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ABSTRACT

Thiostrepton, a macrocyclic thiopeptide antibiotic,
inhibits prokaryotic translation by interfering with
the function of elongation factor G (EF-G). Here,
we have used 70S ribosome binding and GTP hy-
drolysis assays to study the effects of thiostrepton
on EF-G and a newly described translation factor,
elongation factor 4 (EF4). In the presence of
thiostrepton, ribosome-dependent GTP hydrolysis is
inhibited for both EF-G and EF4, with IC(50) values
equivalent to the 70S ribosome concentration
(0.15 kM). Further studies indicate the mode of
thiostrepton inhibition is to abrogate the stable bind-
ing of EF-G and EF4 to the 70S ribosome. In support
of this model, an EF-G truncation variant that does
not possess domains IV and V was shown to pos-
sess ribosome-dependent GTP hydrolysis activity
that was not affected by the presence of
thiostrepton (>100kM). Lastly, chemical footprinting
was employed to examine the nature of ribosome
interaction and tRNA movements associated with
EF4. In the presence of non-hydrolyzable GTP, EF4
showed chemical protections similar to EF-G and
stabilized a ratcheted state of the 70S ribosome.
These data support the model that thiostrepton
inhibits stable GTPase binding to 70S ribosomal
complexes, and a model for the first step of
EF4-catalyzed reverse-translocation is presented.

INTRODUCTION

The bacterial ribosome is a major target for several classes
of natural antibiotics, which inhibit nearly all steps of
translation (1–3). In the past decade, several atomic reso-
lution X-ray crystal structures of various antibiotics bound

to the ribosome have been elucidated and have assisted in
demystifying the mode of action of many of these trans-
lational inhibitors (4–9). Not surprisingly, it has been
revealed that many antibiotics inhibit translation by
binding to functionally important regions of ribosomal
RNA (rRNA) such as the peptidyltransferase center
(5,8), the decoding center (4) and the exit tunnel (6,9).
Another target for several antibiotics is the translation
factor binding site on the large (50S) ribosomal subunit,
which includes the ribosomal components responsible for
stimulating the GTPase activity of several translation
factors (10,11). The factor binding site consists of the uni-
versally conserved sarcin-ricin loop (SRL) of 23S rRNA as
well as the ‘GTPase associated center’, which in
Escherichia coli consists of a conserved region of 23S
rRNA bound to ribosomal protein L11 and the pentamer-
ic complex L10�(L7/12)4 (7,12,13).

Thiostrepton is a well-studied antibiotic belonging to
the thiopeptide family of highly modified macrocyclic
peptides produced as secondary metabolites by actinomy-
cetes within the genus Streptomyces (14,15). Thiostrepton
exerts its inhibitory function by binding to the ribosome
within the GTPase-associated center, in a cleft formed
between the N-terminal domain (NTD) of L11 and 23S
rRNA loops H44 and H45 (7,16–19). Due to the low
aqueous solubility of thiostrepton (20,21), there has trad-
itionally been low interest in its clinical use. However, the
observation that thiostrepton inhibits the growth of the
malarial parasite Plasmodium falciparum (22–25) and
induces apoptosis in breast cancer cells (26,27) has
greatly renewed interest in the therapeutic potential of
thiostrepton. Additionally, the total synthesis of
thiostrepton has been completed (28–31), and it has been
discovered that fragments of thiostrepton retain biological
activity (32).

Although there is evidence that thiostrepton inhibits steps
in the initiation (20,33) and termination (34) phases of
translation, the most studied effect of thiostrepton is its
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inhibition of elongation factor G (EF-G) function on the
ribosome (20,35–42). The mechanism by which thiostrepton
inhibits EF-G function is actively debated. Results from
early investigations led to the formation of the ‘classical’
model of thiostrepton action, which holds that
thiostrepton prevents ribosome-dependent GTP hydroly-
sis by EF-G via inhibition of stable binding of EF-G to the
ribosome (35–37,43). This was the predominant model for
the mode of action of thiostrepton until the results of
rapid kinetic experiments suggested that thiostrepton
allows binding and GTP hydrolysis by EF-G, but inhibits
the subsequent steps of phosphate release and factor
turnover (41). Support for this model has been provided
by similar time-resolved kinetic experiments (42,44) as well
as a cryo-electron microscopy (cryo-EM) structure pur-
porting to show EF-G bound to the 70S�thiostrepton
complex (45). However, a subsequent report provided
renewed support for the notion that thiostrepton prevents
ribosome binding and GTP hydrolysis by EF-G altogether
(20), in agreement with recent structural evidence which
suggested that the presence of thiostrepton is incompatible
with stable binding of EF-G (7).

In this report, we demonstrate that thiostrepton is a
potent inhibitor of GTPase activity and stable ribosome
binding by EF-G as well as by a recently characterized
elongation factor with high homology to EF-G, elongation
factor 4 (EF4), also known as LepA (46). Interestingly, an
EF-G mutant lacking domains 4 and 5 is insensitive to
thiostrepton in both ribosome binding and GTPase
activity. Implications of the presented results for the
mode of action of thiostrepton are discussed, and attempts
are made to reconcile our results with seemingly contra-
dictory non-equilibrium studies. Additionally, results
of chemical footprinting analyses of the EF4�ribosome
complex is described, which suggest that EF4 stabilizes a
novel conformational state of tRNA bound to the ribo-
some. Based on these data and previously reported obser-
vations, a model for the first step of EF4-catalyzed reverse
translocation is presented.

MATERIALS AND METHODS

Reagents

Guanosine-50-triphosphate (GTP) and guanosine-50-
(b,g-imino)triphosphate (GDPNP) were purchased from
Sigma; guanosine-50-[g-32P]-triphosphate was purchased
from American Radiolabeled Chemicals, Inc.; de-
oxythymidine-50-[a-32P]-triphosphate was purchased
from Perkin Elmer; thiostrepton, Sephacryl S-300 HR
resin and Ni-NTA His-Bind resin were purchased from
Fisher Scientific.

Cloning and Mutagenesis

The open reading frames for EF-G and EF4 (LepA) were
amplified by PCR from the genomic DNA of E. coli
MRE600. The primers used for cloning EF-G were 50-G
GTGGTGGATCCATCGCTCGTACAACACCCATCG
C-30 and 50-GGTGGTGGTCTCGAGTTAATGCCGGT
GAGCAACGTTACTCGG-30 for the N- and C-termini,
respectively. The primers used for cloning EF4 were 50-G

GTGGTGGATCCATGAAGAATATACGTAACTTTT
CGATCATAGC-30 and 50-GGTGGTGGTCTCGAGTT
ATTTGTTGTCTTTGCCGACGTGCAGAATGGC-30

for the N- and C-termini, respectively. Each open reading
frame was cloned into a pET27 derivative (pSV281) that
contained a TEV protease-cleavable His6 N-terminal tag
using BamHI (50) and XhoI (30) restriction sites. The
plasmid for the EF-G(�4,5) C-terminal truncation
mutant was constructed by introducing a stop codon fol-
lowing domain 3 (Gly 484) using the primer 50-GGTGGT
GGTGAGCTCGCTTACCGTGAAACTATCCGC
CAG-30 and then inserting the resultant reading frame
into the pSV281 vector in the same manner as EF-G
and EF4.

Preparation of GTPases and ribosomes

All GTPases (EF-G, EF4, and EF-G�4,5) were expressed
in E. coli BL21(DE3) cells by the addition of 0.5mM
IPTG and grown at 15�C for 16–18 h with shaking. Cells
were pelleted at 7000 rpm in a GS3 rotor at 4�C, resus-
pended in GTPase lysis buffer [50 mM Tris–HCl (pH 7.5),
60mM NH4Cl, 7mM MgCl2, 15mM imidazole, 25%
glycerol, 6mM b-mercaptoethanol], and lysed by sonic-
ation. The soluble fraction was clarified by centrifugation
at 18 000 rpm at 4�C in an SS34 rotor. Each GTPase was
subsequently purified by chelated nickel affinity chroma-
tography as described previously (47,48). Purified frac-
tions of each GTPase were subsequently dialyzed into
GTPase storage buffer [50 mM Tris–HCl (pH 7.5),
60mM NH4Cl, 7mM MgCl2, 50% glycerol, 1mM
dithiothreitol].
Affinity-tagged 70S ribosomes were produced and

purified from the E. coli JE28 cell line as described previ-
ously (49). Briefly, JE28 cells were grown at 37�C with
shaking to mid-log phase and subsequently placed on ice
and cooled to 4�C. The cells were harvested and resus-
pended in JE28 lysis buffer [20 mM Tris–HCl (pH 7.5),
10mM MgCl2, 150mM KCl, 30mM NH4Cl, 5mM imid-
azole, 1mM DTT]. Resuspended cells were subsequently
lysed by sonication, and the soluble fraction was isolated
by centrifugation at 18 000 rpm at 4�C in an SS34 rotor.
The supernatant was filtered through a 0.2 mm pore size
syringe filter and subsequently purified by chelated nickel
affinity chromatography [wash buffer:20mM Tris–HCl
(pH 7.5), 10mM MgCl2, 150mM KCl, 500mM NH4Cl,
5mM imidazole, 1mM DTT; elution buffer: 20mM Tris–
HCl (pH 7.5), 10mM MgCl2, 150mM KCl, 30mM
NH4Cl, 150mM imidazole, 1mM DTT]. Following puri-
fication, ribosomes were dialyzed into JE28 salt wash
buffer [20 mM Tris–HCl (pH 7.5), 10mM MgCl2,
150mM KCl, 500mM NH4Cl, 1mM DTT], pelleted
twice at 150 000g (60Ti rotor, 57 400 rpm, 2 h, 4�C), and
resuspended in ribosome storage buffer [50 mM Tris–HCl
(pH 7.5), 30mM NH4Cl, 7mM MgCl2, 25% glycerol].
Purified, concentrated ribosomes were flash frozen in
liquid nitrogen and stored at �80�C.

GTP hydrolysis assays

The rates of GTP hydrolysis by various GTPases were
assayed using g-32P-labeled GTP according to previous
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studies (50). Ribosome functional complexes were
assembled in reaction buffer [90 mM K-HEPES (pH
7.5), 100mM NH4Cl, 20mM Mg(OAc)2] with the follow-
ing components: 70S ribosomes (0.2 mM), GTPase
(0.5 mM) and [g-32P]-GTP (10 mM). For time course
assays, thiostrepton (10 mM) was pre-incubated with 70S
at 37�C for 10min. In single time-point dose–response
assays, the thiostrepton concentration was varied while
all other reaction components remained constant as
listed above. Following GTP hydrolysis, the reaction
was quenched by adding 20 ml of the reaction mixture to
380ml of 5% (w/v) activated charcoal resuspended in
50mM NaH2PO4. Inorganic phosphate was isolated
from the reaction mixture by centrifugation at 7000 g for
10min, and 50 ml of the supernatant was added to 200 ml
Optima Gold scintillation fluid. The amount of
32P-labeled phosphate was quantified with a Wallac
Trilux 1450 Microbeta scintillation counter.

Ribosome binding assays

The binding of GTPases to 70S ribosomes in the GTP
state was assayed using a size exclusion/centrifugation
protocol. Ribosome functional complexes were con-
structed in GTPase reaction buffer with 1.0 mM 70S,
4.0mM GTPase, 1mM GDPNP and 10 mM thiostrepton,
and the reactions were incubated at 37�C for 20min. For
each reaction, 60 ml was added to 500 ml Sephacryl-300 HR
resin that had been pre-equilibrated in GTPase binding
buffer with 1mM GDPNP in a microfuge spin column.
The column was immediately centrifuged at 2000 rpm
for 2min. Unbound GTPase was retained within the
resin while 70S ribosomal complexes completely elu-
ted through the column matrix. The flow-through
was collected, precipitated with cold acetone, and sub-
sequently analyzed with 10% (v/v) Tris–glycine
SDS–PAGE gels.

Chemical footprinting

Ribosome functional complexes were formed as previous-
ly described (48,51) and were initially formed by the
addition of 70S ribosomes (0.5 mM), mRNA 32 (50-GGC
AAGGAGGUA AAAAUGUUUAAAGGUAAAUCU
ACU-30, 1.0mM) and N-Ac-Phe-tRNAPhe (1.0 mM) in
reaction buffer (80mM HEPES·KOH, pH 7.8; 100mM
NH4Cl; 20mM MgCl2; 1mM dithiothreitol) and was
incubated for 20min at 37�C. The P site-bound tRNA
was then deacylated by the addition of puromycin
(1mM), which was incubated for an additional 20min at
37�C. The resulting complex was then incubated with
either EF-G or EF4 in the presence of either GDP or
GDPNP for 20min at 37�C before chemical modification.
Chemical footprinting procedures were performed as pre-
viously described (52). Ribosome functional complexes
were reacted with dimethyl sulfate for 8min at 37�C, the
modified rRNA was purified by phenol/chloroform ex-
traction, and resultant rRNA template was used for sub-
sequent primer extension analysis.

RESULTS

Thiostrepton inhibits the ribosome-stimulated GTPase
activity of EF-G and EF4

The effect of thiostrepton on the ribosome-dependent
GTPase activity of translation factors EF-G and EF4
was evaluated using purified 70S ribosomes and transla-
tion factors from E. coli. In vitro GTPase reactions were
carried out employing [g-32P]GTP, and GTPase activity
was measured by quantifying the amount of hydrolyzed
32Pi that remained in solution subsequent to activated
charcoal extraction, as a function of time (see ‘Materials
and Methods’ section). Experimental conditions were
designed to mimic those of previous thiostrepton investi-
gations (20,41,42), in order to facilitate a comparison of
our results with those of similar studies. A noteworthy
discrepancy is that we found thiostrepton to have poor
aqueous solubility when using conditions employed in a
previous report (100 mM thiostrepton in the presence
of 2% (v/v) DMSO) (41). Therefore, with the exception
of dose–response experiments in which the concentration
of thiostrepton was varied widely, thiostrepton was
utilized at a concentration of 10 mM in 2% (v/v) DMSO.

In agreement with the conventional view of translation-
al GTPases, the intrinsic GTPase activity of EF-G and
EF4 alone was very low, and the activity of these factors
was strongly stimulated by the presence of 70S ribosomes,
in which case the majority of available [g-32P]GTP
was hydrolyzed within the first 2min of the reaction
(Figure 1). However, when the GTPase activity of EF-G
and EF4 was examined upon reacting with 70S ribosomes
that were pre-incubated with 10 mM thiostrepton, a
striking reduction in the release of hydrolyzed 32Pi was
observed. In the presence of thiostrepton-treated ribo-
somes, the extent of GTP hydrolysis observed was com-
parable to that of the intrinsic activity of the factors alone,
suggesting that thiostrepton is a strong inhibitor of
multiple-round, ribosome-dependent GTP hydrolysis by
both EF-G and EF4. For EF-G, this result differs from
that of a previous study (41) in which thiostrepton caused
a notable decrease in the initial rate of GTP hydrolysis, yet
still allowed for the full extent of the reaction to occur.

To assess the relative potency of thiostrepton in the in-
hibition of GTPase activity of both EF-G and EF4, dose–
response experiments were performed. In these experi-
ments, the concentrations of 70S ribosomes (0.2 mM) and
translation factors (0.5 mM) were held constant while the
concentration of thiostrepton was varied, and the relative
extent of the GTPase reaction was measured after
allowing the GTPase reaction to proceed for 10min. For
reporting relative activities, the amount of 32Pi remaining
in solution in the absence of thiostrepton was assigned a
value of 1.0, and all subsequent data points were
normalized to this value. Titration curves are shown in
Figure 2, and were virtually identical for both EF-G and
EF4, resulting in an IC50 of �0.15mM for both factors
under these reaction conditions. When the concentration
of ribosomes greatly exceeded that of thiostrepton, the
extent of the multiple-turnover GTPase reaction
appeared unhindered by the presence of the antibiotic.
However, as the concentration of thiostrepton approached
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equimolarity with ribosomes (0.2 mM), GTPase activity is
rapidly suppressed, and when the thiostrepton concentra-
tion greatly exceeds that of ribosomes, the reaction is com-
pletely inhibited. These results suggest that a 1:1 molar
ratio of thiostrepton to ribosomes is sufficient for
complete inactivation of EF-G and EF4 GTP hydrolysis
activity, which is consistent with previous reports
(18,20).

Thiostrepton inhibits stable binding of EF-G�GDPNP and
EF4�GDPNP to the 70S ribosome

To investigate the mode of inhibition of thiostrepton, its
effect on the stable binding of both EF-G and EF4 in the
presence of a non-hydrolyzable analog of GTP (GDPNP)
to 70S ribosomes was assessed. Since it has been suggested
that equilibrium ribosome-binding experiments employing
ultracentrifugation may cause the premature dissociation
of weakly bound factors (53), we utilized an alternative
binding assay reliant on gel filtration, which allows for a
direct observation of binding without artifacts associated
with ultracentrifugation. Briefly, 70S ribosomes were incu-
bated with translation factors and the non-hydrolyzable
GTP analog, GDPNP, in the presence or absence of
thiostrepton. Ribosomal complexes were then applied to
a gel filtration resin, eluted from the resin by centrifuga-
tion, and analyzed by SDS–PAGE. Ribosomal complexes
eluted as expected, while unbound factors were retained
within the resin. Results of ribosome-binding experiments
using EF-G and EF4 are shown in Figure 3. Control
samples consisting solely of ribosomes or translation
factors were also subjected to this assay. Ribosomes in
the absence of EF-G or EF4 (Figure 3, lane 1) indicated
that there was no band present for the GTPase molecular
weight, while low molecular weight bands corresponding
to ribosomal proteins associated with the 70S were present.
When the gel filtration assay was performed with free
GTPase in the absence of ribosomes (Figure 3, lane 2), a
band for the GTPase molecular weight did not appear in

the SDS–PAGE gel, indicating that it was retained in the
resin. In the absence of thiostrepton, EF-G and EF4
clearly form stable complexes with the ribosome, as evi-
denced from the presence of the correct molecular weight
bands in the lanes containing 70S ribosomes and GDPNP.
In contrast to previously published reports based on fast
kinetic experiments that indicate transient binding of
EF-G to 70S�thiostrepton complexes (41,42,45), the pres-
ence of thiostrepton resulted in the inability of EF-G�
GDPNP to bind stably to the 70S ribosome, as indicated
by the absence of a band on the gel for EF-G. Similarly,
the binding of EF4�GDPNP to 70S ribosomes was in-
hibited by thiostrepton and did not result in the elution
of EF4 with 70S ribosomes in the GTP-state. These data
do not detect transient interactions and are therefore not
contradictory to previous kinetic data (41,42,45).

An EF-G mutant lacking domains 4 and 5 is insensitive to
the effects of thiostrepton on both GTPase activity and
ribosome binding

To evaluate the role of domains 4 and 5 of EF-G in the
mechanism of inhibition by thiostrepton, a mutant EF-G
construct lacking these domains (EF-G�4,5) was cloned,
expressed, purified and subjected to the GTPase activity
assays and ribosome binding experiments as described
above for wild-type EF-G and EF4.
Results of time-based multiple-turnover GTP hydroly-

sis experiments for EF-G�4,5 are shown in Figure 4.
Similar to full-length EF-G, the EF-G�4,5 construct
shows low intrinsic GTPase activity, but the presence of
70S ribosomes causes significant stimulation of GTP hy-
drolysis (although the ribosome-stimulated GTP hydroly-
sis activity of EF-G�4,5 is �2.5-fold slower than that of
full-length EF-G). Interestingly, in the presence of
thiostrepton, EF-G�4,5 shows no reduction in its
ribosome-dependent GTPase activity, as measured in the
time-based GTP hydrolysis assay (Figure 4A). Dose–
response experiments (Figure 4B) also indicate that this

Figure 1. Thiostrepton inhibition of ribosome-dependent multiple-turnover GTP hydrolysis. (A) EF-G and (B) EF4. Samples consisted of
GTPase+ribosomes (filled circle), GTPase+ribosomes+thiostrepton (open circle), GTPase alone (filled square) or ribosomes alone (filled
triangle). Reactions contained 0.5 mM GTPase and/or 0.2 mM ribosomes, as well as 10 mM [g-32P]GTP, 2% DMSO, and, where indicated, 10 mM
thiostrepton. Error bars represent the standard deviation from the mean for triplicate experiments.
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insensitivity to thiostrepton by EF-G�4,5 persists even
when the concentration of the antibiotic is 500-fold
greater than the ribosome concentration (0.2 mM ribo-
somes, 100 mM thiostrepton). As mentioned above,
thiostrepton was found to have poor aqueous solubility
at 100 mM and was insoluble at concentrations above
100mM, so it is possible that insoluble thiostrepton aggre-
gates may have contributed to the observed decrease in
GTPase activity by EF-G�4,5 in a physiologically irrele-
vant manner when thiostrepton was present at concentra-
tions above 100 mM (data not shown).
To assess whether the observed insensitivity of the

EF-G�4,5 deletion construct to thiostrepton is correlated
with a restored ability to bind ribosomes in the presence
of the antibiotic, gel filtration/SDS–PAGE binding ex-
periments were performed, as described above for full-
length EF-G and EF4. The results of these experiments
(Figure 4C) indicate that EF-G�4,5�GDPNP binds to
thiostrepton-treated 70S ribosomes to an extent which is
indistinguishable from the binding of EF-G�4,5�GDPNP
to untreated 70S ribosomes.

EF-G and EF4 bind to conserved bases in 23S rRNA and
stabilize ribosomal ratcheting

In order to assess the binding interface between EF4 and
the 70S ribosome, ribosome�tRNA�mRNA�GTPase
complexes were formed with a single, deacylated tRNA
bound to the 30S P site. Ribosomes containing a defined
mRNA sequence and N-acetyl-Phe-tRNAPhe bound to the
30S P site were reacted with the antibiotic puromycin,
which deacylates P site-bound tRNA, which allows for
the determination of tRNA binding sites in the 23S
rRNA (A, P or E) by chemical footprinting. The remain-
ing complex contains a single, deacylated tRNAPhe bound
to the 30S P site. The resultant complex was then reacted
with either EF-G or EF4 in the presence of GDPNP to
form stable complexes for chemical probing with dimethyl
sulfate.

Functional complexes were constructed in a reaction
buffer containing 20mM Mg2+ in the absence of
polyamines in order to maintain the P site-bound
tRNAPhe in the classical P/P state (48). As reported pre-
viously, addition of EF-G�GDPNP to this complex

Figure 2. Titration of thiostrepton concentration and its effect on ribosome-dependent GTP hydrolysis activity. (A) EF-G and (B) EF4. Plots
indicate the amount of GTP hydrolyzed (left ordinate axes) as well as percent residual GTPase activity (right ordinate axes) after 10min in the
presence of ribosomes and thiostrepton. Hundred percent activity corresponds to the amount of hydrolyzed GTP measured after 10min in the
absence of thiostrepton. Reactions contained 0.5 mM GTPase, 0.2 mM ribosomes, 10 mM [g-32P]GTP, 2% DMSO and thiostrepton (at concentrations
indicated on the abscissa). Error bars represent the standard deviation from the mean for triplicate experiments.

Figure 3. Effect of thiostrepton on stable binding of GTPases to the 70S ribosome. (A) EF-G and (B) EF4. Lanes: 1, ribosomes only; 2, GTPase
only; 3, ribosomes, GTPase and GDPNP; 4, ribosomes, thiostrepton, GTPase and GDPNP; 5, MW standards; 6, GTPase positive control.
Concentrations of components were: 1.0 mM ribosomes, 4.0 mM GTPase, 10 mM thiostrepton and 1mM GDPNP.
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stabilizes the hybrid P/E state (48). After reacting the 70S
ribosomal complex with EF-G and EF4, strong protec-
tions were observed at A2660 of the SRL in the presence
of GDPNP (Figure 5A, lanes 5 and 7, respectively). In
contrast to the strong SRL protections, the GAC was dif-
ferentially protected for EF-G and EF4, with EF-G dis-
playing a much stronger protection at A1067 and EF4
only displaying a modest protection (Figure 5B, lanes 5
and 7, respectively). These protection patterns suggest that
both EF-G and EF4 bind to the same conserved regions of
the 23S rRNA and likely have similar binding interfaces
between the 70S ribosome and each GTPase. Another
striking similarity in the chemical protection patterns of
EF-G and EF4 are observed at A702 of the intersubunit
bridge, B7a. In the presence of GDPNP, both EF-G and
EF4 cause an enhancement of chemical modification at
A702 (Figure 5C, lanes 5 and 7, respectively), a result
that was previously shown to be indicative of hybrid P/E
state formation (47,48). In contrast to this similarity, the
presence of EF4�GDPNP does not result in a protection
of C2394, a 23S base that is strongly protected in the
presence of hybrid P/E state tRNA (Figure 5D, lane 7).
EF-G, by comparison, strongly protects C2394 for the
identical 70S ribosome functional complex, as shown pre-
viously (Figure 5D, lane 5) (48). Lastly, the presence of

EF4�GDPNP causes an enhancement of modification at
C2556, a conserved 23S rRNA base in the 50S A-loop
(Figure 5E, lane 7).

DISCUSSION

The effect of thiostrepton on stable GTPase�ribosome
interactions

In an attempt to reconcile seemingly conflicting proposed
mechanisms of the mode of translational inhibition by the
thiopeptide antibiotic thiostrepton, we analyzed its effect
on multiple-turnover GTP hydrolysis and stable ribosome
binding by EF-G, an EF-G mutant lacking domains 4
and 5 (EF-G�4,5) and EF4, a recently discovered
GTPase elongation factor which bears strong structural
and functional similarities with EF-G (46). Our results
provide renewed support for the classical model of trans-
lational inhibition by thiostrepton, which proposes that
the presence of the antibiotic prevents the stable binding
of GTPase elongation factor EF-G, thus inhibiting
ribosome-dependent GTP hydrolysis and rendering the
factor non-functional. Additionally, we show that the
EF-G homolog EF4 is also strongly inhibited by

Figure 4. Deletion of domains 4 and 5 from EF-G results in insensitivity to thiostrepton. (A) Multiple turnover GTP hydrolysis. Samples consisted
of GTPase+ribosomes (filled circle), GTPase+ribosomes+thiostrepton (open circle), GTPase alone (filled square) or ribosomes alone (filled
triangle) (conditions as in Figure 1). (B) Effect of thiostrepton concentration (conditions as in Figure 2). (C) Effect of thiostrepton on EF-G�4,5
ribosome binding ability. Lanes: 1, ribosomes only; 2, GTPase only; 3, ribosomes, GTPase and GDPNP; 4, ribosomes, thiostrepton, GTPase and
GDPNP; 5, MW standards; 6, GTPase positive control (conditions as in Figure 3). Error bars represent the standard deviation from the mean for
triplicate experiments.
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thiostrepton, and propose that this is likely through a
mechanism similar to that of EF-G.
The current predominantly cited model for the mechan-

ism of inhibition of EF-G by thiostrepton, based primarily
on rapid kinetic analyses, holds that thiostrepton stabilizes
a conformation of the ribosome which is compatible
with EF-G binding and GTPase activation (41,42,44).
However, the results of GTP hydrolysis assays presented
here indicate that thiostrepton is a potent inhibitor of
ribosome-dependent GTP hydrolysis by EF-G and EF4,
which is in agreement with several studies that demon-
strate similar inhibition of ribosome-dependent multiple-
turnover EF-G GTP hydrolysis by thiostrepton
(20,35,39,40). Curiously, some investigations have shown
that, while thiostrepton slows GTP hydrolysis, the pres-
ence of the antibiotic still allows the reaction to proceed
to a significant extent, with reports of 50–100% of avail-
able GTP hydrolyzed within a 10min GTP hydrolysis ex-
periment, depending on reaction conditions (41,54).
Despite our attempts to replicate these results, we have
only observed strong inhibition of GTP hydrolysis by
thiostrepton, which persisted throughout the duration of
the experiments. Notably, when we attempted to replicate
experiments that showed the most dramatic level of GTP
hydrolysis in the presence of thiostrepton (41), we found
the antibiotic to have very poor solubility in the conditions
utilized in that study (100 uM thiostrepton in 2% DMSO).
Similar complications arose in other studies that have at-
tempted to replicate those results (20).
One implication of the commonly purported model for

thiostrepton inhibition of EF-G is that thiostrepton
inhibits turnover of the factor from the ribosome (41).
Therefore, this proposed EF-G�ribosome�thiostrepton
complex should be sufficiently stable to be observable
in solution equilibrium binding experiments. However,
we demonstrate that pre-incubation of ribosomes with
thiostrepton results in the inability of EF-G�GDPNP
and EF4�GDPNP to form stable complexes with
the ribosome. This is in line with previously reported
ultracentrifugation-based equilibrium binding

experiments, which also failed to show any detectable
stable binding of EF-G�GTP to the ribosome�
thiostrepton complex (20). However, those results were
challenged based on the argument that while the ribo-
some�thiostrepton complex may allow for EF-G
binding, its overall affinity for EF-G is likely reduced,
which could account for the dissociation of EF-G from
the ribosome�thiostrepton complex upon ultracentrifuga-
tion (53). Importantly, the gel filtration/SDS–PAGE
binding assay we employed did not require the use of
ultracentrifugation, in order to address these concerns.
Additionally, our results are consistent with an alignment
of EF-G [from a recent X-ray crystal structure of EF-G
bound to the 70S ribosome (53)] with the X-ray crystal
structure of the thiostrepton-bound 50S ribosomal subunit
(Figure 6) (7,53). This alignment suggests that the
presence of thiostrepton is incompatible with the forma-
tion of a stable EF-G�ribosome complex due to significant
steric clashing between thiostrepton and domain 5 of
EF-G. A model based on a similar alignment had been
previously presented, but employed lower resolution
cryo-EM data for modeling ribosome-bound EF-G coord-
inates into the ribosome�thiostrepton structure (7).
Regardless, a similar clash between thiostrepton and
domain 5 was also observed in the previous model. We
propose that this interaction is a key determinant of
thiostrepton inhibition of EF-G. Our observation that
deletion of domains 4 and 5 from EF-G enables the
binding and GTP hydrolysis by the factor is consistent
with this notion and also implies that the binding of
thiostrepton to the ribosome does not cause significant
peripheral conformational changes within the GTPase
factor-binding region at large. This is further substantiated
by the observation that release factor 3, a GTPase that
does not possess domain 5, does not show any inhibition
of ribosome-dependent GTPase activity using the time-
dependent conditions described herein (Supplementary
Data). Previous structural data indicate EF4 contains a
domain that is homologous to domain 5 of EF-G
(Figure 7) (55,56). Therefore, it is likely that a similar

Figure 5. Chemical footprinting of 70S ribosome·tRNAPhe ·GTPase·GDPNP complexes. (A and C), sequencing lanes; (K), unmodified rRNA; (1)
70S ribosomes and mRNA32; (2) 70S ribosomes, mRNA32 and N-Ac-Phe-tRNAPhe; (3) 70S ribosomes, mRNA32, N-Ac-Phe-tRNAPhe and puro-
mycin; (4) 70S ribosomes, mRNA32, N-Ac-Phe-tRNAPhe, puromycin and EF-G·GDP; (5) 70S ribosomes, mRNA32, N-Ac-Phe-tRNAPhe, puro-
mycin and EF-G·GDPNP; (6) 70S ribosomes, mRNA32, N-Ac-Phe-tRNAPhe, puromycin and EF4·GDP; (7) 70S ribosomes, mRNA32, N-Ac-
Phe-tRNAPhe, puromycin and EF4·GDPNP. (A) 23S rRNA sarcin-ricin loop (SRL, GTPase binding site); (B) 23S rRNA GTPase-associated center
(GAC); (C) 16S rRNA intersubunit bridge B7a; (D) 23S rRNA E site; (E) 23S rRNA A-loop.
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clash between thiostrepton and domain 5 of EF4 is re-
sponsible for the inhibition of ribosome binding and
GTP hydrolysis by that factor.

Although our results do not confirm the conclusions of
time-resolved experiments, these ostensibly disparate
proposed scenarios for thiostrepton inhibition of transla-
tion need not be mutually exclusive. Kinetic studies have
suggested that the binding of EF-G to the ribosome is a
two-step reaction, with thiostrepton allowing the initial
step but inhibiting the second, causing an estimated
10-fold overall reduction in EF-G�ribosome binding
affinity (42,44). Our results are compatible with the

observation that EF-G is able to transiently adopt this
proposed initial binding step in the presence of
thiostrepton. However, the results presented here, which
fail to demonstrate a stable EF-G�ribosome�thiostrepton
complex, suggest that this interaction is not stable under
physiological conditions. Interestingly, a structural model
based on cryo-EM has been reported which purports to
show EF-G bound to the ribosome�thiostrepton complex
(45). In that model, EF-G was found to adopt a novel
conformation in which domain 5 is significantly displaced
from its position as observed in the fusidic acid-stabilized,
post-translocation state, in which domain 5 makes
contacts with the GTPase-associated center of the riboso-
mal translation factor binding site (13,53). It is possible
that this cryo-EM model represents the initial labile state
of the proposed two-step binding model for EF-G and
that the conditions used in the cryo-EM sample prepar-
ation allowed for the observation of this otherwise
unstable conformation. Unfortunately, we are unable to
reconcile differences between our GTP hydrolysis experi-
ments and those of others, which show significant
multiple-turnover GTP hydrolysis activity in the presence
of thiostrepton. Therefore, further investigations will be
necessary to resolve these discrepancies. However, based
on the accumulated evidence of thiostrepton�ribo-
some�translation factor interactions, we propose that it
is implausible that thiostrepton inhibits factor turnover
on the ribosome.

EF4�ribosome interactions during reverse translocation

To further examine the nature of interactions between
EF4 and 70S ribosome in the GTP state, we employed
chemical footprinting to characterize the mode of binding.
The similarity in chemical protections for both EF4 and
EF-G in the presence of GDPNP suggests that both
GTPases bind to the same conserved rRNA regions in
their GTP state. Notably, EF4 appears to bind more
weakly to the 70S ribosome in comparison with EF-G as
evidenced by weaker chemical protections at the GAC
(Figure 5B) and due to the presence of a weaker band
for EF4 in the gel filtration assay (Figure 3B). This is
consistent with previously estimated KDvalues for EF4�
GDPNP binding to various ribosomal complexes of
�0.25–1 mM (57), which are considerably weaker than
the KD of �26 nM determined for EF-G�GTP binding
to a similar ribosomal complex (58).
Further chemical footprinting revealed that EF4�

GDPNP enhances the DMS modification of 16S A702
identically to the same complexes with EF-G�GDPNP.
This modification enhancement has previously been
shown to be associated with the hybrid P/E state of
ribosome-bound tRNA and ribosomal ratcheting
(47,48,59,60). Surprisingly, EF4�GDPNP did not protect
C2394 as is the case with EF-G. C2394 makes a Watson–
Crick basepair with the 30-CCA end of E site-bound
tRNA (61), and this result suggests that EF4�GDPNP
does not support hybrid P/E state tRNA conformation
when a single tRNA is bound to the 30S P site. Taken
together, these chemical footprinting data support a
model for the first step in EF4-catalyzed reverse

Figure 6. Alignment of the 50S�thiostrepton and 70S�EF-G X-ray
crystal structures. Structural alignment of X-ray crystal structures
(PDB entries 3CF5 and 2WRI) indicated significant steric clash
between domain V of EF-G (red) and ribosome-bound thiostrepton
(green). 23S rRNA is shown in gray and ribosomal protein L11 is
colored blue (7,53).

Figure 7. Superposition of EF-G and EF4. Structural alignment
reveals strong structural homology between domain V of EF-G (red,
PDB entry 1DAR) and the homologous domain in EF4 (green, PDB
entry 3CB4). The remainder of EF-G and EF4 is colored blue and
gray, respectively (55,56).
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translocation. In this model, EF4�GDPNP binding stabil-
izes a ratcheted conformation of the 70S ribosome that is
not associated with movement of tRNA from the classical
P/P state to the hybrid P/E state.
These data illustrate the significance of the E site to the

directionality of translocation. It was shown previously
that the presence of E-site tRNA is required for both
spontaneous (62,63) and EF4-catalyzed reverse transloca-
tion (46), likely because a tRNA must be bound to the 30S
P site in all translocation intermediate states. In contrast
to the E-site tRNA requirement for EF4, EF-G may sta-
bilize forward translocation by inducing E-site tRNA
release following GTP hydrolysis (48). In the absence of
the translocated E-site tRNA, reverse translocation would
not be thermodynamically favorable, and the resultant
complex would remain in the post-translocation state.
Previous studies indicate that the ratcheted state stabil-

ized by EF-G destabilizes the 30S P-site tRNA�mRNA
interaction and increases the propensity of various func-
tional complexes to mRNA back-slippage (48), a mechan-
ism that may also occur with other GTPases that stabilize
a ratcheted 70S conformation, such as EF4. This decrease
in P-site tRNA interaction is a likely requirement for
rapid, reverse translocation, as the interaction between
the 30S P site and the anticodon stem loop of tRNA is
the strongest interaction on the small subunit and must be
destabilized for movement of tRNA in the reverse direc-
tion (64), which would also likely require the presence of
an E-site tRNA for reverse translocation to the P site. We
hypothesize that the ratcheted state associated with
EF4�GDPNP stabilizes the hybrid ‘A/P’ and ‘P/E’ states
that represent a ‘pre-reverse-translocation’ conformation,
where one tRNA is bound to the 30S A site/50S P site (A/
P) and a second tRNA is bound to the 30S P site/50S E
site (P/E) simultaneously. Lastly, EF4�GDPNP enhances
the DMS modification of C2556, a conserved base in the
50S A-loop, which is an essential component of the
peptidyltransferase center and makes direct contacts with
A-site tRNA. According to a previous cryo-EM study of
the EF4�GDPNP complex, EF4 interacts directly with an
A-site tRNA during the process of reverse translocation
and stabilizes a newly characterized ‘A/L’ state of
ribosome-bound tRNA (57). The ‘A/L’ state tRNA inter-
acts directly with 23S helix 92, which consists of the
A-loop and C2556, and is proposed to represent an inter-
mediate during the reverse translocation mechanism (57).
Further data are needed to resolve whether the structural
results presented herein are coincident with the ‘A/L’ state
or resemble a structural complex that precedes ‘A/L’
formation.
In light of these observations, along with recent studies

which implicate EF4 as a GTPase that rescues stalled ribo-
somes (46,57,65), we hypothesize that EF4 recognizes a
70S state which harbors an aberrant E-site tRNA that
did not dissociate following EF-G-catalyzed forward
translocation, due to unfavorable conditions such as
high ionic strength or low temperature. Indeed, under con-
ditions of high magnesium concentration, the presence of
EF4 has been shown to increase the rate of protein syn-
thesis by 5-fold (65). Since high magnesium concentrations
stabilize ribosome-bound tRNAs in the classical states

(A/A, P/P and E/E) (48), it seems plausible that dissoci-
ation of a newly translocated E-site tRNA may be in-
hibited under such conditions, causing the adoption of
irregular E-site tRNA conformations which may then be
recognized by EF4.
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