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Abstract: The metabolism of melatonin in the central nervous system is of interest for several reasons. Melatonin enters 

the brain either via the pineal recess or by uptake from the blood. It has been assumed to be also formed in some brain  

areas. Neuroprotection by melatonin has been demonstrated in numerous model systems, and various attempts have  

been undertaken to counteract neurodegeneration by melatonin treatment. Several concurrent pathways lead to different 

products. Cytochrome P450 subforms have been demonstrated in the brain. They either demethylate melatonin to N-

acetylserotonin, or produce 6-hydroxymelatonin, which is mostly sulfated already in the CNS. Melatonin is deacetylated, 

at least in pineal gland and retina, to 5-methoxytryptamine. N
1
-acetyl-N

2
-formyl-5-methoxykynuramine is formed by  

pyrrole-ring cleavage, by myeloperoxidase, indoleamine 2,3-dioxygenase and various non-enzymatic oxidants. Its  

product, N
1
-acetyl-5-methoxykynuramine, is of interest as a scavenger of reactive oxygen and nitrogen species, mitochon-

drial modulator, downregulator of cyclooxygenase-2, inhibitor of cyclooxygenase, neuronal and inducible NO synthases. 

Contrary to other nitrosated aromates, the nitrosated kynuramine metabolite, 3-acetamidomethyl-6-methoxycinnolinone, 

does not re-donate NO. Various other products are formed from melatonin and its metabolites by interaction with reactive 

oxygen and nitrogen species. The relative contribution of the various pathways to melatonin catabolism seems to be  

influenced by microglia activation, oxidative stress and brain levels of melatonin, which may be strongly changed in  

experiments on neuroprotection. Many of the melatonin metabolites, which may appear in elevated concentrations  

after melatonin administration, possess biological or pharmacological properties, including N-acetylserotonin, 5-

methoxytryptamine and some of its derivatives, and especially the 5-methoxylated kynuramines. 

Keywords: Kynuramines, melatonin, 5-methoxytryptamine, N-acetylserotonin, reactive nitrogen species, reactive oxygen  
species, 6-sulfatoxymelatonin.  

INTRODUCTION 

 Melatonin (N-acetyl-5-methoxytryptamine; Fig. 1) had 
been first identified as the hormone of the pineal gland. 
Meanwhile, numerous additional sites of formation and a 
multitude of functions have been identified, which exceed 
the first-discovered roles of this indoleamine as a melano-
some-concentrating agent in fish and amphibia and a media-
tor of the signal “darkness“ in the vast majority of verte-
brates [39, 47, 137]. Considerable differences exist between 
melatonin formed in the pineal gland and in other organs, 
especially with regard to tissue retention, local metabolism 
and release to the circulation. In mammals, the contribution 
of extrapineal sources to circulating melatonin is usually low 
[39, 47, 55], mainly with the exception of the gastrointestinal 
tract, from which the indoleamine is released at substantial 
concentrations, but only under the influence of nutritional 
factors [57], in terms of a postprandial response [17, 44].  
The amounts of gut-derived melatonin which appear in the 
circulation can acutely exceed by far those secreted by the 
pineal [57] and may lead to central nervous actions, but their 
chronobiological effects remain weak, for reasons related to 
the phase-response curve for melatonin [44]. 

 By virtue of its amphiphilicity, melatonin can easily cross 
the blood-brain barrier [107, 109]. It can enter the CNS and  
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the cerebrospinal fluid (CSF) via the choroid plexus [74]. 
This should be particularly important after administration of 
exogenous melatonin. To what extent the circulating hor-
mone contributes, under physiological conditions, to its brain 
concentrations is not fully understood, specially as the pineal 
itself releases the indoleamine at much higher concentrations 
directly via the pineal recess to the third ventricle [146-148]. 
The appearance of melatonin in the third ventricle has been 
very recently demonstrated in humans, but the amounts re-
ported are relatively moderate (about 8.75 pg/mL) [74]. Even 
lower concentrations were measured in the lateral ventricles. 
In a study comparing melatonin levels in mouse serum and 
cerebral cortex, the cortical concentrations amounted to 1% 
or less of those found in serum [70]. Approximately the same 
ratio was found after administration of exogenous melatonin. 
One should, however, be always aware that concentrations 
tell little about amounts taken up, since a compound may 
readily disappear if it is rapidly metabolized. In fact, the 
same study reported for the cerebral cortex concentrations of 
the metabolite 6-sulfatoxymelatonin by about 3 orders of 
magnitude higher than those of melatonin [70]. 

 It seems possible that considerable regional differences 
exist within the brain. Some areas have been suspected to 
also synthesize melatonin, as discussed elsewhere [47]. 
However, this is still a matter of great uncertainties. In con-
junction with studies on the acoustic tract of guinea pigs, 
melatonin was not only detected in the membranous cochlea, 
but also in the cochlear nerve [14]. Melatonin was reported 
to be released from the hypothalamus [161], a site at which 
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high nocturnal levels had been found in an earlier study [94]. 
The rate-limiting enzyme of melatonin biosynthesis, arylal-
kylamine N-acetyltransferase (AA-NAT), is expressed in 
various parts of the central nervous system, such as cerebel-
lum, olfactory bulb, prefrontal cortex, hippocampus and 
striatum, but it has remained unclear whether the product, N-
acetylserotonin (NAS), is really converted to melatonin or 
acts independently as a neurotransmitter with functions of its 
own [46, 151, 152]. Elevated levels of melatonin were de-
scribed for nucleus gracilis, pons [116], medulla oblongata 
[94, 116] and cerebellum [69, 94]. Data on brain levels of 
melatonin are still highly divergent. In earlier publications, 
rather moderate concentrations were usually found in the 
brain areas mentioned. In B6C3F1 mice, melatonin was re-
ported to attain levels of about 0.4 pM in the cerebral cortex 
[70], whereas whole brain concentrations of up to 0.7 M 
were measured in another, more recent study in Tg2576 mice 
[85]. Confirmation of these data and clarification would be 
of utmost importance. Mouse strains can vary enormously 
with regard to their melatonin levels. Some if them are prac-
tically melatonin-deficient, others exhibit strongly reduced 
levels of the indoleamine. B6C3F1 mice are F1 hybrids  

between melatonin-deficient C57BL/6 and melatonin-
proficient C3H mice. Determinations of melatonin and me-
tabolites had been carried out during the circadian minimum, 
between 9:00 and 14:00, the serum levels were in the range 
between 0.07 and, in 6 months old animals, 0.3 nM [70]. It 
would be of interest to know which concentrations might be 
attained at night and to what extent the genotype had influ-
enced the results. 

 The problem of whether high AA-NAT activities reflect 
high melatonin levels becomes particularly obvious in the 
retina. In numerous non-mammalian and mammalian spe-
cies, melatonin is rhythmically synthesized in this special-
ized CNS structure, in both a subpopulation of photoreceptor 
cells and the retinal pigment epithelium. In some non-
mammalian organisms, it is also released to the blood in  
certain quantities [19, 30, 35, 77, 145, 153, 155]. However, 
primates and ungulates so-far investigated exhibited high 
nocturnal expression levels of AA-NAT, but are reported  
to not form melatonin at substantial rates, because the NAS-
converting enzyme, hydroxyindole O-methyltransferase 
(HIOMT) is poorly expressed [13, 65, 66]. However, recent 
data show HIOMT expression in cultured human retinal 
pigment cells (ARPE-19 cells) [162]. The absence of HIOMT 
does not seem be the case throughout the non-pineal areas of 
the CNS, since this enzyme or its mRNA were sometimes 
detected. Moreover, the enzyme may be partially replaced by 
other, non-specific O-methyltransferases [47]. 

 Melatonin metabolism in the CNS is particularly relevant 
for several reasons. The relative contribution of concurrent 
catabolic pathways may be strongly influenced by conditions 
of inflammation and oxidative stress [50]. This is supported 
by findings on elevated levels of melatonin’s oxidation prod-
uct N

1
-acetyl-N

2
-formyl-5-methoxykynuramine (AFMK) in 

the cerebrospinal fluid of patients with meningitis [125]. 
This metabolite and also its secondary product, N

1
-acetyl-5-

methoxykynuramine (AMK), have been shown to possess 
cell-protective properties including beneficial effects in mi-
tochondria [1, 40, 41, 50, 71, 136, 143]. Moreover, numerous 
publications have demonstrated the neuroprotective potential 
of melatonin under various experimental conditions [11, 85, 
104, 105, 108, 118, 131, 154]. For this purpose, elevated 
doses of melatonin strongly exceeding physiological levels 
have to be used, especially under acute conditions requiring 
the prevention of neuronal dysfunction. Therefore, detailed 
informations on the fate of melatonin are indispensable if the 
compound shall be used either in animal models or for hu-
man treatment. 

 This article does not only intend to summarize the facts 
known to date, but should be also understood as an attempt 
to stimulate determinations of melatonin in the various brain 
areas and to follow up its metabolism under different condi-
tions, including brain inflammatory diseases, neurodegenera-
tive disorders and treatments with melatonin. 

CYTOCHROME P450 METABOLISM 

 Plasma melatonin is predominantly metabolized by  
hepatic cytochrome P450 enzymes (CYPs), mainly by the 6-
hydroxylating subform CYP1A2. CYP1A1 and the extrahe-
patic CYP1B1 contribute to the formation of 6-hydroxymela- 

 

Fig. (1). Synthesis and CYP metabolism of melatonin in the CNS. 

CYP = cytochrome P450. 
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tonin, whereas CYP2C19 and, to a much smaller extent, 
CYP1A2 can also demethylate melatonin to its precursor, 
NAS [79, 93]. Since the dealkylating activity of CYP1A1 is 
well-known for ethoxylated substrates [114, 115, 156], NAS 
formation from melatonin seems likely for this isoenzyme, 
too. In addition to other CYPs not related to melatonin 
metabolism, CYP1A2 [60, 88, 126], CYP1A1 [60, 88], 
CYP1B1 [79, 88], and CYP2C19 [58, 59, 159] are also ex-
pressed in the brain. The presence of these CYP isoenzymes 
indicates that, at least, a certain fraction of melatonin should 
be either 6-hydroxylated or O-demethylated in the CNS (Fig. 
1). Direct information based on determinations of conversion 
rates and metabolite concentrations would be required to 
definitely judge the relevance of these routes. However, it 
may become difficult to distinguish NAS formation via AA-
NAT from that via dealkylating CYPs. A possibility for test-
ing this might be the use of CYP inhibitors. For instance, 
fluvoxamine, otherwise used for modulating serotonin reup-
take, inhibits both CYP1A2 and CYP2C19 [8]. Another 
CYP2C19 inhibitor is the antifungal drug fluconazole [75]. 
With such compounds, changes in brain levels of melatonin 
and its metabolites may be detected. 

 In contrast to the presence of hydroxylating CYP iso-
forms in the CNS, a pioneering study in which the fate of 
intracisternally injected, radiolabeled melatonin was fol-
lowed, no 6-hydroxymelatonin was detected among the 
products [52]. Instead, AFMK and AMK were discovered in 
that investigation and described as major brain metabolites 
of melatonin. The meaning of this finding will be discussed 
below in another section. The undetectable amounts of 6-
hydroxymelatonin are well in accordance with very low lev-
els of 6-hydroxymelatonin in the cerebral cortex of mice 
(0.1% of corresponding melatonin), as reported in a more 
recent study [70]. However, this recent investigation also 
showed amounts of 6-sulfatoxymelatonin which were by 
several orders of magnitude higher. This compound may not 
have been detected in the earlier pioneering study, already 
for reasons of extraction. Contrary to the mouse brain, CSF 
concentrations of 6-sulfatoxymelatonin in the human ventri-
cles were reportedly lower than those of melatonin [74]. This 
confirms, at least, the appearance of the conjugated metabo-
lite in the human brain, but determinations in the solid tissue 
may reveal different values. 

 If 6-hydroxymelatonin is formed in the brain and subse-
quently conjugated, the biological meaning of this pathway 
will have to be clarified. Hepatic 6-hydroxylation of mela-
tonin is a prerequisite for subsequent conjugation and excre-
tion as 6-sulfatoxymelatonin. The extremely higher cortical 
amounts reported for murine 6-sulfatoxymelatonin relative to 
those of 6-hydroxymelatonin [70] may indicate that either 
the conjugated metabolite is not easily released to the circu-
lation because of its electrical charge or the compound plays 
an additional, to date unknown role in the CNS. A specific 6-
hydroxymelatonin sulfotransferase has not yet been identi-
fied in the CNS. However, the brain is known to express 
various sulfotransferases. Although the focus has mostly 
been on sulfation of polysaccharides in the extracellular ma-
trix, low molecular weight metabolites have also been shown 
to be conjugated by sulfotransferase subforms, including 
those catalyzing the sulfation of catecholamines [117], xeno-

biotics [133], N-acylated dopamine derivatives [4], thyroxine 
[133] and neurosteroids [31]. In the case of neurosteroid sul-
fates, specific neuromodulatory roles different from the non-
conjugated molecules have been assumed [31]. Although it 
would be pure speculation to assume a separate physiologi-
cal role for 6-sulfatoxymelatonin, this may be worthy of be-
ing studied, also with regard to the relatively high levels 
found in the mouse CNS. 

 Assumptions on eventual metabolic routes for eliminat-
ing 6-sulfatoxymelatonin could, again, be nothing more than 
speculation. If such pathways exist at all, a theoretical possi-

bility might be sought in the deacetylation, especially by aryl 
acylamidases (AAAs) in the broadest sense, including a 
more specific melatonin deacetylase. These enzymes, which 
will be discussed in the next section, can deacetylate mela-

tonin [49] and NAS [53] to 5-methoxytryptamine (5-MT) 
and serotonin (5-HT), respectively, thereby allowing a rapid 
further degradation of the deacetylated products by mono-
amine oxidase A (MAO A) to give the substituted indole-3-

acetaldehydes, which are converted to the 5-methoxylated  
or -hydroxylated indole-3-acetic acids or substituted tryp-
tophols [46]. Although various indolic compounds have been 
tested as AAA substrates or inhibitors, pertinent data on  

6-hydroxymelatonin or 6-sulfatoxymelatonin are entirely 
missing. 

MELATONIN DEACETYLATION 

 Melatonin deacetylation to 5-MT is observed in some 
areas of the CNS, but there seem to be considerable differ-
ences concerning species and sites. Moreover, the contribu-
tion of different enzymes and their subforms may not have 
been fully clarified. In general, melatonin deacetylating en-
zymes can be classified as aryl acylamidases (AAAs). Al-
though the conversion of melatonin to 5-MT by these en-
zymes seems to be important in organisms different from 
animals, such as dinoflagellates [37, 45] and yeast [129], the 
quantitative significance of this pathway has only become 
apparent in the retinas of some amphibians, reptiles and fish 
[19, 32, 34]. In other retinas in which AA-NAT is strongly 
expressed, but only small amounts of melatonin are detected, 
melatonin deacetylation may be considered, too, as long as 
the low melatonin levels are not attributable to poor O-
methylation. The occurrence of melatonin deacetylation in a 
broader range within the CNS cannot be ruled out. Apart 
from the fact that this pathway was also found in vegetative 
tissues, the respective enzyme activity was clearly demon-
strated in the pineal gland and, in some reptiles, also in other 
brain regions [33] (Fig. 2). The enzyme identified in the 
Xenopus retina was later named melatonin deacetylase [32-
34]. It displays high substrate specificity for melatonin and is 
clearly distinct from different, less specific AAAs. AAAs 
from rat and bovine pineal glands [53] may represent forms 
of melatonin deacetylase. Its low pH optimum (about pH 5) 
is reminiscent of a previously described subform AAA-2, 
which was also detected in the rat brain [54]. The deacetylat-
ing properties of other AAAs turned out to represent side 
activities of acetylcholinesterase [6, 29, 91, 92], butyrylcho-
linesterase [6] or even human serum albumin [83]. It has 
remained uncertain to what extent non-specific AAAs of 
vertebrate origin are capable of deacetylating melatonin at 
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all. 5-MT formation from melatonin was reported for mam-
malian liver, whereas, in the same studies, no such conver-
sion was observed in the brain [9, 112].  

 For two fundamental reasons, it is impossible to conclude 
on melatonin deacetylation on the basis of 5-MT concentra-
tions. Several earlier findings obtained in vivo or in brain 
slices may have to be revisited under this aspect. The first 
problem concerns the fast destruction of 5-MT by MAO A. 
Contrary to melatonin and NAS, the non-acetylated in-
doleamines in general and 5-MT in particular represent rap-
idly converted substrates of MAO A [28, 46]. Reliable 5-MT 
measurements in the pineal gland require the presence of 
MAO inhibitors [28, 101]. The second difficulty consists in 
the multiplicity of pathways leading to 5-MT [46] (Fig. 2). 
Apart from melatonin deacetylation, this indoleamine can be 
also formed from the precursor 5-hydroxytryptophan (i) via 
O-methylation and subsequent decarboxylation of the result-
ing 5-methoxytryptophan, and (ii) by O-methylation of sero-
tonin. As an additional complication, 5-MT was reported to 
be demethylated to serotonin by human CYP2D6, a subform 

present in the CNS [160]. However, an earlier study in which 
deuterated 5-MT was administered to rats did not support the 
quantitative relevance of this pathway, since only labeled 5-
methoxyindole-3-acetic acid, but not 5-hydroxyindole-3-
acetic acid were detected in the urine [73]. If this is not a 
matter of species differences between rats and humans, 5-
MT demethylation may, thus, be only of interest in experi-
ments using high pharmacological concentrations.  

 In the pineal gland of Syrian hamsters, the contribution 

of melatonin to 5-MT formation seems to be marginal, com-
pared to that of the other indoles. This can be concluded 

from the phase positions of the respective circadian rhythms. 

The rhythm of 5-MT exhibited a diurnal maximum, similar 
to that of serotonin, and was, thus, strongly out of phase with 

the nocturnally peaking melatonin rhythm [102]. Whether 

the same is valid for other species has not yet been investi-
gated on a broader scale. 

 In the pineal gland, 5-MT, whether formed from mela-
tonin, 5-methoxytryptophan or serotonin, is clearly catabo-

 

Fig. (2). The complex network of methoxyindole metabolism in the CNS. AADC = aromatic amino acid decarboxylase; ADH = alcohol 

dehydrogenase; AldDH = aldehyde dehydrogenase; MAO = monoamine oxidase; other abbreviations as in Fig. (1). 
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lized by MAO A, and not MAO B [84, 103], although the 
pinealocytes only express MAO B [84]. MAO A was found 
to be localized only in the noradrenergic nerve endings, so 
that pineal-derived 5-MT may be locally catabolized in the 
noradrenergic compartment [84], whereas another fraction 
can be released from the gland to the circulation or, what 
remains to be studied, to the third ventricle, as is the  
case with melatonin. The product of amine oxidation, 5-
methoxyindole-3-acetaldehyde, can be either converted by 
aldehyde dehydrogenase to an excreted end product, 5-
methoxyindole-3-acetic acid, or by alcohol dehydrogenase to 
5-methoxytryptophol, a compound that displays some bio-
logical activities [46]. Again, the two methoxylated metabo-
lites are also formed by secondary O-methylation of the re-
spective 5-hydroxyindoles [46]. 

 5-MT and the metabolite 5-methoxytryptophol have been 
considered in the past as additional neurohormones and/or 
neuromodulators. Although various effects of these com-
pounds have been described and although 5-MT is frequently 
used in pharmacological experiments [46], also concerning 
specific 5-HT receptor subforms, available data may not 
suffice for documenting physiological roles of these com-
pounds in vertebrates. The same may be valid for the O-
acetyl-5-methoxytryptophol, a compound present in the pin-
eal gland and differing from melatonin only by the replace-
ment of the aliphatic nitrogen by an oxygen [46, 128]. This 
almost forgotten metabolite (Fig. 2) was reported to inhibit 
nicotinic and muscarinic acetylcholine receptors [26] and,  
in Syrian hamsters, to decrease pituitary prolactin and LH 
levels [76], but again, these effects are presumably only of 
pharmacological nature. This compound is very unstable in 
the presence of ubiquitously abundant esterases [72]. 

 In conclusion, one can state that, among the vertebrate 
organs studied, a relevant rate of melatonin deacetylation is 
only demonstrated in the retinas of fish, amphibians and rep-
tiles. In the pineals of various vertebrates, the pathway ex-
ists, too, but seems to be of minor importance. In vertebrates, 
the physiological relevance of 5-MT and its metabolites is 
still uncertain. It may be noted that this is not generally the 
case in the living world. In dinoflagellates, 5-MT is a much 
more powerful agent than melatonin [7, 45]. Beyond the 
specific melatonin deacetylases found in retinas and pineals, 
the role of other AAAs has remained unclear. Various of the 
earlier studies, including those conducted in brain tissue, 
describe inhibitions of AAA activity by various indoles, such 
as serotonin, NAS, and 5-MT, when measurements were 
carried out using artificial substrates [29, 54, 91, 92]. Unfor-
tunately, these investigations did not consider melatonin. 
Inhibition by melatonin was, at that time, only reported for 
the pineal enzyme [53] and may, thus, concern the specific 
melatonin deacetylase. Competition with synthetic substrates 
can indicate either inhibition or binding as a substrate or 
product, what had not been clearly distinguished in those 
earlier studies. Hence, a role of melatonin as a ligand of un-
specific brain AAAs may not be entirely ruled out, also with 
regard to the fact that a rapid decay by MAO A had previ-
ously not been taken into account. An eventual function of 
melatonin as a ligand could also be that of an inhibitor. This 
is presumably irrelevant at basal physiological levels, but 
might be considered after administration of exogenous mela-

tonin. Reductions of acetylcholinesterase activity by mela-
tonin have been observed in various mouse brain regions in 
vivo, under experimental conditions of scopolamine-induced 
amnesia [3], but these effects may have been of indirect  
nature. Hybrid molecules between melatonin and the estab-
lished acetylcholinesterase blocker tacrine were reported  
to be more efficient inhibitors of this enzyme than tacrine, 
and to bind to both the catalytic and the peripheral anionic 
sites [25]. These findings may be seen as a reason for re-
investigating possible interactions of melatonin with the 
acylcholinesterases. In this context, it may be briefly noted 
that the brain AAAs have recently, and somehow unexpect-
edly, re-gained some interest after they were shown to be 
inhibited by several investigational anti-Alzheimer drugs 
considered for human treatment [20, 22, 100]. With regard  
to the attempts of antagonizing Alzheimer’s disease by  
melatonin [85, 95, 130, 131], this possibility may be kept in 
mind, although melatonin exhibits numerous other properties 
of interest in this neurodegenerative disorder. 

NON-ENZYMATIC HYDROXYLATION AND NITRO- 

SATION 

 Owing to its radical scavenging properties [39, 41, 44, 

47, 104, 106-109, 134, 137, 141, 142], melatonin can lead to 
several products by interacting with reactive oxygen and 
nitrogen species. Although various different oxidants can 
react with melatonin, the focus has frequently been on the 

products generated by hydroxyl radicals. Because of the non-
enzymatic nature of these reactions, these pathways are in-
dependent of species (in aerobic organisms), tissue, cell type 
and compartment, whereas their rates may be strongly influ-

enced by the highly variable local abundance of these radi-
cals. The same should be valid for nitrosation of melatonin, 
in all NO-synthesizing organisms. Under basal physiological 
conditions, the formation of radical-generated products is 

presumably very low and may be overlooked when follow-
ing the quantitative entrance into concurrent pathways. 
However, under conditions of oxidative stress and, in par-
ticular, at sites of inflammation or, even more, in systemic 

sepsis, the products can become detectable and eventually 
relevant. This is especially the case when melatonin is ad-
ministered at high concentrations under experimental condi-
tions designed to counteract an artificially induced oxidative 

or nitrosative stress. Since various of the non-enzymatic 
products are also biologically active and undergo redox reac-
tions [41, 44, 47, 141], these metabolites should not be ne-
glected in experiments on protection by melatonin. 

 Oxidation of melatonin by hydroxyl radicals leads to 
several hydroxylated products [142]. This type of conversion 
can be explained by interaction of melatonin with two hy-
droxyl radicals, one acting by hydrogen abstraction, the other 
by combining with the reaction partner. Hydroxylation can 
take place at various sites of the molecule, in particular, at C-
atoms 2, 3, 6, and 7 [142] (Fig. 3). In vivo, 6-hydroxy- 
melatonin formed this way may not be easily distinguished 
from the enzymatically produced, more abundant fraction. 2-
Hydroxymelatonin, which has been repeatedly detected un-
der experimental conditions, is in equilibrium with its 
tautomer, 3-acetamidoethyl-5-methoxyindolin-2-one (= “2-
oxomelatonin“) [2, 39, 41] (Fig. 3). 7-Hydroxymelatonin has 
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been rarely considered, although the calculated activation 
energy for the respective reaction is as low as that for 6-
hydroxylation [142]. 3-Hydroxylation leads to an unusual 
compound, cyclic 3-hydroxymelatonin (c3OHM) [139]. The 
formation of this molecule demonstrates the relevance of the 
aliphatic side chain for the redox properties of melatonin, 
although this was originally not foreseeable. c3OHM was 
detected in the urine of rats and humans [138, 139]. Its  
concentration increased considerably after exposure of rats  
to ionizing radiation [139]. Therefore, c3OHM may be  
regarded as a marker of oxidative stress, especially as far as 
this is related to elevated generation of hydroxyl radicals. 
c3OHM may be also formed upon interaction with other  
free radicals, but the chemical mechanisms are poorly under-
stood. To date, the production of c3OHM in the absence  
of hydroxyl radicals has been convincingly demonstrated 
with a synthetic, low-reactivity radical, the ABTS cation 
radical [ABTS = 2,2´-azino-bis-(3-ethylbenzthiazoline-6-
sulfonic acid)] [135]. In mice, c3OHM was especially  
detected in the urine after administration of exogenous mela-
tonin [135, 138]. However, the major fraction of c3OHM  
was reported to be present as a sulfate conjugate [80]. The 
presence of c3OHM sulfate in mouse urine contrasts to the 
finding that, in this species, most of the 6-hydroxymelatonin 
appeared as glucuronide, not as sulfate [78]. Differences  
in conjugation may exist between vegetative and central 
nervous conjugation processes, but this remains to be inves-
tigated in detail. 

 The chemical structure of c3OHM is insofar of special 
interest as is reveals remarkable homology to well-known 
acylcholinesterase inhibitors, such as eserine (physostig-
mine). On this basis, several derivatives of c3OHM have 
been synthesized and investigated for inhibition of acetyl- 
and butyrylcholinesterase activities [127]. This might be of 
value with regard to the assumed possibility of interfering 
with the progression of Alzheimer’s disease by inhibiting  
the acylcholinesterases. The unsubstituted c3OHM which 
lacks a free aliphatic N-acetyl group is obviously no specific 
inhibitor of these enzymes. Data on melatonin and other N-
actylated analogs have not been disclosed. 

 Melatonin N-nitrosation represents another type of non-
enzymatic metabolism that has been repeatedly investigated. 
Formation of 1-nitrosomelatonin (= N-nitrosomelatonin) was 
observed with various NO donors [15, 96, 149, 150] and also 
with peroxynitrite [15, 96]. In the presence of NO, melatonin 
nitrosation was reported to be promoted by NO2, an effect 
interpreted in terms of sequential reactions with the two  
reactive nitrogen species [96]. Alternately, a reaction with 
N2O3 might be considered as well, since this molecule repre-
sents an easily formed adduct of these two nitrogen species 
and is known to be a potent nitrosating agent [48, 50]. 

 1-Nitrosomelatonin may be relevant to the CNS, with 
regard to the role of NO in neuronal excitation and, also, to 
the possibility of microglia activation. This might be espe-
cially the case under experimental conditions of melatonin 
administration in models of excitotoxicity, oxidotoxicity, or 
brain inflammation. The pharmacokinetics of 1-nitroso- 
melatonin in the brain has been studied [97]. The role of 1-
nitrosomelatonin strongly differs from those of the melatonin 
metabolites formed by interaction with reactive oxygen spe-
cies, and the nitrosation of this indole should not be misin-
terpreted in terms of detoxification. 1-Nitrosomelatonin eas-
ily re-donates NO [12, 16, 23] and is likewise capable of 
transnitrosating other molecules [63, 64]. These properties 
can be either desirable or highly undesirable. On the one 
hand, 1-nitrosomelatonin may be used as an amphiphilic NO 
source, and the idea has been that melatonin regenerated by 
NO release detoxifies the oxygen radicals formed as a sec-
ondary consequence of NO metabolism [12, 64]. On the 
other hand, transnitrosation of especially mitochondrial pro-
teins can cause dysfunction of the respiratory chain and elec-
tron leakage [40, 48]. Under basal physiological conditions, 
1-nitrosomelatonin is presumably formed at low rates, so that 
this aspect of melatonin metabolism should be only relevant 
in experimental model systems. 

THE KYNURAMINE PATHWAY 

 The melatonin-derived kynuramines AFMK and AMK 
(Fig. 4) were discovered in a pioneering study [52], in which 
these compounds attained about one third of the products and 
were, thus, classified as major brain metabolites. Although 
pyrrole-ring cleavage represents a classic pathway of trypto-
phan catabolism, this is not generally the case with the oxi-
dation of other indoles. That investigation demonstrated for 
the first time the formation of kynuramines from an in-
doleamine, whereas non-acetylated compounds like sero-
tononin are predominantly catabolized by MAO A, as dis-
cussed above, and 5-hydroxylated indoles, such as serotonin 

 

Fig. (3). The preferred sites of non-enzymatic hydroxylation and 

nitrosation at the melatonin molecule. Black flashes: hydroxylation; 

white flash: nitrosation. 
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and NAS frequently form dimers in non-enzymatic redox 
reactions [10, 56].  

 The occurrence and biological activities of kynuramines 
and, in particular, AFMK and AMK have been recently re-
viewed in detail [50]. In brief, AFMK is formed via pyrrole 
ring cleavage of melatonin by various catalysts, enzymes 
such as indoleamine 2,3-dioxygenase, myeloperoxidase, 
some other hemoperoxidases, by cytochrome c, various 
pseudoenzymatic catalysts, and in various reactions with 
reactive oxygen species, including free radicals and singlet 
oxygen [38, 39, 47, 50, 136, 141]. AFMK can also derive, 
via radical reactions, from c3OHM [135]. This multiplicity 
of pathways which lead to the same metabolite provokes the 
question of their relative contribution in vivo, especially in 
the CNS. Moreover, the relative amounts of AFMK and sec-
ondary products thereof, compared to other catabolic routes, 
is of interest. In the course of the original discovery of 
AFMK and AMK [52], the large melatonin fraction con-
verted to these kynuramines of about one third was indica-
tive of quantitative relevance. 

 Meanwhile, some doubts have arisen as to whether these 

high amounts are generally present in the brain. The original 
publication [52] is certainly reliable, since otherwise AFMK 
and AMK would not have been discovered. The question is, 
however, whether the entrance of such a high melatonin frac-

tion into the kynuramine pathway might be conditional. This 
starts with the possibility that a much smaller proportion may 
be converted to kynuramines in the absence of external mela-
tonin. Moreover, the route of administration may be of im-

portance. In particular, an eventual microglia activation by 
high levels of melatonin might be considered. Surprisingly, 
little is known about the effects of melatonin on other- 
wise unchallenged microglia, whereas the counteraction of  

proinflammatory treatments and signals has been repeatedly 
studied. Some investigators concluded that melatonin does 
not exert relevant effects on resting microglia [121]. How-
ever, related cells such as macrophages, peripheral mono-

cytes, cultured monocyte-derived cell lines and also postna-
tal microglia were reported to be activated by melatonin [21, 
61, 87]. In monocytes, the melatonin effects were relatively 

 

Fig. (4). The kynuramine pathway of melatonin and some recently discovered products. For more details on the formation of AFMK see refs 

[38, 50, 93, 136], of AMK refs. [47, 50], of AMMC ref. [42], and of AMK adduct ref [89]. 
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short-acting and mainly concerned intracellular rises in reac-

tive oxygen species [98, 99]. These effects were only ob-
served at strongly elevated levels of melatonin and assumed 
to be mediated by calmodulin [98, 99], a protein capable of 
binding melatonin with low affinity [39, 47]. The response 

may be limited because of other actions by melatonin and its 
oxidatively formed metabolites. In peripheral monocytes, 
melatonin and, even more, AFMK suppressed TNF-  and 
IL-8 production [124] and, in macrophages, cyclooxygenase-

2 and iNOS expression [24, 86]. Moreover, melatonin was 
found to be efficiently oxidized to AFMK by macrophages 
[124]. It remains to be studied whether microglia responds in 
a similar way to melatonin and AFMK. Activated microglia 

could convert melatonin by two enzymes, indoleamine 2,3-
dioxygenase, although its main substrate is tryptophan, not 
melatonin [50, 51, 122, 132], and myeloperoxidase [27, 50, 
111, 123, 157, 158]. Additionally, melatonin might be oxi-

dized to AFMK by reactive oxygen species [38, 39, 47, 50, 
136, 141] transiently formed in excess. Therefore, a scenario 
for elevated formation of 5-methoxykynuramines upon in-
tracisternal melatonin administration [52] might include 

some transient effect on microglia, which may, thereafter, be 
stopped by AFMK. This effect may be only seen at elevated 
melatonin levels sufficient for actions via calmodulin, but 
this remains to be clarified. In such a case, melatonin admin-

istered via the drinking water or i.p. injections may not attain 
concentrations sufficient for microglia activation. 

 These considerations are not entirely hypothetical, since 

rises in CSF concentrations of AFMK were, in fact, observed 
under brain inflammatory conditions. In the cerebrospinal 

fluid of patients with viral meningitis, elevated levels of 

AFMK were detected, in conjunction with a negative corre-
lation to some interleukins [125]. In CSF samples containing 

more than 50 nM AFMK, protein concentrations and levels 

of IL-8 and IL-1  were much below those from persons with 
AFMK contents between 10 and 50 nM. The relationship to 

the cytokines indicates an interconnection to the immune 

system, but oxidative stress because of the inflammation may 
have contributed to melatonin oxidation. These findings 

demonstrate that AFMK formation is of pathophysiological 

interest, including its possible usefulness as an indicator 
molecule [50]. 

 Also beyond its antiinflammatory actions, AFMK has 

been repeatedly shown to protect against oxido- and excito-
toxicity [18, 50, 81, 82, 90, 136]. These effects included pro-

tection against radiation [81, 82] and prevention of radiation-

induced inhibition of neurogenesis and memory impairment 
[82]. In terms of direct antioxidant actions, the capability of 

AFMK of detoxifying hydroxyl radicals seems plausible, 

because of the particularly high reactivity of this oxygen 
species. However, AFMK is generally less reactive than its 

precursor, melatonin, and its secondary product, AMK [38, 

50, 110]. Because of its preference for two-electron transfer 
reactions, as demonstrated by cyclic voltammetry [136], in-

teractions with free radicals are not favored, compared to 

other redox reactions [38]. This might indicate the existence 
of some signaling properties of AFMK, which have, how-

ever, not yet been identified, although additional hints for 

this exist from other experiments not designed for protection 

[50]. Nevertheless, AFMK does interact with free radicals  

of low reactivity, as far as they possess a sufficiently long 

life-time. With ABTS cation radicals, several previously 
unknown products were obtained, such as N-(1-formyl-2-

hydroxy-5-methoxy-3-oxo-2,3-dihydro-1H-indol-2-ylmethyl)- 

acetamide, E- and Z-isomers of N-(1-formyl-5-methoxy-3-
oxo-2,3-dihydro-1H-indol-2-ylidenemethyl)-acetamide, as 

well as some deformylated analogs [113]. These reactions 

should also be possible with other resonance-stabilized  
organic radicals formed in biological material, but to date  

it is unknown whether the discovered C2-substituted 3-

indolinones is physiologically relevant or only a matter of 
chemistry. 

 AFMK can be deformylated to AMK by, at least, three 
different mechanisms. One of them, a photochemical reac-
tion [120], should be irrelevant to the brain, but may occur in 
the eye. Another, long-known reaction is catalyzed by aryl- 
amine formamidases, a group of enzymes, some of which 
have a relatively low substrate specificity [49, 50, 62]. The 
conversion of AFMK to AMK was demonstrated in the brain 
[62]. Other enzymes capable of deformylating AFMK are 
hemoperoxidases with low specificity for hydrogen donors, 
including the peroxidase activity of catalase [140]. As a con-
sequence of hydrogen donation, the resulting imino interme-
diate is hydrated and the carbamate thereby formed releases 
CO2 [47, 50].  

 Once produced, AMK can rapidly disappear, because of 
numerous reactions it can undergo with various reactive 
oxygen and nitrogen species. The transitory nature of this 
compound has been particularly addressed in a recent review 
paper [50]. Therefore, difficulties in detection should not be 
immediately misinterpreted as a lack of formation. However, 
physiological levels of AMK in the brain are still unknown. 
AMK is of high interest because of several properties. It is  
a potent antioxidant [110], effective scavenger of reactive 
nitrogen species [36, 42, 43], protecting agent against  
mitochondrial damage [1, 38, 40, 41], downregulator of  
cyclooxygenase-2 [24, 86], cyclooxygenase inhibitor by far 
more potent than aspirin [62], and antagonist of neuronal 
[71] and inducible NO synthases [24, 143]. 

 Products formed from AMK by interaction with oxidiz-
ing free radicals are only partially known. In chemical sys-
tems, several dimers and oligomers have been identified 
[144], which are, however, presumably physiologically ir-
relevant, because of much lower educt concentrations pre-
sent in the biological material. It seems more likely that 
AMK intermediates formed by oxidants rather interact with 
other aromates, which has, in fact been demonstrated with 
tyrosine [50, 89] and tryptophan [50]. To date, it is unclear 
whether or not such reactions represent undesirable or bene-
ficial actions. On the one hand, unspecific binding to aro-
matic residues of protein side chains may cause dysfunction 
or, perhaps, be immunogenic [89], but AMKylation of pro-
teins otherwise regulated by tyrosine phosphorylation may 
be prevented from activation, which can be of advantage 
when cell division is unfavorable, such as in neoplasmic tis-
sue [50]. Other products formed by interaction with highly 
reactive oxidants, such as hydroxyl radicals [50], carbonate 
radicals [110] and singlet oxygen [119] have led to substan-
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tial destruction of the AMK molecule, up to a decomposition 
of the aromatic moiety [50]. 

 Among the products formed by interaction with reactive 
nitrogen species, three main products were obtained in 
chemical systems, N

1
-acetyl-5-methoxy-3-nitrokynuramine 

(AMNK, 3-nitro-AMK), N-[2-(6-methoxyquinazoline-4-yl)-
ethyl] acetamide (MQA) and 3-acetamidomethyl-6-methoxy- 
cinnolinone (AMMC) [36, 68] (Fig. 4). AMNK was formed 
by interaction with the peroxynitrite-CO2 adduct (ONOOCO2

–
), 

which decomposes to the carbonate radical, (CO3
–
) and 

NO2, a physiological nitration mixture. This reaction should 
be possible at any site in the organism at which AMK  
encounters ONOOCO2

–
, including the CNS. The second 

compound, MQA, has meanwhile been detected as a metabo-
lite of yeast, after incubation with AFMK [67], but to date no 
indication exists for its formation in brain. However, the 
third metabolite, AMMC, deserves more attention with re-
gard to AMK metabolism in the CNS, because of the rela-
tively high rates of NO generated in this organ. AMK is 
readily formed with any nitrosating agent, in particular, all 
NO congeners, NO

+
, NO and HNO, the protonated NO

–
 

subform present at physiological pH, and N2O3 as well [42, 
50]. For the different mechanisms of reactions with NO sub-
forms see ref. [42]. Additional routes by physiologically pre-
sent transnitrosating agents can be expected. A remarkable 
difference exists between AMK and other compounds as NO 
scavengers. Typically, nitrosated products re-donate NO, as 
has been also described for 1-nitrosomelatonin [12, 16, 23], 
they transnitrosate other molecules [63] or decompose as 
nitrosamine intermediates to diazonium ions, which may 
either lead to toxic and mutagenic carbenium ions or, in o-
hydroxylated compounds, to oxadiazoles and their tautom-
ers, o-quinone diazides [5]. This last pathway has been  
reported for other tryptophan metabolites, 3-hydroxyky- 
nurenine and 3-hydroxyanthranilic acid. However, N-
nitrosation of AMK leads, by formation of a second ring, to 
the stable compound AMMC, which does not spontaneously 
re-donate NO [43]. 

 As far as AMK is formed in the CNS, it will likely be 
converted to AMMC. To date, brain concentrations of 
AMMC, AMNK and MQA are unkown. Considerable dif-
ferences can be expected with regard to the appearance of 
the precursor AFMK. This compound may be increased upon 
melatonin administration and, according to the CSF data 
mentioned [125], especially under conditions of brain in-
flammation. Levels of the novel metabolites formed from 
AFMK may also be of interest from a pathophysiological 
point of view. 

CONCLUSION 

 Although melatonin has been discovered more than half a 
century ago and although countless publications have dealt 
with the neuroprotective actions of melatonin, surprisingly 
little is known about brain concentrations of this indoleamine 
under basal physiological conditions. To some extent, part of 
the problem may be the use of different mouse strains, which 
vary considerably with regard to their capability of produc-
ing melatonin. It is recommended to perform urgently 
needed advanced studies on brain melatonin either in strains 
known to synthesize and secrete melatonin at nocturnal  

levels comparable to those known from other mammals, 
and/or to use other species.  

 Even less can be said with certainty about the levels of its 
metabolites in the CNS and on the rates at which melatonin 
is converted by the various concurrent catabolic pathways. 
All of the pathways identified to date are of considerable 
interest, for different reasons. First, the fate of melatonin has 
to be known, which enters the brain via the pineal recess or 
the choroid plexus, or which may be synthesized within the 
brain. Second, the amounts of the respective metabolites 
have to be identified because of their additional biological 
actions. 

 According to recent findings, the main route of melatonin 
catabolism in the CNS may be that of hydroxylation and 
sulfation, although an immediate release of 6-sulfatoxy- 
melatonin from the brain, for purposes of excretion, is not 
very likely. Relatively high amounts of the conjugate de-
scribed in, at least, one study [70] might indicate its extended 
persistence in the CNS. It will be an intriguing question 
whether 6-sulfatoxymelatonin may exert neuromodulatory 
effects, as described for other sulfated compounds formed in 
the CNS.  

 Demethylation to NAS and deacetylation to 5-MT are 
other pathways which deserve attention. Since NAS is also 
synthesized in some brain regions without further transfor-
mation to melatonin, the quantities obtained from melatonin 
demethylation may be of minor relevance, relative to direct 
NAS synthesis from serotonin. The role of 5-MT is still 
somehow enigmatic. Determinations of 5-MT in the absence 
of MAO A inhibitors may be highly misleading. Again, 
judgements are difficult because of 5-MT synthesis via other 
routes. The importance of melatonin deacetylation is best 
understood in the retinas of non-mammalian species, but  
this route should be re-considered in studies on melatonin 
metabolism in mammalian eyes. Moreover, a possible role  
of melatonin in acylcholinesterases, otherwise known to  
possess aryl acylamidase activities, seems worthy to be  
investigated in depth. A particular reason for this suggestion 
is derived from the inhibition of these enzymes by both other 
indoleamines and several investigative Alzheimer drugs.  

 The kynuramine pathway, originally considered as a ma-
jor route of melatonin metabolism in the brain, should be re-
investigated with regard to its quantitative importance. This 
is necessary because bioactive and neuroprotective com-
pounds, AFMK and AMK, are formed in this pathway. A 
remarkable spectrum of effects is known especially for 
AMK, which acts as an effective scavenger of reactive oxy-
gen and nitrogen species, mitochondrial modulator, down-
regulator of cyclooxygenase-2, inhibitor of cyclooxygenase, 
neuronal and inducible NO synthases. Products deriving 
from AFMK and AMK have been identified, mostly in 
chemical systems, but their rates of formation in the brain 
remain to be determined. AFMK is synthesized by both en-
zymatic and non-enzymatic mechanisms, and all these routes 
are part of oxidative metabolism, either in relation to en-
zymes upregulated in activated microglia or to excessive 
generation of free radicals by whatever cell type. In the  
future, the relative rates of melatonin catabolism will have to 
be determined also under conditions of oxidative stress and, 



Melatonin Metabolism in the Central Nervous System Current Neuropharmacology, 2010, Vol. 8, No. 3    177 

in particular, brain inflammatory diseases. Elevated AFMK 
levels in the human CSF of patients with meningitis have 
already been reported [125]. Following microglia activation, 
the kynuramine pathway may turn out to gain a quantitative 
relevance which substantially exceeds that under basal con-
ditions. The same may be valid for other compounds formed 
by interaction with reactive oxygen and nitrogen species. 
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