

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

Contents lists available at ScienceDirect

Applied Soft Computing Journal

journal homepage: www.elsevier.com/locate/asoc

Modelling and forecasting of COVID-19 spread using wavelet-coupled random vector functional link networks

Barenya Bikash Hazarika, Deepak Gupta*

Department of Computer Science & Engineering, National Institute of Technology Arunachal Pradesh, India

ARTICLE INFO

Article history: Received 18 July 2020 Received in revised form 3 August 2020 Accepted 6 August 2020 Available online 13 August 2020

Keywords: COVID-19 Coronavirus disease SARS-CoV-2 Time series forecasting Random vector functional link Wavelets

ABSTRACT

Researchers around the world are applying various prediction models for COVID-19 to make informed decisions and impose appropriate control measures. Because of a high degree of uncertainty and lack of necessary data, the traditional models showed low accuracy over the long term forecast. Although the literature contains several attempts to address this issue, there is a need to improve the essential prediction capability of existing models. Therefore, this study focuses on modelling and forecasting of COVID-19 spread in the top 5 worst-hit countries as per the reports on 10th July 2020. They are Brazil, India, Peru, Russia and the USA. For this purpose, the popular and powerful random vector functional link (RVFL) network is hybridized with 1-D discrete wavelet transform and a wavelet-coupled RVFL (WCRVFL) network is proposed. The prediction performance of the proposed model is compared with the state-of-the-art support vector regression (SVR) model and the conventional RVFL model. A 60 day ahead daily forecasting is also shown for the proposed model. Experimental results indicate the potential of the WCRVFL model for COVID-19 spread forecasting.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The coronavirus disease-2019 or simply COVID-19 eruption has not only disrupted the global healthcare networks but also it has demised the world economy. More than 690000 people died till date, and the total infected people are growing exponentially day by day as per reports. COVID-19 leads to a rigorous respiratory symptom, and it is linked with highly Intensive Care Unit (ICU) admissions and death. Individuals can turn out to be ill with the infection for 1 to 14 days before symptoms develop. The most widely recognized indications of COVID-19 ailment are fever, exhaustion and dry hack. The malady can be all the more once in a while extreme and even deadly. Older individuals, just as individuals with underlying disease, including hypertension, respiratory system disease and cardiovascular disease, may turn out to be progressively defenceless to extreme illness [1]. Machine learning (ML) methods have been extensively implemented for diagnosis and prediction of the most common illness, commonly diabetes, hepatitis, cancer, tumours, Parkinson and many more. Hence, the ML models can be a good alternative for the reverse transcriptionpolymerase chain reaction (RT-PCR) approach for early COVID-19 prediction. However, limited pieces of literature are available to our prior knowledge for COVID-19 prediction. The virus is novel, and we all have a little information about its characteristics. The

E-mail addresses: barenya1431@gmail.com (B.B. Hazarika), deepak@nitap.ac.in (D. Gupta).

https://doi.org/10.1016/j.asoc.2020.106626 1568-4946/© 2020 Elsevier B.V. All rights reserved. authorities would like to know when this epidemic will come to an end and whether it is going to get worse. Forecasting is therefore very essential, even at the very least indications for consideration of multiple attributes over other societies and the public factors of health. In this case, the forecast using a single model is not enough. Therefore several prediction models need to be implemented so that the most reliable model can be chosen for the forecast [2].

1.1. Literature survey

A short time ago, Herlawati [3] tried to estimate the spread pattern of COVID-19 using the popular support vector regression (SVR) model with three different kernel functions that include the linear, radial basis function (RBF) and polynomial kernels. Experimental results reveal that the SVR model with RBF kernel was able to predict the pattern of spread of the global epidemic accurately. Al-Qaness et al. [4] used a hybrid ML model using adaptive neuro-fuzzy inference system (ANFIS) coupled with the improvised flower pollination algorithm (FPA) and salp swarm algorithm (SSA) called FPASSA-ANFIS for confirmed case prediction in China. The model showed excellent performance based on a few performance evaluation measures. Ardabili et al. [5] effectively predicted the COVID-19 outbreak using the multilayer perceptron (MLP) and ANFIS model. Wang et al. [6] used a patient information based algorithm (PIBA) for real-time COVID-19 estimation. Very recently, Javid et al. [7] used the ELM model [8] using a sliding window method for COVID-19 time-series

^{*} Corresponding author.

Few prominent works for COVID-19 prediction using machine learning/AI models.

Sl no	Reference	Country	Machine learning / AI Models	Merits	Demerits/Limitations
1.	Herlawati [3]	Indonesia	SVR	High generalization ability and can handle the non-linearity using kernels.	Not suitable for large scale datasets
2.	Al-Qaness et al. [4]	China	FPASSA-ANFIS	High prediction ability	High computational cost
3.	Ardabili et al. [5]	Italy, Germany, Iran, USA and China	MLP and ANFIS	High generalization ability for long term prediction.	High computational cost
4.	Chakraborty and Ghosh [17]	India, UK, Canada, France and South Korea	Wavelet-ARIMA- Regression tree hybrid model	High prediction ability.	Long term prediction yet to be tested
5.	Wang et al. [6]	China	PIBA	Good prediction performance.	Dependent on accurate patient information at the beginning of the epidemic
6.	Javid et al. [7]	Sweden, Denmark, Finland, Norway, France, Italy, Spain, UK, China, India, Iran, USA	ELM	Fast and efficient. Able to handle the stationarity of datasets.	Long term prediction yet to be tested
7.	Pinter et al. [9]	Hungary	MLP-ICA and ANFIS based hybrid models	Good generalization ability.	If the prevention regime changes, the MLP-ICA model will not maintain its accuracy
8.	Zheng et al. [10]	China	LSTM based hybrid model	Significantly reduces the error of prediction.	Long term prediction yet to be tested
9.	Tomar and Gupta [11]	India	LSTM and curve fitting	High prediction ability.	Limited data availability
10.	Ribeiro et al. [12]	Brazil	ARIMA,CUBIST,RF,RR, SVR and SEL	Good prediction performance.	Long term prediction yet to be tested
11.	Rafiq et al. [13]	India	SISO	The disease variations are accurately captured	Limited data availability
12.	Chimmula and Zhang [18]	Canada	LSTM	Can handle the nonlinearity, high prediction performance.	Limited data availability

forecasting to avoid the overfitting of data. A sliding window approach is also used to handle the non-stationarity of data. Pinter et al. [9] tried to predict the COVID-19 pandemic using ANFIS as well as MLP-imperialist competitive algorithm (MLP-ICA) models. Zheng et al. [10] and Tomar and Gupta [11] used hybrid long short term memory (LSTM) models for COVID-19 prediction. Ribeiro et al. [12] implemented several machine learning models for estimating COVID-19. They are autoregressive integrated moving average (ARIMA), ridge regression (RR), cubist (CUBIST), random forest (RF), SVR and stacking-ensemble learning (SEL) model. Rafig et al. [13] used a single input single output (SISO) based machine learning model for COVID-19 estimation. One can find a few relevant pieces of literature in Fong et al. [14], Mahalle et al. [15] and Lalmuanawma et al. [16]. Table 1 shows selected works on the prediction of COVID-19 using machine learning/ artificial intelligence (AI) models.

There are limited data available on outbreaks of COVID-19 epidemics, making predictions widely uncertain. It was evident from the recent studies that the timing and location of the outbreak enabled the virus' fast transmission within an extremely mobile population [19]. In highly affected countries, in subsequent days of initial transmission of the virus, the governments enforced a lockdown and in hospitals, patients who satisfy the clinical and epidemiological characteristics of COVID-19 are isolated immediately. Various machine learning models have been applied to provide both short term and long term forecast of reported cases to tackle the epidemic. These models prediction shows a high level of variations [17]. Since the COVID-19 time series data contain both nonlinear and non-stationary trends, it would be critical to make decisions based on a single model. This motivated us to propose an alternative hybridization-based forecasting system. Through incorporating the strengths of two different models, i.e., wavelets and RVFL, the proposed method eliminates the weaknesses of conventional techniques. To handle the nonlinearity and non-stationary trends in datasets, wavelets are very efficient model [20,21]. On the other hand, the RVFL is a powerful ML model that adapts the empirical risk minimization principle and shows a high generalization performance. Hence, the main contributions of this work are:

- A wavelet coupled random vector functional link network (WCRVFL) model is proposed.
- The wavelet decomposed time-series data is directly provided as an input to the RVFL model.
- The time-series of top 5 worst-hit countries with the most number of cases as on 10th July 2020 are provided as an input to the model.
- A 60-day ahead prediction is portrayed for each country using both, RVFL and the WCRVFL model to show the fore-casting of the disease spread.

Fig. 1. Structure of the RVFL network with direct links [26]. Here, the green line from input to the output layer indicates the direct link.

 R^2 values obtained by SVR, RVFL and the best WCRVFL models for the reported countries (Best results are bolded).

Country	SVR	RVFL		Best WCRV	/FL
		RELU	Sigmoid	RELU	Sigmoid
BRAZIL INDIA PERU RUSSIA USA	0.99733 0.94149 0.99277 0.99818 0.99923	0.99909 0.99995 0.99874 0.99909 0.99988	0.99891 0.99993 0.99849 0.99999 0.99986	0.99955 0.99996 0.99986 0.99941 0.9999	0.99975 0.99994 0.99975 0.99873 0.9989

Table 3

RMSE values obtained by SVR, RVFL and the best WCRVFL models for the reported countries (Best results are bolded).

Country	SVR	RVFL		Best WCRVFL						
		RELU	Sigmoid	RELU	Sigmoid					
BRAZIL	0.03011	0.0702	0.03048	0.00602	0.00323					
INDIA	0.01519	0.00147	0.00381	0.0021	0.00198					
PERU	0.04647	0.03173	0.01307	0.00243	0.00197					
RUSSIA	0.03202	0.00469	0.00036	0.0003	0.00029					
USA	0.06403	0.01654	0.01539	0.00617	0.00524					

Section 2 describes the related works. In Section 3, the proposed WCRVFL model is explained. The experimental study and datasets are explained in Section 4. Finally, Section 5 describes the conclusion of this work in brief.

2. Related works

2.1. Random vector functional link networks

RVFL [22–24] is a special single hidden layer feed-forward neural network (SLFN) that was proposed by Pao et al. [22], where the output weights are chosen as an adaptable parameter [25]. The structure of the RVFL network is presented in Fig. 1. Here, the input layer neurons have direct links to the output layer. In addition to the input layer nodes and the output node, there exists some special type of nodes known as the enhancement nodes (ENs) which composite the hidden layer of RVFL network. A suitable activation function a(.) maps the input data to the ENs.

Now let us consider an SLFN with training samples *N* such that $X = \{(x_i, y_i)\}_{i=1}^N$ where $x_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}^e$ are *d* and *e* dimensional input and output vectors respectively. Let $\beta = \mathbb{R}^{N_g \times e}$ represents the output weight matrix and $Y = \mathbb{R}^{N \times e}$ is the output target matrix. *g* denotes the hidden layer output. The RVFL model

that has been used in this work solves the following optimization problem:

$$\min_{\beta} \|D\beta - Y\|^2, \tag{1}$$

where D = [GX] is the augmentation of input and hidden features. The hidden layer output matrix $G \in \Re^{N \times N_g}$ can be represented by:

$$G = \begin{bmatrix} g_1(x_i) \dots g_{N_g}(x_1) \\ g_1(x_2) \dots g_{N_g}(x_2) \\ \ddots & \ddots \\ \vdots \\ g_1(x_N) \dots g_{N_g}(x_N) \end{bmatrix}.$$
 (2)

The hidden layer weights are randomly generated. Only the output layer weight vector β is needed to be learned. Typically the above equation can be solved by using the Moore–Penrose pseudo inverse (MPPI). Hence, after applying the MPPI, the required solution can be obtained as:

$$\beta = D^{\dagger}Y, \tag{3}$$

where D^{\dagger} is the MPPI of *D*.

2.2. Wavelet analysis

Due to its multi-resolution and localization ability in both, time and frequency domain, wavelet analysis presents a more balanced way of decomposing signals. Wavelet analysis helps in localizing the several features of a signal in time. In wavelet transform, the analysing functions known as wavelets adjust the time width to the respective frequencies in such a way that higher frequency will be narrow while the low-frequency components are wide [20]. Therefore it can be considered as a more powerful tool compared to Fourier transform (FT) for analysing the time series data. WT can be majorly classified into two types: (a) Continuous WT and (b) Discrete WT.

2.2.1. Continuous WT (CWT)

The CWT of a continuous-time signal x(t) may be expressed as:

$$C(a,b) = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} \psi^*\left(\frac{t-b}{a}\right) x(t) dt$$
(4)

where * indicates the complex conjugate and $\psi(t)$ indicates the mother wavelet function [27,28]. The dilation factor is represented by *a* while *b* is the temporal translation of $\psi(t)$. The inverse CWT can be used to reconstruct the signal as,

$$\mathbf{x}(t) = \frac{1}{c_{\psi}} \int_{-\infty}^{\infty} \int_{0}^{\infty} \frac{1}{\sqrt{a}} \psi\left(\frac{t-b}{a}\right) C(a,b) \frac{da.db}{a \times a}$$
(5)

2.2.2. Discrete WT (DWT)

The DWT of a discrete-time signal has the form:

$$\psi_{p,q}(t) = \frac{1}{\sqrt{a_0^p}} \psi\left(\frac{t - qb_0 a_0^p}{a_0^p}\right)$$
(6)

The *p* and *q* are parameters that control *a* and *b*. Here $a_0 > 0$ and $b_0 > 1$ are the localization parameter and user-specified dilation step respectively. The original signal can be recreated using the inverse DWT as:

$$x_{i} = \overline{D} + \sum_{p=1}^{P} \sum_{q=0}^{2^{\nu-p}-1} D_{p,q} 2^{-p/2} \psi(2^{-p}i - q)$$
(7)

Fig. 2. Decomposition at level 1 using db8, coif2, haar and sym5 wavelet.

Eq. (7) can be rewritten in a simplified form as :

$$x_{i} = \overline{D}(t) + \sum_{p=1}^{P} \sum_{q=0}^{2^{P-p}-1} W_{p}(t)$$
(8)

dyadic wavelet transform *D* that can be represented as [29]:

$$\overline{D}(t)$$
 indicates the approximation sub-signal of *D* and level 2^p and $W_p(t)$ is the detailed sub-signal at levels $p = 1, 2, ..., P$. The

$$D_{p,q} = 2^{-p/2} \sum_{i=0}^{2^p - 1} \psi(2^{-p}i - q) x_i$$
(9)

where $i = 0, 1, 2, ..., 2^{p}$.

Fig. 3. Schematic diagram of the proposed WCRVFL.

There are several types of mother wavelets such as Daubechies (Db), Coiflet (Coif), Symlets (Sym), Haar etc. Because of its inherent capability in discovering the time localization information, Db achieves good results in several regression processes such as sediment transport [20]. On the other hand, the Coif is more symmetrical compared to Db wavelet. Moreover, Sym is the modified version of Db with increase symmetry. Hence the appropriate selection of mother wavelet is dependent on the characteristics and the type of application.

3. Proposed wavelet-coupled RVFL network

This section expresses the proposed WCRVFL network. In the proposed WCRVFL, the time series data based on a daily number of COVID-19 infected people are decomposed using a 1dimensional discrete wavelet transform (1D DWT). For decomposition, we have used 19 types of wavelets. They are db2, db3, db4, db5, db6, db7, db8, coif2, coif3, coif4, coif5, haar, sym2, sym3, sym4, sym5, sym6, sym7 and sym8. The decomposed data for INDIA dataset using db8, coif2, haar and sym5 are portrayed in Fig. 2. In Fig. 2, the *x*-axis indicates the day-wise decomposition while in the *y*-axis, d_1 indicates the decomposition at level 1. The level 1 approximation obtained after decomposing the data are provided as an input to the conventional RVFL model (Eqs. (1)–(3)). The estimator of the RVFL model is obtained based on the optimum parameter. The model performance is evaluated using 9 different performance evaluators. The descriptions of the evaluators are explained in Section 4. The developed schematic diagram of the proposed model is shown in Fig. 3.

4. Experimental study and datasets

All the experiments are performed in a Windows 7 OS computer with 8 GB RAM and 1 TB ROM enriched with i5 processor with a processing speed of 1 GHz/second. The institutional licenced MATLAB-2019 software has been used for these experiments. The 10-fold cross-validation method is considered for optimal parameter selection. In 10-fold cross-validation, the dataset is split into 10 parts. One part is for training and remaining parts for testing. This process is repeated for 9 more times until all the parts are trained at least once. Moreover, the MATLAB wavelet toolbox was used for implementing the various wavelets. Let *x* be an input sample. The datasets are also normalized by considering $\bar{x}_{lm} = \frac{x_{lm} - x_{min}^{min}}{x_{l}^{max} - x_{m}^{min}}$, \bar{x}_{lm} is the normalized value of x_{lm} . x_{l}^{max} and x_{m}^{max} are the maximum and minimum values respectively. As per the selection of the activation function, 2 popular activation functions i.e., RELU and Sigmoid are used. These activation function definitions can be expressed as:

(a) *RELU function:*
$$f(x) = \max(0, x)$$

(b) *Sigmoid function:* $f(x) = \frac{1}{1+e^{-x}}$

where f(x) depicts the output function for the input sample x. To validate the efficiency of the RVFL and the wavelet coupled RVFL model, 4 performance evaluators has been used. They are: coefficient of determination (R²), root mean square error (RMSE), mean absolute error (MAE), the ratio between the sum of squared error and the total sum of squares (SSE/SST), peak signal to noise ratio (PSNR), structural content (SC), the maximum difference (MD), Laplacian mean squared error (LMSE) and normalized absolute error (NAE). Their definitions can be given as:

$$\circ R^{2} = 1 - \frac{\frac{1}{N} \sum_{i=1}^{N} (o_{i} - \hat{o}_{i})^{2}}{\frac{1}{N} \sum_{i=1}^{N} (o_{i} - \overline{o}_{i})^{2}}, \\ \circ RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (o_{i} - p_{i})^{2}}, \\ \circ MAE = \frac{1}{N} \sum_{i=1}^{N} |o_{i} - p_{i}|, \\ \circ SSE/SST = \frac{\frac{1}{N} \sum_{i=1}^{N} (o_{i} - \hat{o}_{i})}{\frac{1}{N} \sum_{i=1}^{N} (o_{i} - \overline{o}_{i})}, \\ \circ PSNR = 10 \log 10 \left(\frac{\max_{i}^{2}}{\sqrt{(o_{i} - p_{i})}}\right), \\ \circ SC = 1 - \frac{\frac{1}{N} \sum_{i=1}^{N} o_{i}^{2}}{\frac{1}{N} \sum_{i=1}^{N} p_{i}^{2}}, \\ \circ MD = \frac{1}{N} \max \left(\sum_{i=1}^{N} (o_{i} - p_{i})\right), \\ \circ LMSE = \frac{\frac{1}{N} \sum_{i=1}^{N} (o_{i} - p_{i})}{\frac{1}{N} \sum_{i=1}^{N} (o_{i} - p_{i})}, \\ \circ NAE = \frac{1}{N} \sum_{i=1}^{N} \frac{|o_{i} - p_{i}|}{o_{i}}, \\ \end{cases}$$

(e) USA

Fig. 4. Daily prediction over the testing sample from 11th June 2020 to 10th July 2020 using RVFL and WCRVFL models.

where,

 $p = \text{predicted values,} \\ o = observed values, \\ \overline{o} = Average of o, \\ \hat{o} = \text{Estimated value of } o, \\ max = maximum possible value, \\ N = total number of samples.$

4.1. Experiment on COVID-19 time series dataset

The COVID-19 time series dataset is obtained from https: //ourworldindata.org/coronavirus-source-data. The dataset consists of the cumulative number of cases reported daily for different countries. In this work, we used the data for the top 5 worst-hit countries as per the report on 10th July 2020. They are Brazil, India, Peru, Russia and the USA. Given the current day, the index is *d*, the number of cases for $d + \tau$ days is predicted by considering input from past ν days, i.e., for $d - \nu + 1$ to *d* days.

4.1.1. Modelling based on time-series data from 11^{th} April 2020 to 10^{th} July 2020

Ninety days cumulative data starting from 11th April 2020 to 10th July 2020 is considered for modelling the COVID-19 spread

in 5 countries. For this purpose, the first 60 days data is considered for training and the remaining 30 days for testing. The experimental results of the WCRVFL model are compared with conventional SVR and RVFL models and are exhibited in Tables 2 and 3 respectively based on R^2 and RMSE. It is revealed from Tables 2 and 3 that the proposed WCRVFL model shows the best performance in 4 and 4 cases respectively out of the total 5 cases based on R^2 and RMSE respectively. Further the original versus the predicted values over testing data are also portrayed in Table 4 daily for the best RVFL model and the best WCRVFL model. Further to visualize the predicted values over testing data, the original versus predicted data are shown in Fig. 4 for each country. One can say from Table 4 and Fig. 4 that the proposed WCRVFL model has a close relationship with the original data which reveals the efficiency of the WCRVFL model.

4.1.2. A 60 days ahead forecasting based on data from 31 $^{\rm st}$ December 2019 to 10th July 2020

Moreover, Table 5 reveals the prediction errors using 9 performance evaluators for the WCRVFL models. Table 6 shows the average ranks based on various evaluators for the WCRVFL network. One can say from Tables 5 and 6 that the DB8 wavelet shows the best results for 7 evaluators except for MD and LMSE

Table 4				
Original versus predicted values obtained by the best RVFL model and the best WCRVFL model	(Based on RMSE)	daily from 11	June 2020 to	10 July 2020.

Date	Brazil (Peo	ople)		India (Peo	ople)		PERU (Peo	ople)		RUSSIA (P	eople)		USA (Peop	le)	
	Original	Best RVFL	Best WCRVFL	Original	Best RVFL	Best WCRVFL	Original	Best RVFL	Best WCRVFL	Original	Best RVFL	Best WCRVFL	Original	Best RVFL	Best WCRVFL
11-Jun-20	772416	777399	766135	286579	287164	286478	208823	207301	208467	493657	494042	493850	2000464	1998276	1999357
12-Jun-20	802828	809528	806683	297535	297252	297170	214788	212619	215258	502436	502208	502066	2023347	2019825	2021393
13-Jun-20	828810	839429	833386	308993	308857	309234	220749	218606	220538	511423	511164	511273	2048986	2042262	2044923
14-Jun-20	850514	861631	850075	320922	320944	320808	225132	225300	225778	520129	520424	520272	2074526	2066338	2071958
15-Jun-20	867624	883287	872433	332424	333312	332543	229736	229648	230455	528964	529034	528972	2094069	2090286	2093165
16-Jun-20	888271	901159	892923	343091	344770	344086	232992	233850	233527	537210	537837	537790	2114026	2108927	2110203
17-Jun-20	923189	926394	915765	354065	354920	353838	237156	236210	237333	545458	545792	545729	2137731	2129082	2133155
18-Jun-20	955377	969258	945566	366946	365990	365848	240908	239339	241441	553301	553858	553641	2163290	2154459	2158091
19-Jun-20	978142	998116	984350	380532	380202	380669	244388	242911	244968	561091	561489	561369	2191052	2179307	2184218
20-Jun-20	1032913	1016758	1031320	395048	394758	394723	247925	245656	248793	569063	569141	568878	2220961	2204834	2214429
21-Jun-20	1067579	1088262	1063837	410461	409995	410092	251338	249222	251962	576952	577223	577060	2255119	2233012	2243309
22-Jun-20	1085038	1107601	1085728	425282	426278	425928	254936	252231	254560	584680	585146	585026	2280912	2265165	2271580
23-Jun-20	1106470	1124089	1114255	440215	441065	439968	254936	255586	257473	592280	592754	592543	2312302	2289996	2301591
24-Jun-20	1145906	1146836	1140963	456183	456000	455767	260810	254488	260248	599705	600229	600092	2347022	2319532	2332025
25-Jun-20	1188631	1199788	1176934	473105	472782	473073	264689	260538	264339	606881	607524	607270	2381361	2355993	2366536
26-Jun-20	1228114	1243488	1226081	490401	490643	490162	268602	265147	269670	613994	614513	614355	2422310	2387848	2404396
27-Jun-20	1274974	1280490	1270939	508953	508479	508634	272364	268115	273404	620794	621524	621217	2467837	2426100	2445015
28-Jun-20	1313667	1329682	1315840	528859	527964	528233	275989	273616	276421	627646	628141	627920	2510323	2469932	2489965
29-Jun-20	1344143	1364092	1348137	548318	549129	548714	279419	276157	280107	634437	634937	634764	2548996	2509115	2529139
30-Jun-20	1368195	1394214	1364456	566840	568767	568047	282365	279297	283285	641156	641729	641439	2590552	2545788	2564008
1-Jul-20	1402041	1417477	1398589	585493	586731	585241	285213	281783	286024	647849	648400	648148	2634432	2587876	2608818
2-Jul-20	1448753	1460628	1442932	604641	605435	604528	288477	284169	288987	654405	655060	654776	2686480	2632352	2658005
3-Jul-20	1496858	1514128	1486385	625544	625119	624785	292004	287182	292506	661165	661537	661439	2739879	2681833	2707503
4-Jul-20	1539081	1561805	1540725	648315	647312	646860	295599	290586	296350	667883	668380	668054	2794321	2732534	2761961
5-Jul-20	1577004	1600180	1578370	673165	671767	674537	299080	294224	299817	674515	675152	674819	2839542	2782716	2810245
6-Jul-20	1603055	1636815	1599729	697413	698394	698627	302718	297793	303483	681251	681722	681558	2888635	2827115	2855721
7-Jul-20	1623284	1659445	1630333	719665	722939	716028	305703	301408	306881	687862	688490	688174	2938625	2875669	2906090
8-Jul-20	1668589	1682057	1653695	742417	743982	742260	309278	304114	309141	694230	695072	694813	2996098	2928107	2949038
9-Jul-20	1713160	1743608	1699748	767296	766788	775379	312911	307454	313566	700792	701261	701714	3055004	2983053	3015773
10-Jul-20	1755779	1784987	1771436	793802	793348	792866	316448	311088	319128	707301	707862	708595	3118008	3039759	3100233

Table 5	
Performance evaluators obtained for various countries using WCRVFL mode	l (Best results are bolded).

	Dataset	Activation function	DB2	DB3	DB4	DB5	DB6	DB7	DB8	HAAR	COIF2	COIF3	COIF4	COIF5	SYM2	SYM3	SYM4	SYM5	SYM6	SYM7	SYM8
	BRAZIL	RELU SIGMOID	0.02866 0.00828	0.0247 0.0067	0.04669 0.01809	0.05256 0.01768	0.01666 0.01307	0.04674 0.01249	0.06146 0.00704	0.02876 0.01733	0.04117 0.00672	0.09416 0.01582	0.07467 0.01311	0.03977 0.00662	0.00787 0.01825	0.01268 0.00936	0.00848 0.00715	0.03933 0.00818	0.15719 0.00649	0.02837 0.00998	0.10706 0.00619
	INDIA	RELU SIGMOID	0.02935 0.00247	0.00488 0.00325	0.00374 0.00273	0.02925 0.0023	0.01579 0.00417	0.06699 0.002	0.01486 0.00195	0.04276 0.00335	0.05389 0.00237	0.09528 0.00616	0.02945 0.00214	0.03851 0.00416	0.02623 0.00237	0.09798 0.00397	0.00374 0.00572	0.00949 0.00156	0.03367 0.00419	0.04584 0.00313	0.00349 0.00385
RMSE	PERU	RELU SIGMOID	0.04414 0.01546	0.06863 0.0323	0.12994 0.00421	0.01069 0.01102	0.02503 0.00424	0.11371 0.01532	0.10888 0.01381	0.0061 0.00994	0.01719 0.00332	0.00452 0.00262	0.01729 0.01635	0.19487 0.0055	0.02791 0.01095	0.03794 0.05982	0.06914 0.00525	0.00871 0.07387	0.1022 0.00247	0.01196 0.00531	0.18366 0.00681
	RUSSIA	RELU SIGMOID	0.00712 0.02551	0.02445 0.00818	0.04919 0.02901	0.09504 0.03111	0.02658 0.00566	0.01571 0.00517	0.0072 0.00508	0.00643 0.03269	0.01551 0.02669	0.01403 0.0344	0.01435 0.02301	0.1303 0.02475	0.0447 0.03339	0.00513 0.03085	0.06249 0.00549	0.07127 0.00594	0.06244 0.03229	0.01369 0.00741	0.00972 0.03083
	USA	RELU SIGMOID	0.00416 0.00208	0.03952 0.00224	0.01972 0.00177	0.0791 0.00168	0.00127 0.00162	0.01588 0.00105	0.01289 0.00073	0.01372 0.00186	0.02157 0.00161	0.08242 0.00196	0.01524 0.00163	0.02359 0.00161	0.04978 0.00179	0.03139 0.00206	0.01061 0.00148	0.00087 0.00129	0.05299 0.00167	0.00122 0.00128	0.01627 0.00139
	BRAZIL	RELU SIGMOID	0.0116 0.00097	0.00864 0.00064	0.03111 0.00467	0.03968 0.00449	0.004 0.00246	0.03142 0.00224	0.05414 0.00071	0.01188 0.00432	0.02444 0.00065	0.12763 0.0036	0.08019 0.00247	0.02274 0.00063	0.00087 0.0047	0.00228 0.00124	0.00104 0.00074	0.02221 0.00096	0.35596 0.00061	0.01149 0.00142	0.16495 0.00055
	INDIA	RELU SIGMOID	0.01285 0.00009	0.00035 0.00015	0.00021 0.00011	0.0127 0.00008	0.00372 0.00026	0.06697 0.00006	0.00328 0.00006	0.02728 0.00017	0.04342 0.00008	0.13548 0.00057	0.01293 0.00007	0.0221 0.00026	0.01002 0.00008	0.14019 0.00023	0.00021 0.00049	0.00134 0.00004	0.01695 0.00026	0.03091 0.00014	0.00018 0.00022
SSE/SST	PERU	RELU SIGMOID	0.03821 0.00469	0.0925 0.02049	0.33241 0.00035	0.00226 0.0024	0.0124 0.00036	0.2557 0.00464	0.23415 0.00377	0.00074 0.00195	0.00585 0.00022	0.00041 0.00014	0.00591 0.00529	0.75073 0.0006	0.01527 0.00235	0.02826 0.07026	0.09467 0.00055	0.0015 0.10783	0.20666 0.00012	0.00282 0.00056	0.66722 0.00092
	RUSSIA	RELU SIGMOID	0.00141 0.01811	0.01665 0.00187	0.06754 0.02348	0.25265 0.02708	0.01979 0.0009	0.00691 0.00075	0.00145 0.00072	0.00115 0.02988	0.00674 0.01996	0.00551 0.03315	0.00577 0.01483	0.47533 0.01715	0.05558 0.03102	0.00073 0.02651	0.1095 0.00084	0.1422 0.00099	0.10925 0.02921	0.00523 0.00153	0.00265 0.02662
	USA	RELU SIGMOID	0.00077 0.00019	0.06989 0.00022	0.01748 0.00014	0.28243 0.00013	0.00007 0.00012	0.01141 0.00005	0.00751 0.00002	0.00852 0.00016	0.02108 0.00012	0.30745 0.00017	0.01051 0.00012	0.02515 0.00012	0.11071 0.00014	0.04407 0.00019	0.00511 0.0001	0.00003 0.00007	0.12721 0.00013	0.00007 0.00007	0.01198 0.00009
	BRAZIL	RELU SIGMOID	0.02214 0.00606	0.01813 0.00488	0.02862 0.01434	0.03586 0.01427	0.0112 0.00797	0.03186 0.00802	0.03712 0.00536	0.02183 0.01116	0.02767 0.00527	0.07302 0.00938	0.0585 0.01096	0.02686 0.00547	0.00567 0.0111	0.01065 0.00753	0.00758 0.00547	0.02502 0.00602	0.11424 0.00526	0.02072 0.00818	0.07576 0.00496
	INDIA	RELU SIGMOID	0.0163 0.00155	0.00301 0.00194	0.00229 0.00168	0.01473 0.00159	0.00975 0.00236	0.04336 0.00149	0.00873 0.00146	0.02865 0.00209	0.03335 0.00166	0.06254 0.00347	0.02003 0.00145	0.02789 0.00232	0.0176 0.00156	0.07375 0.00249	0.0027 0.00323	0.00608 0.00115	0.02501 0.00235	0.03037 0.00211	0.00239 0.0027
MAE	PERU	RELU SIGMOID	0.0347 0.0128	0.04777 0.02525	0.10876 0.00341	0.00931 0.00901	0.02268 0.00373	0.09211 0.01165	0.08373 0.01062	0.00491 0.00856	0.01445 0.00285	0.00381 0.00213	0.01597 0.0125	0.15572 0.00473	0.02532 0.00945	0.03394 0.04735	0.05747 0.00469	0.007 0.05896	0.0867 0.00203	0.00979 0.00408	0.15697 0.00596
	RUSSIA	RELU SIGMOID	0.00602 0.02104	0.01776 0.00704	0.03864 0.02355	0.08267 0.02526	0.02007 0.00513	0.01327 0.00465	0.00622 0.00454	0.00551 0.02696	0.01423 0.02182	0.01262 0.02784	0.01202 0.01886	0.1105 0.02016	0.03366 0.02718	0.0039 0.02498	0.05592 0.00495	0.06059 0.00525	0.04992 0.02611	0.01204 0.00642	0.00888 0.02501
	USA	RELU SIGMOID	0.003 0.0014	0.0338 0.00123	0.01196 0.00103	0.06417 0.00101	0.00095 0.00104	0.01092 0.00075	0.01042 0.00057	0.01167 0.00125	0.01705 0.00104	0.06736 0.00139	0.01319 0.00101	0.01794 0.00091	0.04277 0.00104	0.02209 0.00119	0.00593 0.00098	0.00069 0.00093	0.0396 0.0011	0.00079 0.00085	0.01066 0.00084
	BRAZIL	RELU SIGMOID	0.9884 0.99903	0.99136 0.99936	0.96889 0.99533	0.96032 0.99551	0.996 0.99754	0.96858 0.99776	0.94586 0.99929	0.98812 0.99568	0.97556 0.99935	0.87237 0.9964	0.91981 0.99753	0.97726 0.99937	0.99913 0.9953	0.99772 0.99876	0.99896 0.99926	0.97779 0.99904	0.64404 0.99939	0.98851 0.99858	0.83505 0.99945
2	INDIA	RELU SIGMOID	0.98715 0.99991	0.99965 0.99985	0.9998 0.99989	0.9873 0.99992	0.99628 0.99974	0.93303 0.99994	0.99672 0.99994	0.97272 0.99983	0.95658 0.99992	0.86452 0.99943	0.98707 0.99993	0.9779 0.99974	0.98998 0.99992	0.85981 0.99977	0.99979 0.99951	0.99866 0.99996	0.98305 0.99974	0.96909 0.99986	0.99982 0.99978
R ²	PERU	RELU SIGMOID	0.96179 0.99531	0.9075 0.97951	0.66759 0.99965	0.99774 0.9976	0.98761 0.99964	0.74431 0.99536	0.76585 0.99623	0.99926 0.99805	0.99415 0.99978	0.9996 0.99986	0.99409 0.99471	0.24927 0.9994	0.98473 0.99765	0.97174 0.92974	0.90533 0.99945	0.9985 0.89217	0.79334 0.99988	0.99718 0.99944	0.33278 0.99908
	RUSSIA	RELU SIGMOID	0.99859 0.98189	0.98335 0.99814	0.93246 0.97652	0.74735 0.97292	0.98021 0.9991	0.99309 0.99925	0.99855 0.99928	0.99885 0.97012	0.99326 0.98004	0.99449 0.96685	0.99423 0.98517	0.52467 0.98285	0.94442 0.96898	0.99927 0.97349	0.89051 0.99916	0.85781 0.99901	0.89075 0.97079	0.99477 0.99847	0.99735 0.97338
	USA	RELU SIGMOID	0.99923 0.99981	0.93011 0.99978	0.98252 0.99986	0.71757 0.99987	0.99993 0.99988	0.98859 0.99995	0.99249 0.99998	0.99148 0.99984	0.97892 0.99988	0.69256 0.99983	0.98949 0.99988	0.97485 0.99988	0.88929 0.99986	0.95593 0.99981	0.99489 0.9999	0.99997 0.99993	0.87279 0.99987	0.99993 0.99993	0.98802 0.99991
	BRAZIL	RELU SIGMOID	77.2222 87.3324	72.6417 90.5922	90.3719 91.6296	70.6091 91.7009	74.657 91.3709	68.0834 87.7036	72.2595 84.7542	80.3823 88.3305	82.0025 88.3014	73.9498 90.7744	76.407 93.0019	89.2564 87.0281	66.1399 89.7045	90.3868 89.3644	75.3598 89.595	88.9994 91.7658	74.7832 91.9637	79.4713 91.893	66.5262 86.0185
DCND	INDIA	RELU SIGMOID	91.9479 99.5148	74.5817 95.5094	79.8778 95.4381	79.0809 97.7427	71.1813 98.4782	69.7549 97.9321	89.6223 103.832	74.5271 99.3556	80.9053 100.297	91.6203 92.8147	68.2174 96.4682	77.9468 100.103	90.9475 100.912	86.9491 95.2571	66.4774 92.571	81.5632 98.3075	69.8243 101.215	96.0934 96.0677	63.2181 99.7727
PSNK	PERU	RELU SIGMOID	77.6603 86.21	89.3875 96.2414	73.4547 91.5502	56.4982 86.4655	89.0619 91.3333	69.8998 92.9706	91.375 98.4921	74.4167 85.4834	66.8389 89.838	79.1267 94.9392	86.9136 93.0807	67.1247 96.7118	89.0395 78.3656	88.1313 83.1218	71.3348 86.25	87.4908 76.3774	66.2178 84.7984	70.6565 91.7502	77.5593 98.4149
	RUSSIA	RELU SIGMOID	95.2979 95.3972	99.7821 100.807	70.9362 76.8771	80.1133 81.0473	79.2595 95.2673	107.301 84.3352	86.2218 73.5401	69.7298 103.034	91.0856 82.7388	87.3098 82.0058	87.7416 78.0391	107.4 81.9525	85.1455 77.6814	81.1854 83.255	92.0956 93.1311	85.2412 97.675	67.0613 75.8037	81.9816 84.6255	73.0174 94.0349
	USA	RELU SIGMOID	78.9712 103.27	90.1113 99.9637	92.6613 103.134	79.535 103.253	87.5491 101.314	78.8601 104.781	91.0289 108.239	77.012 102.881	98.555 103.615	76.9741 104.916	80.1679 100.909	78.4418 104.45	85.4196 103.521	85.1016 100.273	77.9844 105.056	82.0147 104.82	89.2 105.736	81.2374 106.77	80.2273 105.383
	BRAZIL	RELU SIGMOID	1.11931 0.96741	1.24364 0.98369	0.97976 0.98638	1.30385 0.98303	1.161 0.9827	1.438 1.02129	0.81432 0.95084	0.92186 0.97501	1.07407 0.96841	0.84573 0.97858	1.12139 0.98984	0.98184 0.96238	1.55693 1.00141	0.98386 1.01045	1.16197 0.9743	1.02955 0.99556	1.16474 0.99519	1.04502 0.99721	1.58385 0.95728
	INDIA	RELU SIGMOID	0.977747 0.99463	1.18654 1.01197	0.90954 0.98627	1.06693 0.99006	1.34137 0.99066	1.40625 0.98918	0.968892 0.99762	1.21094 0.9941	1.08835 1.00276	1.02578 1.01779	1.52676 0.98739	1.13308 0.99456	0.975048 0.999	1.04481 0.9863	1.66116 1.01953	1.07933 0.98924	1.38724 0.9956	0.986694 1.01146	2.20579 0.99293
SC	PERU	RELU SIGMOID	1.09625 0.96717	1.02121 0.99273	0.87718 0.98264	4.4338 1.03174	0.97561 1.01671	0.80825 0.98461	0.99054 0.99398	1.14587 0.96433	1.42069 0.97791	1.08379 1.00871	1.01706 0.985	1.39407 0.99055	0.9886 1.08581	0.97379 1.04718	1.21628 0.96657	1.02416 1.11203	0.72383 1.03948	1.25074 0.98315	0.91492 1.00464
	RUSSIA	RELU SIGMOID	1.0079 1.07728	1.00675 1.02118	1.20391 1.01594	1.06976 1.07212	1.07859 1.02862	0.99717 1.07816	1.03164 1.01919	1.24853 1.09911	1.01942 1.00804	1.0302 1.09832	0.97732 1.06707	0.9975 1.0825	1.03409 1.03633	1.03909 1.03759	1.01707 1.08686	1.03837 1.05412	1.36952 1.02368	0.95725 1.05898	1.16561 1.06665
	USA	RELU SIGMOID	0.9888 1.00149	0.9969 0.99614	1.09219 1.00131	1.0629 1.00226	1.00995 0.99527	1.03637 0.99691	0.8733 0.99806	1.0008 1.00076	0.95227 0.99792	0.95102 1.00126	1.08725 0.99548	1.05108 0.99829	1.08557 0.99999	1.04472 0.99597	1.01361 0.99812	1.0067 0.99694	0.90157 0.99887	0.96334 1.00112	1.01143 0.99826

(continued on next page)

Table 5	(continued).

	Dataset	Activation function	DB2	DB3	DB4	DB5	DB6	DB7	DB8	HAAR	COIF2	COIF3	COIF4	COIF5	SYM2	SYM3	SYM4	SYM5	SYM6	SYM7	SYM8
	BRAZIL	RELU SIGMOID	0.08559 0.02659	0.1195 0.01804	0.02917 0.01606	0.179 0.0137	0.11151 0.0137	0.22603 0.03232	0.13476 0.02805	0.05 0.02994	0.04002 0.01714	0.10994 0.01426	0.09842 0.01223	0.02155 0.01919	0.28417 0.02637	0.02041 0.03034	0.10572 0.01715	0.02291 0.01713	0.11002 0.01683	0.07137 0.01853	0.26182 0.023
MD	INDIA	RELU SIGMOID	0.02753 0.0141	0.12248 0.01554	0.04724 0.01944	0.08296 0.01118	0.14849 0.00987	0.19416 0.01149	0.01795 0.00398	0.11059 0.01423	0.06899 0.01143	0.01916 0.024	0.21536 0.01252	0.08258 0.00816	0.02984 0.01065	0.02992 0.02246	0.29014 0.02045	0.05693 0.00841	0.20527 0.00846	0.01678 0.01353	0.42751 0.01011
MD	PERU	RELU SIGMOID	0.06544 0.02484	0.01833 0.01258	0.09554 0.01431	0.62868 0.02826	0.01717 0.01822	0.1452 0.00902	0.01621 0.00747	0.08752 0.02604	0.1948 0.01561	0.04347 0.01425	0.03273 0.01241	0.19848 0.00732	0.02236 0.06236	0.02138 0.03832	0.12813 0.02241	0.02839 0.07847	0.20699 0.03356	0.10809 0.01271	0.0611 0.01018
	RUSSIA	RELU SIGMOID	0.00945 0.05422	0.00489 0.01475	0.13455 0.0113	0.04389 0.05319	0.04645 0.02112	0.00236 0.05672	0.02665 0.01298	0.15373 0.06685	0.01341 0.00527	0.01991 0.07106	0.02508 0.0495	0.00379 0.0598	0.02759 0.02517	0.05492 0.02685	0.01163 0.06305	0.02259 0.03802	0.20199 0.01776	0.03632 0.04162	0.09387 0.04897
	USA	RELU SIGMOID	0.01398 0.00775	0.00928 0.01485	0.08973 0.0075	0.05032 0.00806	0.01443 0.00904	0.03817 0.00528	0.11563 0.00357	0.00646 0.00687	0.04583 0.00688	0.04948 0.00794	0.07428 0.0108	0.05157 0.0081	0.07628 0.00896	0.04119 0.0142	0.017 0.00435	0.00908 0.00525	0.09367 0.00527	0.03023 0.0054	0.01502 0.00646
	BRAZIL	RELU SIGMOID	1.9592 1.98615	1.51638 1.43143	1.65758 1.62054	1.61344 2.02656	1.56344 1.65035	1.19301 1.27011	1.35594 1.54103	0.16029 0.1628	1.6354 2.45645	1.54353 2.09644	1.25457 1.6881	1.21928 1.53025	1.52869 1.97211	1.44633 1.3593	1.94341 2.3996	2.79724 2.84463	1.7816 2.12371	0.86485 1.10525	1.34554 1.81776
IMCE	INDIA	RELU SIGMOID	0.03022 0.02995	1.18593 1.20692	1.46971 1.59181	1.85715 2.09763	2.69832 2.87518	2.75105 3.7112	3.67076 3.60436	0.24736 0.02981	2.86583 3.22094	2.63142 2.9384	2.79089 2.82077	2.31862 2.74866	1.238 1.20943	1.29772 1.24715	2.8215 4.04946	1.07686 1.16252	3.1414 3.38315	0.899256 1.05892	2.28136 3.28908
LIVISE	PERU	RELU SIGMOID	2.70754 3.05547	1.84011 2.12135	1.15015 1.69593	1.47043 2.05716	2.76412 2.55036	1.18878 2.28687	1.58895 2.12045	0.08235 0.12124	3.84676 4.10484	3.41821 4.12302	1.64768 2.05402	1.42215 1.5896	1.62038 2.89882	2.23494 2.07387	3.40041 4.95309	2.19123 2.20615	3.43757 3.42778	1.54283 1.98968	1.72623 2.75955
	RUSSIA	RELU SIGMOID	1.16522 1.162	0.96089 1.01433	1.22561 1.33827	2.01942 1.86986	3.1303 3.03096	4.25083 4.07778	3.17265 3.25323	0.01567 0.01326	4.2269 4.69482	3.78776 3.50167	2.76609 3.04166	2.88787 2.64205	1.0765 1.17759	0.99987 1.01077	5.37363 6.9593	2.20785 2.11957	5.1298 4.93047	0.55564 0.4034	4.04187 4.13115
	USA	RELU SIGMOID	0.96104 1.10998	0.80102 0.81694	0.79092 1.02027	1.84075 2.00281	2.68277 3.18338	2.13947 2.94843	1.40724 1.3748	0.02383 0.02485	4.32197 6.90076	4.01089 4.01421	2.17031 2.71294	1.50677 2.09892	0.77241 1.11762	0.56761 0.75341	7.45131 11.9694	2.17607 3.04973	5.97374 6.31992	0.42201 0.55929	3.11836 4.22307
	BRAZIL	RELU SIGMOID	0.04451 0.01771	0.09382 0.01187	0.01115 0.01073	0.10572 0.01106	0.06462 0.01151	0.13931 0.01418	0.09455 0.02445	0.04437 0.01518	0.0324 0.01686	0.07689 0.01265	0.04903 0.00923	0.01254 0.01945	0.1655 0.01235	0.01134 0.01224	0.06126 0.01435	0.01344 0.01042	0.06249 0.01053	0.04064 0.0098	0.17966 0.02158
NAF	INDIA	RELU SIGMOID	0.01002 0.00391	0.064 0.0056	0.04576 0.00642	0.04389 0.00525	0.12445 0.00488	0.13439 0.00526	0.01541 0.00285	0.07959 0.00403	0.03337 0.00349	0.01235 0.00738	0.17074 0.00608	0.05174 0.00409	0.01091 0.00338	0.02033 0.00631	0.188728 0.00786	0.030152 0.00534	0.124176 0.00357	0.00612 0.00531	0.28217 0.00406
INAE	PERU	RELU SIGMOID	0.04041 0.0161	0.0116 0.00481	0.06801 0.00868	0.50116 0.01404	0.01168 0.00784	0.10072 0.00778	0.00857 0.00382	0.05935 0.0176	0.1489 0.01059	0.03795 0.00518	0.01291 0.00732	0.13999 0.00495	0.01067 0.03612	0.01272 0.02067	0.08361 0.01591	0.01082 0.04602	0.16127 0.01716	0.10153 0.00852	0.04048 0.00359
	RUSSIA	RELU SIGMOID	0.005 0.0331	0.00326 0.00967	0.07888 0.00744	0.03077 0.03094	0.03499 0.01294	0.00142 0.03335	0.01387 0.0088	0.09521 0.04201	0.00911 0.00405	0.01401 0.04137	0.00974 0.02893	0.00128 0.03517	0.01522 0.01621	0.02195 0.0167	0.0079 0.03681	0.01758 0.02365	0.13401 0.01079	0.02421 0.02559	0.06768 0.02877
	USA	RELU SIGMOID	0.00545 0.00154	0.00269 0.00209	0.03761 0.00157	0.02748 0.00157	0.00432 0.00225	0.01576 0.00152	0.06236 0.00106	0.00174 0.00179	0.02278 0.00156	0.02229 0.00127	0.03677 0.00217	0.02149 0.00129	0.03528 0.00141	0.01912 0.0021	0.0059 0.0014	0.00321 0.00154	0.0469 0.00122	0.01695 0.00116	0.0049 0.00123

Evaluators	Dataset	Activation function	DB2	DB3	DB4	DB5	DB6	DB7	DB8	HAAR	COIF2	COIF3	COIF4	COIF5	SYM2	SYM3	SYM4	SYM5	SYM6	SYM7	SYM8
	BRAZIL	RELU SIGMOID	7 9	5 4	12 18	14 17	4 13	13 12	15 6	8 16	11 5	17 15	16 14	10 3	1 19	3 10	2 7	9 8	19 2	6 11	18 1
DMCD	INDIA	RELU SIGMOID	10 8	4 11	2.5 9	9 5	7 16	17 3	6 2	14 12	16 6.5	18 19	11 4	13 15	8 6.5	19 14	2.5 18	5 1	12 17	15 10	1 13
KIVISE	PERU	RELU SIGMOID	11 15	12 17	17 4	4 12	8 5	16 14	15 13	2 10	6 3	1 2	7 16	19 8	9 11	10 18	13 6	3 19	14 1	5 7	18 9
	RUSSIA	RELU SIGMOID	3 10	11 7	14 12	18 15	12 4	10 2	4 1	2 17	9 11	7 19	8 8	19 9	13 18	1 14	16 3	17 5	15 16	6 6	5 13
	USA	RELU	4	15 19	11 13	18 12	3	9	6	7 15	12 7.5	19 16	8 10	13 7.5	16 14	14 17	5	1	17 11	2	10
AVERAGE RAN	К	bidinoib	9.5	10.5	11.25	12.4	8.1	9.8	6.9	10.3	8.7	13.3	10.2	11.65	11.55	12	7.85	7.2	12.4	7.1	9.3
	BRAZIL	RELU SIGMOID	7 9	5 4	12 18	14 17	4 13	13 12	15 6	8 16	11 5	17 15	16 14	10 3	1 19	3 10	2 7	9 8	19 2	6 11	18 1
	INDIA	RELU SIGMOID	10 8	4 11	2.5 9	9 6	7 16	17 2.5	6 2.5	14 12	16 6	18 19	11 4	13 16	8 6	19 14	2.5 18	5 1	12 16	15 10	1 13
SSE/SST	PERU	RELU SIGMOID	11 15	12 17	17 4	4 12	8 5	16 14	15 13	2 10	6 3	1 2	7 16	19 8	9 11	10 18	13 6	3 19	14 1	5 7	18 9
	RUSSIA	RELU SIGMOID	3 10	11 7	14 12	18 15	12 4	10 2	4 1	2 17	9 11	7 19	8 8	19 9	13 18	1 13	16 3	17 5	15 16	6 6	5 14
	USA	RELU SIGMOID	4 17.5	15 19	11 13.5	18 11.5	2.5 8.5	9 2	6 1	7 15	12 8.5	19 16	8 8.5	13 8.5	16 13.5	14 17.5	5 6	1 3.5	17 11.5	2.5 3.5	10 5
AVERAGE RAN	К		9.45	10.5	11.3	12.45	8	9.75	6.95	10.3	8.75	13.3	10.05	11.85	11.45	11.95	7.85	7.15	12.35	7.2	9.4
	BRAZIL	RELU SIGMOID	8 9	5 1	12 19	14 18	4 11	13 12	15 5	7 17	11 4	17 14	16 15	10 6.5	1 16	3 10	2 6.5	9 8	19 3	6 13	18 2
	INDIA	RELU SIGMOID	9 5	4 10	1 9	8 7	7 15	17 4	6 3	14 11	16 8	18 19	11 2	13 13	10 6	19 16	3 18	5 1	12 14	15 12	2 17
MAE	PERU	RELU SIGMOID	11 16	12 17	17 4	4 11	8 5	16 14	14 13	2 10	6 3	1 2	7 15	18 8	9 12	10 18	13 7	3 19	15 1	5 6	19 9
	RUSSIA	RELU SIGMOID	3 10	11 7	14 12	18 15	12 4	9 2	4 1	2 17	10 11	8 19	6 8	19 9	13 18	1 13	16 3	17 5	15 16	7 6	5 14
	USA	RELU SIGMOID	4 19	15 16	10 10	18 8.5	3 12	8 2	6 1	9 17	12 12	19 18	11 8.5	13 5	17 12	14 15	5 7	1 6	16 14	2 4	7 3
AVERAGE RAN	К		9.4	9.8	10.8	12.15	8.1	9.7	6.8	10.6	9.3	13.5	9.95	11.45	11.4	11.9	8.05	7.4	12.5	7.6	9.6
	BRAZIL	RELU SIGMOID	7 9	5 4	12 18	14 17	4 13	13 12	15 6	8 16	11 5	17 15	16 14	10 3	1 19	3 10	2 7	9 8	19 2	6 11	18 1
- 2	INDIA	RELU SIGMOID	10 8	4 11	2 9	9 6	7 16	17 2.5	6 2.5	14 12	16 6	18 19	11 4	13 16	8 6	19 14	3 18	5 1	12 16	15 10	1 13
R2	PERU	RELU SIGMOID	11 15	12 17	17 4	4 12	8 5	16 14	15 13	2 10	6 3	1 2	7 16	19 8	9 11	10 18	13 6	3 19	14 1	5 7	18 9
	RUSSIA	RELU SIGMOID	3 10	11 7	14 12	18 15	12 4	10 2	4 1	2 17	9 11	7 19	8 8	19 9	13 18	1 13	16 3	17 5	15 16	6 6	5 14
	USA	RELU SIGMOID	4 17.5	15 19	11 13.5	18 11.5	2.5 8.5	9 2	6 1	7 15	12 8.5	19 16	8 8.5	13 8.5	16 13.5	14 17.5	5 6	1 3.5	17 11.5	2.5 3.5	10 5
AVERAGE RAN	К		9.45	10.5	11.25	12.45	8	9.75	6.95	10.3	8.75	13.3	10.05	11.85	11.45	11.95	7.9	7.15	12.35	7.2	9.4
	BRAZIL	RELU SIGMOID	8 16	14 9	2 6	16 5	12 7	17 15	15 19	6 13	5 14	13 8	9 1	3 17	19 10	1 12	10 11	4 4	11 2	7 3	18 18
DCND	INDIA	RELU SIGMOID	2 7	12 15	9 16	10 12	14 9	16 11	5 1	13 8	8 4	3 18	17 13	11 5	4 3	6 17	18 19	7 10	15 2	1 14	19 6
FJINK	PERU	RELU SIGMOID	9 14	2 4	12 9	19 12	3 10	15 7	1 1	11 15	17 11	8 5	7 6	16 3	4 18	5 17	13 13	6 19	18 16	14 8	10 2
	RUSSIA	RELU SIGMOID	4 14	3 4	17 2	14 13	15 6	2 15	9 3	18 18	6 1	8 19	7 12	1 16	11 7	13 8	5 17	10 9	19 5	12 10	16 11
	USA	RELU SIGMOID	4 12	2 19	17 14	14 13	5 16	9 8	19 1	1 15	11 10	12 6	15 17	13 9	16 11	10 18	7 5	3 7	18 3	8 2	6 4
AVERAGE RAN	к		9	8.4	10.4	12.8	9.7	- 11.5	7.4	11.8	8.7	- 10	10.4	9.4	10.3	10.7	- 11.8	7.9	- 10.9	-	11

Ranks obtained using 9 performance evaluations for the countries using WCRVFL (Best results are bolded).

(continued on next page)

B.B.
Hazarika
and
D.
Gupta /
' Applied
Soft
Computing
Journal
96
(2020)
106626

	BRAZIL	RELU SIGMOID	10 4	15 11	4 12	16 10	12 9	17 19	1 1	3 7	9 5	2 8	11 13	5 3	18 17	6 18	13 6	7 15	14 14	8 16	19 2
	INDIA	RELU SIGMOID	4 11	12 17	1 1	8 6	14 7	16 4	2 13	13 9	10 15	6 18	17 3	11 10	3 14	7 2	18 19	9 5	15 12	5 16	19 8
SC	PERU	RELU SIGMOID	13 3	10 10	3 5	19 15	6 14	2 7	8 11	14 1	18 4	12 13	9 8	17 9	7 18	5 17	15 2	11 19	1 16	16 6	4 12
	RUSSIA	RELU SIGMOID	6 14	5 4	17 2	14 13	15 6	3 15	10 3	18 19	8 1	9 18	2 12	4 16	11 7	13 8	7 17	12 9	19 5	1 10	16 11
	USA	RELU SIGMOID	6 18	7 4	19 17	16 19	10 1	13 5	1 8	8 14	4 7	3 16	18 2	15 11	17 13	14 3	12 9	9 6	2 12	5 15	11 10
AVERAGE RAN	K		8.9	9.5	8.1	13.6	9.4	10.1	5.8	10.6	8.1	10.5	9.5	10.1	12.5	9.3	11.8	10.2	11	9.8	11.2
	BRAZIL	RELU SIGMOID	8 15	14 10	4 5	16 2.5	13 2.5	17 19	15 16	6 17	5 8	11 4	9 1	2 12	19 14	1 18	10 9	3 7	12 6	7 11	18 13
ND	INDIA	RELU SIGMOID	4 13	13 15	7 16	11 8	14 5	15 10	2 1	12 14	9 9	3 19	17 11	10 2	5 7	6 18	18 17	8 3	16 4	1 12	19 6
MD	PERU	RELU SIGMOID	10 13	3 6	12 9	19 15	2 11	15 3	1 2	11 14	16 10	8 8	7 5	17 1	5 18	4 17	14 12	6 19	18 16	13 7	9 4
	RUSSIA	RELU SIGMOID	4 14	3 4	17 2	13 13	14 6	1 15	10 3	18 18	6 1	7 19	9 12	2 16	11 7	15 8	5 17	8 9	19 5	12 10	16 11
	USA	RELU SIGMOID	4 11	3 19	17 10	13 13	5 16	9 5	19 1	1 8	11 9	12 12	15 17	14 14	16 15	10 18	7 2	2 3	18 4	8 6	6 7
AVERAGE RAN	К		9.6	9	9.9	12.35	8.85	10.9	7	11.9	8.4	10.3	10.3	9	11.7	11.5	11.1	6.8	11.8	8.7	10.9
	BRAZIL	RELU SIGMOID	13 1	5 5	8 8	14 9	9 13	3 14	7 19	1 2	18 17	15 12	10 15	6 11	12 6	4 7	17 16	19 4	16 18	2 3	11 10
	INDIA	RELU SIGMOID	2 14	5 11	8 2	9 5	12 15	18 3	17 7	1 1	14 19	13 17	11 9	10 4	6 8	7 13	19 16	4 12	16 18	3 6	15 10
LMSE	PERU	RELU SIGMOID	15 6	9 3	3 7	6 8	12 12	11 17	8 13	1 1	17 16	18 14	5 10	2 11	14 5	7 4	19 19	10 9	16 18	4 2	13 15
	RUSSIA	RELU SIGMOID	5 5	4 4	7 7	8 8	11 11	15 15	13 13	1 1	17 17	14 14	12 12	10 10	6 6	3 3	19 19	9 9	18 18	2 2	16 16
	USA	RELU SIGMOID	7 13	6 5	5 8	10 14	14 9	11 3	8 7	1 1	17 18	16 15	12 10	9 6	4 12	3 4	19 17	13 19	18 16	2 2	15 11
AVERAGE RAN	К		8.1	5.7	6.3	9.1	11.8	11	11.2	1.1	17	14.8	10.6	7.9	7.9	5.5	18	10.8	17.2	2.8	13.2
	BRAZIL	RELU SIGMOID	8 16	14 8	1 5	16 6	12 7	17 12	15 19	7 14	5 15	13 11	9 1	3 17	18 10	2 9	10 13	4 3	11 4	6 2	19 18
	INDIA	RELU SIGMOID	2 5	12 14	10 17	9 10	15 9	16 11	5 1	13 6	8 3	4 18	17 15	11 8	3 2	6 16	18 19	7 13	14 4	1 12	19 7
NAE	PERU	RELU SIGMOID	9 14	4 3	12 10	19 12	5 8	14 7	1 2	11 16	17 11	8 5	7 6	16 4	2 18	6 17	13 13	3 19	18 15	15 9	10 1
	RUSSIA	RELU SIGMOID	4 14	3 4	17 2	14 13	15 6	2 15	8 3	18 19	6 1	9 18	7 12	1 16	10 7	12 8	5 17	11 9	19 5	13 10	16 11
	USA	RELU SIGMOID	6 10.5	2 16	17 13.5	14 13.5	4 19	8 9	19 1	1 15	13 12	12 5	16 18	11 6	15 8	10 17	7 7	3 10.5	18 3	9 2	5 4
AVERACE DAN	K		8 85	8	10.45	12 65	10	11.1	74	12	91	10.3	10.8	93	93	10.3	12.2	8 2 5	11.1	79	11

Table 6 (continued).EvaluatorsDataset

Activation function

DB2

DB3 DB4

DB5

DB6

DB7

DB8

HAAR

COIF2

COIF3

COIF4

COIF5

SYM2

SYM3

SYM4

SYM5

SYM6

SYM7

SYM8

 R^2 values obtained by SVR, RVFL and the best WCRVFL models for the reported countries.

Evaluators	SVR	RVFL		Best WCRVFL		
		RELU	Sigmoid	RELU	Sigmoid	
BRAZIL INDIA PERU RUSSIA USA	0.99711 0.93156 0.92535 0.99744	0.97965 0.99905 0.99889 0.99929	0.99949 0.99995 0.99726 0.99942	0.99913 0.99982 0.9996 0.99927	0.99945 0.99996 0.99988 0.99928	
USA	0.99225	0.99992	0.99994	0.99997	0.9999	

Table 8

RMSE values obtained by SVR, RVFL and the best WCRVFL models for the reported countries.

Evaluators	SVR	RVFL		Best WCRVFL			
		RELU	Sigmoid	RELU	Sigmoid		
BRAZIL	0.08584	0.11573	0.00699	0.00787	0.00619		
INDIA	0.18848	0.05224	0.00189	0.00349	0.00156		
PERU	0.18303	0.08209	0.05809	0.00452	0.00247		
RUSSIA	0.02281	0.01997	0.0344	0.00513	0.00508		
USA	0.04927	0.05115	0.00119	0.00087	0.00073		

Table 9

Ranks obtained by SVR, RVFL and the best WCRVFL models based on R^2 (Best average rank is bolded).

Country	SVR	RVFL		Best WCRVFL		
		RELU	Sigmoid	RELU	Sigmoid	
BRAZIL	4	5	1	3	2	
INDIA	5	4	2	3	1	
PERU	5	3	4	2	1	
RUSSIA	5	2	1	4	3	
USA	5	4	3	2	1	
Average rank	4.8	3.6	2.2	2.8	1.6	

where the best rank is observed in SYM5 and HAAR respectively. To validate the prediction performance of the proposed WCRVFL network, its prediction performance is compared with the conventional SVR and RVFL models. For comparison, we have used the best WCRVFL model for each country based on R^2 and RMSE. The results are shown in Tables 7 and 8 based on R^2 and RMSE respectively. It is noticeable from Tables 7 and 8 that the proposed WCRVFL model shows the best performance in 3 and 5 cases respectively out of the total 5 cases based on R^2 and RMSE respectively. Further a statistical analysis is carried out based on the average ranks of the reported models that are tabulated in Tables 9 and 10 based on R^2 and RMSE respectively.

4.1.2.1. Friedman test with post-hoc analysis. From Table 9, the null hypothesis can be formulated as:

$$\chi_F^2 = \frac{12 \times 5}{5 \times 6} \left[4.8^2 + 3.6^2 + 2.2^2 + 2.8^2 + 1.6^2 - \frac{5 \times 6^2}{4} \right] = 12.48$$

,
$$F_F = \frac{(5-1) \times 12.48}{5 \times (5-1) - 12.48} = 6.6383.$$

 F_F is distributed to (5-1) and $(5-1) \times (5-1) = 16$ degrees of freedom. The critical value C_V for F_F is 3.007 for $\alpha = 0.05$. Since $F_F > C_V$ therefore the null hypothesis can be rejected. Therefore, we can proceed with the post-hoc Nemenyi test to pairwise compare the models. According to Demšar [30], the critical difference (CD) considering p = 0.10 may be calculated as:

$$CD = 2.49\sqrt{\frac{5 \times (5+1)}{6 \times 5}} = 2.49$$

It is revealed from the test that the average rank difference between the best-proposed model, i.e., WCRVFL sigmoid activation function with SVR is 3.2 > CD, hence it can be concluded that WCRVFL shows significantly better performance compared to SVR based on R². It can be also observed from Table 9 that WCRVFL shows the best performance in 3 out of 5 cases.

Moreover, from Table 10, the null hypothesis can be expressed as:

$$\chi_F^2 = \frac{12 \times 5}{5 \times 6} \left[4.4^2 + 4.2^2 + 3^2 + 2.4^2 + 1^2 - \frac{5 \times 6^2}{4} \right] = 15.52$$

Table 10

Ranks obtained by SVR, RVFL and the best WCRVFL models based on RMSE (Best average rank is bolded).

Country	SVR	RVFL		Best WCRVFL		
		RELU	Sigmoid	RELU	Sigmoid	
BRAZIL	4	5	2	3	1	
INDIA	5	4	2	3	1	
PERU	5	4	3	2	1	
RUSSIA	4	3	5	2	1	
USA	4	5	3	2	1	
Average rank	4.4	4.2	3	2.4	1	

$$F_F = \frac{(5-1) \times 15.52}{5 \times (5-1) - 15.52} = 13.8571$$

 F_F is distributed to(5 – 1) and (5 – 1) × (5 – 1) = 16 degrees of freedom. The critical value C_V for F_F is 3.007 for α = 0.05. Since $F_F > C_V$ therefore the null hypothesis can be rejected. Therefore, we can proceed with the posthoc Nemenyi test to do a pairwise comparison of the models. It is noticeable from Table 10 that WCRVFL shows the best performance in 5 out of 5 cases. It is noticeable from the test that the average rank difference between WCRVFL sigmoid with SVR and RVFL RELU are 3.4 and 3.2 which are greater than the CD. Hence one can say that WCRVFL shows significantly better performance compared to SVR and RVFL RELU models.

Further, the 60 days ahead daily prediction values are plotted in Fig. 5 for the best RVFL model and the best WCRVFL model as a form of a line graph. The best models are chosen based on the best R² values obtained from Table 7. It is distinct from the graph that the Brazil graph (RVFL model) crosses the USA graph (RVFL model) after 7 September which indicates that Brazil might cross the total number of infected people compared to the USA after 7th September. Also, it is observable that the Brazil line (RVFL model) crosses the USA (WCRVFL model) line after 25th August which suggests that Brazil might cross the total number of infected people compared to the USA after 25th September. However, downfall in the line of RUSSIA (Using both RVFL and WCRVFL) and PERU (Using both RVFL and WCRVFL) is noticeable. The line for INDIA (Both RVFL and WCRVFL) shows an increase in the number of infected people on a daily basis. Furthermore, 60 days ahead of daily future prediction values that are obtained by both RVFL and WCRVFL models are tabulated in Table 11.

Additionally, the original data and the 60 days ahead forecast using the best RVFL model based on R^2 value are portrayed in Fig. 6. The following implications can be obtained from Fig. 6 for different countries using the RVFL networks:

- a. Brazil: It is observed that the prediction curve grows exponentially which indicates that the number of infected people grows exponentially.
- b. India: Similar to the Brazil curve, the India curve also shows exponential growth.
- c. Peru: Growth can be noticed in the graph; however, it is not exponential.
- d. Russia: It is noticeable from the 60 days ahead prediction curve that the limb gradually decreases from mid-August 2020.
- e. USA: Similar to the Brazil curve the USA curve also shows exponential growth in the number of infected people.

Also, the original and the 60 days ahead prediction line graphs for the best WCRVFL network are shown in Fig. 7 for Brazil, India, Peru, Russia and the USA respectively. The following implications can be drawn from these figures:

 Brazil: It is observed that the graph grows almost exponentially for both WCRVFL RELU Network and WCRVFL Sigmoid Network.

Fig. 5. 60 days ahead of the day by day prediction from 11th July to 8th September of corresponding best RVFL models and the best WCRVFL models.

Fig. 6. 60 days ahead prediction using the best RVFL Network for (a) Brazil, (b) India, (c) Peru, (c) Russia and (e) USA.

Fig. 7. 60 days ahead prediction for (a) Brazil, (b) India, (c) Peru, (d) Russia and (e) USA respectively using the best WCRVFL network.

Fig. 8. Prediction performance over the testing sample for POPULATION dataset.

Predicted values obtained by the RVFL models and the best WCRVFL (Based on R^2) on a daily basis.

Date	BRAZIL (People)		INDIA (People)		PERU (People)		RUSSIA (People)		USA (People)		
	Best RVFL	Best WCRVFL	Best RVFL	Best WCRVFL	Best RVFL	Best WCRVFL	Best RVFL	Best WCRVFL	Best RVFL	Best WCRVFL	
11-Jul-20	1801460	1786560	821387	821407	319922	318930	713694	711629	3178460	3160420	
12-Jul-20	1851040	1809310	849552	850092	323512	321150	719971	715547	3240570	3205060	
13-Jul-20	1902600	1839830	878250	879132	327096	323844	726103	719289	3302990	3256440	
14-Jul-20	1955550	1881990	907786	909006	330668	326723	732089	722825	3367780	3314290	
15-Jul-20	2010400	1929160	938431	940148	334259	329417	737919	725923	3432990	3372640	
16-Jul-20	2067330	1972040	970213	972614	337876	331925	743589	728546	3499520	3427530	
17-Jul-20	2126120	2008220	1002980	1006250	341499	334421	749094	730801	3566700	3480340	
18-Jul-20	2186/00	2042970	1036/40	1040960	345135	336971	754429	/32/49	3635330	3534870	
19-Jul-20	2249140	2082780	10/1590	10/6800	348/88	339521	/59589	/34362	3704950	3592800	
20-Jul-20	2313490	2129000	110/6/0	1113900	352457	342014	/645/0	/35599	3775860	3652660	
21-Jul-20	23/9//0	2177620	1144860	1152330	356140	344457	769368	/36453	384/810	3/122/0	
22-Jul-20	2448000	2224140	1183320	1192120	359840	346877	//39//	/36934	3921030	3771130	
23-Jul-20	2518230	226/940	1223010	1233290	363337	349285	//8393	/3/048	3995420	3830420	
24-Jul-20	2590500	2312080	1205010	12/5880	36/290	351672	782611	736781	40/1110	3891360	
25-Jui-20	2664870	2359710	1305920	1319950	371040	354031	780626	736120	4148030	3953950	
20-Jui-20	2/41590	2411090	1304530	1412740	374609	250220	790454	733500	4220200	401/400	
27-Jui-20	2620150	2403900	1394370	1412/40	282400	20021	794051	7000	4303790	4061120	
28-Jui-20	2901150	2510100	1441110	1401370	2062200	262190	200560	720/12	4360070	4145290	
29-Jul-20 20 Jul 20	2070250	2507720	1529740	1564290	200069	265400	800303	725410	4408510	4210470	
21 Jul 20	2159460	2020300	1520760	1619490	202021	267590	805502	720050	4552550	4270500	
01 Aug 20	22/0210	2073330	1642280	1674450	207914	260752	800204	723344	4037390	4344420	
01-Aug-20	2249210	2733320	1606410	1722270	401719	271002	8108070	715014	4724050	4412740	
02-Aug-20	2429610	2792300	1752270	1702200	401718	27/010	010057	711/25	4012030	4401770	
04-Aug-20	3537/30	2011300	1810180	185/300	409590	376100	81/611	706481	4901510	4531050	
05-Aug-20	3639070	2972450	1860050	1018/50	413558	378164	816080	701077	5085030	4622000	
06-Aug-20	37/36/0	3035730	1031350	108/830	417549	380207	817300	695206	5179150	40547880	
00-Aug-20	3851200	3100990	1994540	2053510	421562	387777	818266	688852	5274880	4707000	
07-Aug-20	3961840	3167570	2050780	212/580	421502	38/22/	81805/	682008	5372250	4041520	
09-Aug-20	4075690	3235060	2127590	2198100	429658	386192	819371	674672	5471300	4992970	
10_Aug_20	4192800	3303650	2127330	2774180	423038	388131	819510	666843	5572040	5070140	
11_Aug_20	4313280	3373860	2269320	2352890	437849	390043	819367	658513	5674520	5148410	
12-Aug-20	4437200	3446030	2343160	2434330	441982	391929	818939	649678	5778760	5227750	
13-Aug-20	4564690	3520030	2419420	2518590	446139	393787	818219	640334	5884810	5308170	
14-Aug-20	4695820	3595540	2498610	2605770	450322	395620	817205	630483	5992680	5389710	
15-Aug-20	4830710	3672410	2581190	2695970	454530	397429	815891	620120	6102410	5472400	
16-Aug-20	4969500	3750790	2666610	2789290	458765	399216	814273	609241	6214050	5556280	
17-Aug-20	5112270	3830970	2754590	2885850	463026	400979	812346	597835	6327610	5641330	
18-Aug-20	5259180	3913120	2844330	2985760	467315	402717	810107	585898	6443150	5727560	
19-Aug-20	5410270	3997160	2936920	3089120	471630	404424	807551	573426	6560680	5815000	
20-Aug-20	5565700	4082950	3032760	3196070	475974	406101	804674	560415	6680260	5903680	
21-Aug-20	5725590	4170450	3131130	3306720	480345	407744	801471	546865	6801920	5993610	
22-Aug-20	5890080	4259790	3232180	3421200	484745	409357	797938	532768	6925690	6084820	
23-Aug-20	6059300	4351130	3335780	3539650	489174	410944	794071	518121	7051620	6177310	
24-Aug-20	6233400	4444560	3442500	3662210	493632	412502	789867	502924	7179740	6271110	
25-Aug-20	6412470	4540050	3552970	3789000	498120	414038	785320	487172	7310090	6366230	
26-Aug-20	6596650	4637570	3667190	3920190	502638	415558	780428	470866	7442710	6462710	
27-Aug-20	6786150	4737110	3785110	4055920	507187	417051	775186	454010	7577650	6560550	
28-Aug-20	6981080	4838790	3907000	4196360	511766	418515	769591	436601	7714950	6659790	
29-Aug-20	7181590	4942710	4033460	4341650	516377	419957	763638	418634	7854640	6760430	
30-Aug-20	7387860	5048930	4163600	4491980	521019	421384	757324	400105	7996780	6862500	
31-Aug-20	7600080	5157460	4297000	4647510	525694	422786	750645	381017	8141400	6966030	
01-Sep-20	7818420	5268300	4433690	4808430	530401	424157	743597	361371	8288550	7071030	
02-Sep-20	8043020	5381500	4576450	4974920	535141	425501	736177	341172	8438290	7177530	
03-Sep-20	8274040	5497140	4723370	5147180	539914	426821	728382	320424	8590640	7285550	
04-Sep-20	8511710	5615300	4872560	5325400	544721	428120	720207	299118	8745670	7395120	
05-Sep-20	8756210	5736030	5025460	5509790	549562	429399	711650	277257	8903420	7506240	
06-Sep-20	9007750	5859380	5185610	5700570	554437	430654	702707	254836	9063930	7618960	
07-Sep-20	9266510	5985360	5353210	5897950	559348	431885	693376	231856	9227270	7733280	
08-Sep-20	9532680	6114040	5526650	6102170	564293	433091	683653	208334	9393470	7849250	

- b. India: An exponential growth can be observed in the prediction curve of India.
- c. Peru: In case of WCRVFL RELU as well as the WCRVFL Sigmoid network, the increase in the number of infected people can be observed.
- d. Russia: A gradually decreasing curve can be observed from the last days of July 2020 for both cases.
- e. USA: Similar to the Brazil curve, the USA curve also shows growth in the number of infected people if not exponential for both; WCRVFL RELU and WCRVFL Sigmoid networks.

4.2. Experiment on time series dataset

Further, to test proposed WCRVFL's applicability in application areas with time-series datasets, we have experimented on a real world time series dataset. The dataset, called "POPULATION", is originally a collection of the total population in India from 1961 to 2019, i.e., a total collection of 60 samples. Out of which, 70% of the total samples are used for training while the rest are used for testing. The dataset is obtained from https://data.worldbank.org/. The experimental results of WCRVFL model in time series prediction are tabulated in Table 12. Further, the best WCRVFL model is compared with the conventional RVFL and SVR models which are shown in Table 13. Moreover, the prediction performance plot is shown in Fig. 8. It is noticeable that WCRVFL could achieve convincing prediction performance in time-series prediction for the reported dataset.

5. Conclusion

We studied the prediction ability of the RVFL network to model and forecast the spread of the COVID-19 pandemic. The non-stationarity of the time-series datasets is handled by using numerous types of mother wavelets. It is noticeable that the RVFL network that is embedded in the wavelet provides consistent prediction performance. The 60 days ahead prediction is also employed by using both, RVFL and the proposed WCRVFL. Overall it can be concluded that the wavelet-based hybrid models might be helpful for society so that early prevention can be taken. However, our research has limitations like the optimal number of nodes in the hidden layer, tuning the scaling of the uniform randomization range, accurate data availability etc. The RVFL network presently uses the only samples of the time-series data for prediction. A prospective future direction to add more attributes in the time series data so that maximum information can be gathered from the data, as well as the prediction performance, may be improved. In addition to that Lagrangian twin RVFL model can be coupled with wavelets and wavelet coupled ARIMA models are suggested for forecasting the COVID-19 spread worldwide.

xperimental results obtained b	the WCRVFL model for POPULATION dataset for 9 different evaluate	rs (Best results are	bolded).
--------------------------------	--	----------------------	----------

Evaluators	Activation	DB2	DB3	DB4	DB5	DB6	DB7	DB8	HAAR	COIF2	COIF3	COIF4	COIF5	SYM2	SYM3	SYM4	SYM5	SYM6	SYM7	SYM8
RMSE	RELU SIGMOID	0.00103 0.00099	0.00086 0.00068	0.00126 0.00055	0.00325 0.00074	0.00222 0.00117	0.00347 0.00208	0.00614 0.00156	0.00112 0.0029	0.00482 0.00197	0.00254 0.00154	0.00444 0.00106	0.00088 0.00098	0.00685 0.001	0.00132 0.00064	0.00232 0.00187	0.00349 0.00282	0.00202 0.00147	0.00271 0.00131	0.00185 0.00186
MAE	RELU	0.00069	0.00064	0.00113	0.00275	0.00162	0.0028	0.00507	0.00094	0.00379	0.00201	0.00373	0.0006	0.00549	0.00102	0.00158	0.00249	0.00139	0.00204	0.00138
	SIGMOID	0.00077	0.00047	0.00043	0.00055	0.00072	0.00133	0.00106	0.00237	0.00124	0.00098	0.00073	0.00065	0.00076	0.00048	0.00107	0.00187	0.00086	0.00085	0.00117
R ²	RELU	0.99989	0.99987	0.99987	0.99993	0.99988	0.9998	0.99993	0.98779	0.99996	0.99995	0.99995	0.99993	0.99992	0.99987	0.99995	0.99987	0.99989	0.99985	0.99987
	SIGMOID	0.99989	0.99987	0.99987	0.99993	0.99988	0.9998	0.99993	0.98779	0.99996	0.99995	0.99995	0.99993	0.99992	0.99987	0.99995	0.99987	0.99989	0.99985	0.99987
SSE/SST	RELU	0.00014	0.0001	0.00021	0.00141	0.00066	0.0016	0.00502	0.00017	0.00309	0.00086	0.00263	0.0001	0.00624	0.00023	0.00072	0.00162	0.00055	0.00098	0.00046
	SIGMOID	0.00013	0.00006	0.00004	0.00007	0.00018	0.00058	0.00032	0.00113	0.00051	0.00032	0.00015	0.00013	0.00013	0.00006	0.00046	0.00106	0.00029	0.00023	0.00046
PSNR	RELU	107.859	109.479	106.111	97.9012	101.186	97.3242	92.3692	107.138	94.472	100.046	95.1753	109.25	91.422	105.733	100.827	97.2766	102.007	99.4579	102.791
	SIGMOID	108.211	111.49	113.359	110.708	106.756	101.772	104.269	98.8794	102.261	104.371	107.638	108.298	108.153	111.949	102.704	99.1293	104.772	105.814	102.722
SC	RELU	1.00109	0.99948	0.9989	0.99343	0.99679	1.00674	0.98787	0.99872	0.99087	0.99521	0.99111	0.99946	0.9867	1.00228	0.99682	0.994	0.99756	0.99529	0.99679
	SIGMOID	0.99846	1.00048	1.00042	1.00099	0.99963	0.99694	0.99871	0.99439	0.99737	0.99824	1.00068	0.99989	0.99839	1.00059	0.99887	0.99572	0.99954	1.00203	0.99744
MD	RELU SIGMOID	0.00317 0.00175	0.00183 0.00199	0.00194 0.00108	0.00674 0.00195	0.00571 0.00397	0.00875 0.0065	0.01255 0.0045	0.00193 0.00454	0.01178 0.00661	0.00671 0.00515	0.0098 0.00257	0.00236 0.00298	0.01072 0.00176	0.00273 0.00181	0.0076 0.00658	0.00771 0.00877	0.00568 0.00468	0.00533 0.00447	0.00421 0.00593
LMSE	RELU	0.65231	0.69812	0.25447	0.49999	0.92683	1.07027	1.15043	0.00044	0.65701	0.55	0.63212	0.92651	1.45533	0.76255	0.93499	1.10498	0.85122	1.16987	0.85343
	SIGMOID	1.85611	1.79023	0.1693	0.34123	0.66743	1.00152	1.23496	0.00218	0.5866	0.52683	0.53954	0.59205	1.84227	1.62474	0.75179	1.34249	0.62161	2.21191	0.61719
NAE	RELU	0.00079	0.00073	0.0013	0.00315	0.00186	0.00321	0.00582	0.00108	0.00434	0.00231	0.00427	0.00068	0.00632	0.00118	0.00181	0.00286	0.00159	0.00234	0.00158
	SIGMOID	0.00089	0.00054	0.00049	0.00064	0.00082	0.00152	0.00121	0.0027	0.00142	0.00113	0.00083	0.00075	0.00087	0.00055	0.00123	0.00214	0.00098	0.00098	0.00134

Prediction error based on RMSE and R^2 for the POPULATION dataset (Best results are bolded).

Evaluators	SVR	RVFL		Best WCRVFL			
		RELU	Sigmoid	RELU	Sigmoid		
RMSE	0.02386	0.00088	0.0010	0.00086	0.00055		
R ²	0.99958	0.99951	0.99995	0.99996	0.99996		

CRediT authorship contribution statement

Barenya Bikash Hazarika: Formal analysis, Validation, Visualization, Writing - editing. **Deepak Gupta:** Conceptualization, Investigation, Writing - original draft.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

- L. Yan, H.T. Zhang, J. Goncalves, Y. Xiao, M. Wang, Y. Guo, X.... Huang, An interpretable mortality prediction model for COVID-19 patients, Nat. Mach. Intell. (2020) 1–6.
- [2] S.J. Fong, G. Li, N. Dey, R.G. Crespo, E. Herrera-Viedma, Finding an accurate early forecasting model from small dataset: A case of 2019-ncov novel coronavirus outbreak, 2020b, arXiv preprint arXiv:2003.10776.
- [3] H. Herlawati, COVID-19 spread pattern using support vector regression, PIKSEL: Penelitian Ilmu Komputer Sistem Embedded and Logic 8 (1) (2020) 67–74.
- [4] M.A. Al-Qaness, A.A. Ewees, H. Fan, M. Abd El Aziz, Optimization method for forecasting confirmed cases of COVID-19 in China, J. Clin. Med. 9 (3) (2020) 674.
- [5] S.F. Ardabili, A. Mosavi, P. Ghamisi, F. Ferdinand, A.R. Varkonyi-Koczy, U. Reuter, et al., Covid-19 outbreak prediction with ML. Available at SSRN 3580188, 2020.
- [6] L. Wang, J. Li, S. Guo, N. Xie, L. Yao, Y. Cao, J... Ji, Real-time estimation and prediction of mortality caused by COVID-19 with patient information based algorithm, Sci. Total Environ. (2020) 138394.
- [7] A.M. Javid, X. Liang, A. Venkitaraman, S. Chatterjee, Predictive analysis of COVID-19 time-series data from Johns Hopkins University, 2020, arXiv preprint arXiv:2005.05060.
- [8] D. Gupta, B.B. Hazarika, M. Berlin, Robust regularized extreme learning machine with asymmetric huber loss function, Neural Comput. Appl. (2020) 1–28.
- [9] G. Pinter, I. Felde, A. Mosavi, P. Ghamisi, R. Gloaguen, COVID-19 pandemic prediction for Hungary; a hybrid machine learning approach, Mathematics 8 (6) (2020) 890.
- [10] N. Zheng, S. Du, J. Wang, H. Zhang, W. Cui, Z. Kang, et al., Predicting covid-19 in china using hybrid AI model, IEEE Trans. Cybern. (2020).

- [11] A. Tomar, N. Gupta, Prediction for the spread of COVID-19 in India and effectiveness of preventive measures, Sci. Total Environ. (2020) 138762.
- [12] M.H.D.M. Ribeiro, R.G. da Silva, V.C. Mariani, L. dos Santos Coelho, Shortterm forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil, Chaos Solitons Fractals (2020) 109853.
- [13] D. Rafiq, S.A. Suhail, M.A. Bazaz, Evaluation and prediction of COVID-19 in India: A case study of worst hit states, Chaos Solitons Fractals (2020) 110014.
- [14] S.J. Fong, G. Li, N. Dey, R.G. Crespo, E. Herrera-Viedma, Composite Monte Carlo decision making under high uncertainty of novel coronavirus epidemic using hybridized deep learning and fuzzy rule induction, Appl. Soft Comput. (2020a) 106282.
- [15] P. Mahalle, A.B. Kalamkar, N. Dey, J. Chaki, G.R. Shinde, Forecasting models for Coronavirus (COVID-19): A survey of the State-of-the-Art, 2020.
- [16] S. Lalmuanawma, J. Hussain, L. Chhakchhuak, Applications of machine learning and artificial intelligence for covid-19 (SARS-CoV-2) pandemic: A review, Chaos Solitons Fractals (2020) 110059.
- [17] T. Chakraborty, I. Ghosh, Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis, Chaos Solitons Fractals (2020) 109850.
- [18] V.K.R. Chimmula, L. Zhang, Time series forecasting of COVID-19 transmission in Canada using LSTM networks, Chaos Solitons Fractals (2020) 109864.
- [19] K. Roosa, Y. Lee, R. Luo, A. Kirpich, R. Rothenberg, J.M. Hyman, G... Chowell, Real-time forecasts of the COVID-19 epidemic in China from february 5th to february 24th, 2020, Infect. Disease Model. 5 (2020) 256–263.
- [20] Z.R. Tarar, S.R. Ahmad, I. Ahmad, Z. Majid, Detection of sediment trends using wavelet transforms in the upper indus river, Water 10 (7) (2018) 918.
- [21] B.B. Hazarika, D. Gupta, M. Berlin, Modeling suspended sediment load in a river using extreme learning machine and twin support vector regression with wavelet conjunction, Environ. Earth Sci. 79 (2020) 234.
- [22] Y.H. Pao, G.H. Park, D.J. Sobajic, Learning and generalization characteristics of the random vector functional-link net, Neurocomputing 6 (2) (1994) 163–180.
- [23] L. Zhang, P.N. Suganthan, A comprehensive evaluation of random vector functional link networks, Inform. Sci. 367 (2016) 1094–1105.
- [24] P. Borah, D. Gupta, Unconstrained convex minimization based implicit Lagrangian twin random vector functional-link networks for binary classification (ULTRVFLC), Appl. Soft Comput. 81 (2019) 105534.
- [25] L. Tang, Y. Wu, L. Yu, A non-iterative decomposition-ensemble learning paradigm using RVFL network for crude oil price forecasting, Appl. Soft Comput. 70 (2018) 1097–1108.
- [26] R. Katuwal, P.N. Suganthan, M. Tanveer, Random vector functional link neural network based ensemble deep learning, 2019, arXiv preprint arXiv: 1907.00350.
- [27] T. Rajaee, S.A. Mirbagheri, V. Nourani, A. Alikhani, Prediction of daily suspended sediment load using wavelet and neurofuzzy combined model, Int. J. Environ. Sci. Technol. 7 (1) (2010) 93–110.
- [28] R.C. Deo, M.K. Tiwari, J.F. Adamowski, J.M. Quilty, Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model, Stoch. Environ. Res. Risk Assess. 31 (5) (2017) 1211–1240.
- [29] M. Zeinolabedini, M. Najafzadeh, Comparative study of different waveletbased neural network models to predict sewage sludge quantity in wastewater treatment plant, Environ, Monit, Assess, 191 (3) (2019) 163.
- [30] J. Demšar, Statistical comparisons of classifiers over multiple data sets, J. Mach. Learn. Res. 7 (Jan) (2006) 1–30.