise intensities (see Fig. 7) to understand if, as in the small

integrated signaling-gene regulatory decision switch [5], noise

increases symmetry between the distribution across attractors or if

its effect is not as strong as previously observed and it only causes

Figure 6. Initial and final attractor frequency in the absence of fluctuations. (A) Attractors available for Si~0, with i~1,:::,5, and respective
frequency. (B) Attractors available for Si~Smax~2, with i~1,:::,5. The frequency of the attractors shown here will change when each of the selected
input combinations is applied in the presence of fluctuations. This stems from path-dependent effects on attractor selection (discussed in main text).
½TFi �~Xi , i.e. the concentration of each transcription factor is represented here by ½TFi � and associated with Xi in Eqs. (7) and (8) with i~6,:::,15 (see
Methods). Parameters: M~2, g~0:1, ci

i~20, ki
i~1 (self-activation) and ki

j~10 (cross-repression), tT=tS~1, s~0 (see Methods), for i,j~6,:::,15.

doi:10.1371/journal.pone.0040085.g006

Figure 7. Distance between final distributions generated by different pairs of input combinations (Ik,Ik’) in the presence of
fluctuations. (A) Pair (I15,I75). (B) Pair (I75,I94). Dr(Ik ,Ik’)~1{rd (Ik,Ik’) is a correlation based metric, where rd (Ik,Ik’) stands for the correlation
between the distributions across attractors, induced by Ik and Ik’, in the limit of large times. Parameters: M~2, g~0:1, ci

i~20, ki
i~1 (self-activation)

and ki
j~10 (cross-repression), tT=tS~1 (see Methods), for i,j~6,:::,15. s stands for noise intensity (see Methods).

doi:10.1371/journal.pone.0040085.g007
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new attractors to be populated in conjunction with the changes

exerted by each Ik. The distance metric Dr(Ik ,Ik’)~1{rd (Ik,Ik’)
used for the following investigations is a correlation based metric,

where rd (Ik,Ik’) stands for the correlation between the distribu-

tions across attractors, induced by Ik and Ik’, in the limit of large

times. For the pair (I15,I75), the most noticeable fact when we

raised noise intensity from 0.01 to 0.05, is the relative proximity of

the distributions for the DEG node layer (Fig. 7A). The 5 fold

increment seems to force the system to jump to the strongest

attractors. Effectively, comparing by visual inspection the distri-

bution obtained with noise intensity 0.01 and 0.05 (figures not

shown), we verified that for noise s~0:05 essentially the

maximum frequencies for I15 and I75 occurred at the same

attractors. For the IEG layer of nodes the same observation stands

although it was not as evident (Fig. 7A). Raising further the noise

intensity increased the distance between final distributions, which

was to be expected due to the increased capacity to cross potential

barriers and, as a result, populate different attractors. For the pair

of input combinations (I75,I94) that, as was determined before

(Fig. 5), had a very small difference between the trajectories in

phase space, the tendency observed for the distance calculated

between distributions when noise intensity is increased from 0.01

to 0.5 was similar to that of the pair (I15,I75). Also, for these noise

intensities Dr(I15,I75) is higher than Dr(I75,I94), which is consistent

with the fact that max(ITD(I15,I75)(t))wmax(ITD(I75,I94)(t))

(Fig. 5B). Nevertheless, for noise amplitude equal to 0.05 the

tendency observed for (I15,I75) was not maintained. At this noise

intensity, instead of an optimal attractor selection that approxi-

mates the distributions, the opposite effect is present. The

numerical results reported above indicate that there is an optimal

intensity of noise that increases the convergence of trajectories to

the same attractors, when the differences between trajectories

induced by each Ik is larger. When the differences in phase space

trajectory are small the noise optimality effect observed before

reverses its role and increases inter-distribution distance.

The Importance of Sweeping Speed for High-
dimensional Attractor Selection in the Presence of
Fluctuations

To test SdCDM [5] in the high-dimensional switch we extended

the simulation experiments for noise intensity s~0:5. We chose to

perform the extra simulations with the maximum noise intensity to

understand if the sweeping speed could override the strong effects

of noise. The original selected combinations, I15, I75, I94, were

changed in a way that the maximum asymmetry between each of

the inputs Si was maintained but the sweeping speed was

decreased. The following steps were taken:

1. For input S1 of the original combination calculate the

maximum asymmetry reached between S1 (i~1) and Sj recurring

to Eq. (5);

2. Increase TS1
by n numerical integration time-steps and

calculate the necessary TSj
(Eq. (5)) for each of the inputs that

maintains the maximum asymmetries Aij between each of the

signals Si and Sj .

1{
Aij

Smax

� �
~

TSi

TSj

ð5Þ

This strategy secures that the signals induce similar changes in

the transcriptional landscape as the original combinations, but at a

smaller speed. The distance between the final distributions was

calculated again by applying a correlation based distance metric to

three extra cases: same input combinations but 100, 300 and 500

numerical integration time-steps slower. The results are shown in

Fig. 8. In light of the results obtained for the small genetic decision

switch [5] (see also Fig. 1) we expected that the differences between

final distributions across attractors induced by each pair (Ik,Ik’)
would be increased if the speed with which the signals Si are

changed is reduced. Figure 8 shows that, overall, the path-

dependent effects registered before for the pair of input

Figure 8. Inter-distribution distance dependence on sweeping speed. (A) Inter-distribution distance between the attractors induced by
combination I15 and I75. (B) Inter-distribution distance between the attractors induced by combination I75 and I94. Dr(Ik ,Ik’)~1{rd (Ik,Ik’) is a
correlation based metric, where rd (Ik,Ik’) stands for the correlation between the distributions across attractors, induced by Ik and Ik’, in the limit of
large times. Parameters: M = 2, g~0:1, ci

i~20, ki
i~1 (self-activation) and ki

j~10 (cross-repression), tT=tS~1 (see Methods), for i, j = 6,…,15. s stands

for noise intensity (see Methods). On each figure each color corresponds to different sweeping speeds obtained by increasing TSi
by 100, 300, or 500

numerical integration time-steps.
doi:10.1371/journal.pone.0040085.g008
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combinations (I15,I75) are less clear if we perform the sweeping

process at lower rates. Comparing with the original results (black

bars, Fig. 8A), we can verify that by decreasing the sweeping speed

through the bifurcation region (by imposing for example Si’s 500

time-steps slower) seems to have, for most of the transcription

factors, an effect which brings the distributions induced by I15 and

I75 closer together. For the other sweeping speed experiments

(Fig. 8 A, 100 and 300 steps slower) there seems to be a tendency

for the pair (I15,I75) to induce closer and closer final distributions

as we decrease the sweeping speed. Yet, this occurs in a non-

monotonous fashion. This observation contrasts with the findings

of speed-dependent decision making in the bistable decision

genetic switch (see Fig. 1) where slower sweeping rates increased

the sensitivity to external asymmetries. The differences in the final

distributions arising from the respective paths in phase space

should have been more pronounced. On the other hand, we do

observe reasonably clear speed-dependent effects for the high-

dimensional switch, although with a different outcome from that of

[5]. Further simulation studies, for s~0:01 and s~0:05, are

necessary to clarify the synergistic effects of sweeping speed and

noise intensity in high-dimensional phase space with irregular

attractor landscapes. Regarding the other input combination pair,

(I75,I94) (see Fig. 8B), a considerable reduction in sweeping speed

(500 time-steps slower) induces exactly the opposite effect observed

for (I15,I75). This tendency to observe opposite effects in the input

combination pairs used throughout this work is quite intriguing

and should be investigated with the complete set of pairs (Ik,Ik’)
with same end attractors (see Fig. 4). Overall, we observe that

slower sweeping speeds induce a higher sensitivity of the high-

dimensional circuit to external signals when the differences

between the respective paths in high-dimensional phase space,

induced by each pair (Ik,Ik’), are smaller.

The generalization of the parameter sweeping mechanism to

high-dimensional space demonstrated that it is dependent on

phase space structure and the efficiency of noise to induce

transitions across potential barriers. Moreover, the capacity of

high-dimensional genetic circuits to integrate a combination of

complex signals is closely linked to the initial condition chosen. It

was also clearly shown that input combinations that generate the

same attractors in a deterministic system have significant

differences in the final distributions when noise is taken into

account. Hence, path-dependent effects exerted by different

complex signals and noise are relevant for attractor selectivity

and cell fate decision in high-dimensional systems. We have also

shown that the speed of signaling in genetic switches changes

significantly the result of cellular decision, an effect that we had

termed speed-dependent cellular decision making (SdCDM) [5],

and that it is also relevant in high order circuits. In contrast to

other aspects of nonequilibrium physics [25–27], dynamic

bifurcations have only recently been systematically studied in

systems biology [5,28–30], despite involving fundamental aspects

of cell fate decision. It is of special interest in this context because

all genetic switches are asymmetric and stochastic and, hence, can

be expected to demonstrate both path and speed-dependent effects

in the process of phenotype selection. Additionally, certain cell

differentiation processes have been demonstrated to be driven by

slow build-up of decision-driving signals [31] and experiments

have revealed that temporal competition can determine cell fate

choice in multipotent differentiation [32], thus indicating a

predominant role of time-dependent effects.

Regarding the response of the DEG layer of nodes,

TF11,12,13,14,15, to IEG products, TF6,7,8,9,10, or even external

signals Si (see Fig. 2), recent studies have shown that the function

of regulators in the immediate early response ‘‘may be used to put

the cell into a transient receptive state…by moving the system out

of its attractor basin’’ [33]. In our model this stage arises from the

dynamics of the nodes activated by signals. Although further

studies are necessary to understand the mutual information

between immediate early dynamics and the delayed responses,

we should add that the immediate early response not only puts the

system in a receptive transient state, but also induces time-

dependent changes on the transcriptional landscape in order to

generate the correct, or most probable, decision outcome.

Further studies are necessary to understand speed-dependent

attractor selection in systems which consider additional inter-

cellular connections and thus show coexistence of different

dynamical regimes [34,35]. This endeavor will constitute an

interesting extension and contribute to the clarification of real

selectivity mechanisms present in cells that execute competing

differentiation, proliferation and apoptosis programs. Additionally,

SdCDM in spatiotemporal pattern formation could also play a

crucial part in the self-organized, stochastic, gradual patterning

behavior observed for instance in paradigmatic inter-cellular

phenomena arising in development [36]. One can hypothesize

that evolution has selected for embryonic development with the

optimal cellular differentiation speed. The conditions leading to

deviations from this optimal route, the onset of pathologies and

their possible treatment, constitute still an important open

question. Speed-dependent decision making effects in biological

systems contributes to the area of critical transitions in open

systems [37], so crucial for the understanding of selectivity

mechanisms in a wide range of subjects [38].

Methods

The dynamics of the protein concentrations involved in our

circuit (see Fig. 2) is described by a phenomenological model

following [39] and assumed to be dimensionless. The variables Xi

or X a
i (see Eqs. (6) to (10)) represent the concentration of

transcription factors, i.e. ½TFi�, in their inactive and active forms,

respectively. For each TF{TF connection, associated with a

protein-gene interaction or regulatory process (see Fig. 2), we

resorted to a generic representation shown in Eq. (7) and (8). All

regulatory interactions to any gene are replaced with an average or

effective interaction, taking into account the repression, activation

and multimerization mechanisms inherent to epigenetic regula-

tion. This formalism stands as a generalization of [5] but takes into

account all possible reactions between input nodes and allows for

both hetero and homodimers (see Eqs. (9) and (10)).

_XX
a

i ~
1

tS
FXi

(S)Xi{X a
i

� �
, i~6,:::,10: ð6Þ

_XX i~
1

tT
GXi

(Xa,X){Xi

� �
{

1

tS
(FXi

(S)Xi{Xi
a)

z
ffiffiffiffiffi
Xi

p
jXi

(t), i~6,:::,10: ð7Þ

_XX i~
1

tT
G’Xi

(Xa,X){Xi

� �
z

ffiffiffiffiffi
Xi

p
jXi

(t), i~11,:::,15: ð8Þ

In this model, Eq. (6) represents activation of transcription

factors by phosphorylation-dephosphorylation [12], where the

latter is assumed to occur with a constant rate (corresponding to a
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constant phosphatase concentration, a common assumption in

pathway modeling [40]). Phosphorylation is considered to depend

on the external signals: FXi
(Si)~

P
Si, where the sum is done

according to the network connectivity set in Eq. (2). In Eqs. (7) the

transcriptional input of Xi contains the stimulatory action of its

phosphorylated form X a
i and the inhibitory effect of X a

j , with

i=j~6,:::,10, and Xj’, with i=j’~11,:::,15 (see Eq. (9)):

GXi
(Xa,X)~

g
ci

i(X
a
i =ki

i)
� �Mz1

{1

(X a
i =ki

i)z
P10

i=j~6 (X a
j =ki

j)z
P15

i=j’~11 (Xj’=ki
j’)

� �Mz1

{1

NF
ð9Þ

In Eq. (8) the function G’Xi
(Xa,X) has a similar formula to Eq. (9),

although one has to adapt the term to the fact that the

transcription factors from TF11 to TF15 do not need to be

phosphorylated to operate on their promoter regions or on other

nodes’ (see Eq. (10)):

G’Xi
(Xa,X)~

g
ci

i(Xi=ki
i)

� �Mz1
{1

(Xi=ki
i)z
P10

i=j~6 (X a
j =ki

j)z
P15

i=j’~11(Xj’=ki
j’)

� �Mz1

{1

NF
0 ð10Þ

The parameters ci
i represent the ratio between the maximally

activated expression rate and basal transcription, while ki
i and ki

j

denote activation and repression thresholds. The parameters g are

a measure of the promoter strength multiplied by translational

efficiency [39] (see also Table 1). Equation (9) is a simplification of

the original input contemplating the action of multimers up to

order M [39] where NF stands for

NF ~
(X a

i =ki
i)z

P10
i=j~6 (X a

j =ki
j)z

P15
i=j’~11 (Xj’=ki

j’)
� �

{1

ci
i(X

a
i =ki

i)
� �

{1
:

For Eq. (10) similar observations stand and NF
0 has a formula

consistent with Eqs. (8) and (10).

We chose to use the class of models described above due to its

compact way of dealing with the complex set of reactions inherent

to the transcription initiation process. The larger the multimer

order, the larger the cooperativity between input species.

Depending on the order M of multimers allowed to be formed,

several regimes can be generated by combining both negative and

positive links between transcription factors: multiple clustering

attractors (Mv6), oscillations (5vMv8) and chaotic regimes

(Mw8) [39]. In the case of the high-dimensional switch chosen

for our work, M~2, and only a high density of multiple stable

states are observed (see Figs. 3, S1, S2 and S3).

Eqs. (6) to (10) were derived by assuming that transcription

factor binding and unbinding, on the one hand, and mRNA

dynamics, on the other, are fast when compared to protein

dynamics [4,21,39]. Although there is also a substantial difference

between the time scales of translation and phosphorylation events

[21], the profile of activation of each transcription factor or of

signals Si has been demonstrated to be fundamental to understand

cell fate decision [16,17,41]. Therefore, we maintained the

activation Eqs. (6). Moreover, this option allows us to extend in

further studies the impact on cell fate decision, here equated with

attractor selection, of partial inhibition of phosphorylation

processes exerted by specific classes of drugs [42].

Our model assumes that the circuit operates in a constant-

volume cell, but takes into account stochastic fluctuations in gene

expression [15], through the terms
ffiffiffiffiffi
Xi

p
jXi

(t) (see Eqs. (7) and (8))

[43]. To that end, jXi ,Xj
(t) represents a Gaussian noise with zero

mean and correlation SjXi
(t),jXj

(t’)T~s2dXiXj
d(t{t’), and mod-

els the contribution of intrinsic random fluctuations inherent to

transcription and translation processes [44] (see Eqs. (7) and (8)).

This multiplicative noise term is interpreted in the Ito sense, which

is the correct stochastic interpretation for a noise term arising from

stochastic protein-gene interaction events [23,43]. Here we will

not consider extrinsic sources of noise such as fluctuations in kinase

or phosphatase numbers (see [5]).

Numerical Methods
All simulation results were performed by numerically integrat-

ing the stochastic differential equations using the Heun method

[45] with a scaled time-step of 10{5. In order to determine each of

the quantities represented in the figures shown throughout this

work, the set of simulations was performed until an instant far

beyond the maximum of each of the rising times for each of the

signals Si in order to secure that the system had converged.

Supporting Information

Figure S1 Bifurcation diagram obtained by setting the
parameters Si following the combination of amplitudes
inherent to I15(t). (A) Complete bifurcation diagram. Inset:

detail of branches near t~0:5. (B) Amplification of lower part of

the bifurcation diagram represented in (A). Parameters: M~2,

g~0:1, ci
i~20, ki

i~1 (self-activation) and ki
j~10 (cross-repres-

sion), tT=tS~1 (see Methods) for i,j~6,:::,15. The available

attractors at specific times can be visualized. The input

combination changes the attractor landscape with respect to the

original bifurcation diagram with S~S1~S2~S3~S4~S5 (see

Fig. 3) and the other input sequences I75 and I94. t is the horizontal

axis variable for all the figures, from TF6 to TF15. ½TFi�~Xi, i.e.

the concentration of each transcription factor is represented here

by ½TFi� and associated with Xi in Eqs. (7) and (8) with i~6,:::,15
(see Methods). For each time instant t 100 initial conditions were

sampled and the respective end attractors recorded and plotted.

(TIFF)

Figure S2 Bifurcation diagram obtained by setting the
parameters Si following the combination of amplitudes
inherent to I75(t). (A) Complete bifurcation diagram. Inset:

detail of branches near t~0:5. (B) Amplification of lower part of

the bifurcation diagram represented in (A). Parameters: M~2,

g~0:1, ci
i~20, ki

i~1 (self-activation) and ki
j~10 (cross-repres-

sion), tT=tS~1 (see Methods) for i,j~6,:::,15. The available

attractors at specific times can be visualized. The input

combination changes the attractor landscape with respect to the

original bifurcation diagram with S~S1~S2~S3~S4~S5 (see

Fig. 3) and the other input sequences I15 and I94. t is the horizontal

axis variable for all the figures, from TF6 to TF15. ½TFi�~Xi, i.e.

the concentration of each transcription factor is represented here

by ½TFi� and associated with Xi in Eqs. (7) and (8) with i~6,:::,15
(see Methods). For each time instant t 100 initial conditions were

sampled and the respective end attractors recorded and plotted.

(TIFF)

Figure S3 Bifurcation diagram obtained by setting the
parameters Si following the combination of amplitudes
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inherent to I94(t). (A) Complete bifurcation diagram. Inset:

detail of branches near t~0:5. (B) Amplification of lower part of

the bifurcation diagram represented in (A). Parameters: M~2,

g~0:1, ci
i~20, ki

i~1 (self-activation) and ki
j~10 (cross-repres-

sion), tT=tS~1 (see Methods) for i,j~6,:::,15. The available

attractors at specific times can be visualized. The input

combination changes the attractor landscape with respect to the

original bifurcation diagram with S~S1~S2~S3~S4~S5 (see

Fig. 3) and the other input sequences I15 and I75. t is the horizontal

axis variable for all the figures, from TF6 to TF15. ½TFi�~Xi, i.e.

the concentration of each transcription factor is represented here

by ½TFi� and associated with Xi in Eqs. (7) and (8) with i~6,:::,15
(see Methods). For each time instant t 100 initial conditions were

sampled and the respective end attractors recorded and plotted.

(TIFF)
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