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Quantum dephasing induced by 
non-Markovian random telegraph 
noise
Xiangji Cai   

We theoretically study the dynamical dephasing of a quantum two level system interacting with an 
environment which exhibits non-Markovian random telegraph fluctuations. The time evolution of 
the conditional probability of the environmental noise is governed by a generalized master equation 
depending on the environmental memory effect. The expression of the dephasing factor is derived 
exactly which is closely associated with the memory kernel in the generalized master equation for 
the conditional probability of the environmental noise. In terms of three important types memory 
kernels, we discuss the quantum dephasing dynamics of the system and the non-Markovian character 
exhibiting in the dynamical dephasing induced by non-Markovian random telegraph noise. We show 
that the dynamical dephasing of the quantum system does not always exhibit non-Markovian character 
which results from that the non-Markovian character in the dephasing dynamics depends both on the 
environmental non-Markovian character and the interaction between the system and environment. 
In addition, the dynamical dephasing of the quantum system can be modulated by the external 
modulation frequency of the environment. This result is significant to quantum information processing 
and helpful for further understanding non-Markovian dynamics of open quantum systems.

Quantum coherence plays an important role in quantum mechanics and has recently received much attention 
with the development of experimental technique to observe and control quantum systems1–3. A realistic quantum 
system always unavoidably interacts with the environment, which leads to decoherence during its dynamical 
evolution. In the past decades, the decoherence dynamics of open quantum systems has been generally studied 
within the framework of Markov approximation. Investigations on the decoherence dynamics of open quantum 
systems beyond Markov approximation has increasingly drawn much attention in a wide variety of fields rang-
ing from understanding the basic features of quantum mechanics to the applications of advanced experimental 
technique of coherent manipulation and control in quantum information science, such as, the quantification 
and measurement of the non-Markovian character in the quantum dynamics4–14. It has been demonstrated both 
theoretically and experimentally that non-Markovian dynamical decoherence gives rise to incomplete loss of 
coherence due to the backaction of coherence from the environment, which makes the quantum system have long 
correlation time with the environment.

Many theoretical methods have been well established to investigate the non-Markovian character in the 
dynamical decoherence of open quantum systems, such as, non-Markovian quantum state diffusion15–17, 
projection operator18–22, quantum jumps23, nonequilibrium Green-function24,25 and dynamical maps26,27. 
Non-Markovian dynamical decoherence induced by the interaction of a quantum system with its environment 
can be also accurately modeled by means of stochastic processes with fixed statistical properties of the envi-
ronmental noise within the framework of Kubo-Anderson spectral diffusion. There have been well-established 
theoretical investigations on the decoherence dynamics of open quantum systems which usually assume that 
the environmental noise with Markovian statistical properties based on classical and quantum treatments28–45. 
Random telegraph noise (RTN), as an important non-Gaussian noise, has been widely used to theoretically model 
the environmental effects on quantum systems in a large variety of fundamental physical, chemical and biological 
processes, such as, fluorescence process of single molecules46–48, rate process in chemical reactions49, entangle-
ment and decoherence processes induced by low-frequency 1/fα noise50–52 and frequency modulation process 
in quantum information science53. Moreover, it has been well-established experimental investigations on the 
dephasing dynamics of open quantum systems driven by a classical stochastically fluctuating field exhibiting 
non-Markovian random telegraph fluctuations54,55.
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There are many important physical situations where a quantum system may be coupled to a composite or struc-
tured environment. In these situations, due to the essential role of the couplings between the sub-environments, 
both the dynamical evolution of the quantum system and the environmental statistical properties display dom-
inant non-Markovian characters, such as, cavity quantum electrodynamics and quantum measurement pro-
cesses56–62. Hence, it is necessary to take into extensive consideration the memory effects of the environment, 
namely, the non-Markovian statistical properties of the environmental noise, to study the dynamical evolution 
of the quantum system. Recently, the non-Markovian RTN with an exponentially correlated memory kernel has 
been discussed63 and widely used to study the relevant issues of open quantum systems64–68.

In this paper, we theoretically study the dephasing dynamics of a quantum two level system which interacts 
with a noisy environment exhibiting non-Markovian RTN statistical properties. The non-Markovian character 
of the environmental noise is governed by a generalized master equation for the time evolution of the condi-
tional probability. Based on the environmental non-Markovian character, the exact expression of the dephasing 
factor is derived which is closely associated with the memory kernel of the environmental noise. In the presence 
of three important types memory kernels, we discuss the quantum dephasing dynamics of the system and the 
non-Markovian character in the dynamical dephasing induced by the non-Markovian RTN. We show that the 
non-Markovian character exhibiting in the quantum dephasing dynamics depends on both the environmen-
tal non-Markovian character and the interaction between the system and environment, and that the dynamical 
dephasing of the quantum system does not always exhibit non-Markovian character. Moreover, we show that 
the quantum dynamical dephasing of the system can be modulated by the external modulation frequency of the 
environment.

Quantum Dephasing Dynamics in a Noisy Environment
We consider the quantum dynamical dephasing of a two level system in the presence of a noisy environment 
which exhibits non-Markovian character. The environmental effects only influence the coherence of the quantum 
system and the energy of the system is conserved. Based on the Kubo-Anderson spectral diffusion model, the 
environmental influences on the quantum system lead to that the transition frequency fluctuates stochastically 
as28,29

t t( ) ( ), (1)0ω ω ξ= +

where the intrinsic transition frequency is denoted by 0ω  in the basis e g{ , }| 〉 | 〉  and the stochastic fluctuation term 
t( )ξ  obeys a stationary stochastic process caused by the environmental noise.

The dynamical evolution of the off-diagonal element of the total density matrix in the basis | 〉 | 〉e g{ , } satisfies 
the stochastic differential equation65

ρ ξ ω ξ ρ ξ= +
d
dt

t t i t t t( ; ( )) [ ( )] ( ; ( )), (2)ge ge0

where the notation t t( ; ( ))geρ ξ  is employed to indicate the dependence of the environmental noise t( )ξ . By iterating 
Eq. (2) and taking an average over the environmental noise ξ t( ), we obtain the off-diagonal element of the reduced 
density matrix

ρ ρ ξ ρ= = ωt t t e F t( ) ( ; ( )) ( ) (0), (3)ge ge
i t

ge
0

with 〈 〉  denoting an average of different realizations over the environmental noise ξ t( ). Here it has been assumed 
that the system and environment are initially independent

ρ ρ ξ ρ ξ= =(0) (0; (0)) (0; (0)), (4)ge ge ge

and F t( ) is the dephasing factor quantifying the coherence evolution of the quantum system which is defined as 
the Dyson series expansion in terms of the moments of the environmental noise64,67
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Based on the stationary character of the environmental noise, the odd moments of ξ t( ) vanish and the time 
dependent dephasing factor F t( ) in Eq. (5) is real-valued.

To further describe the dynamical dephasing, we employ two physical quantities in terms of the dephasing 
factor F t( ): One is the dephasing rate68

t F t
F t F t

d
dt
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( )

1
( )

( ) ,
(6)

γ = − = −
| |
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and the other is the non-Markovianity13
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
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which are closely related to the exchange of a flow of coherence information between the quantum system and 
environment5,69: When t( )γ  is negative in some time interval, the quantum system begins to gain the information 
flowing from the environment and it indicates that the dephasing dynamics of the quantum system exhibits some 
non-Markovian character due to the coherent backaction from the environment. When t( )γ  always takes positive 
values, the information flows continuously and unidirectionally from the system into the environment and it 
indicates that the dephasing dynamics of the quantum system only exhibits Markovian character due to no back-
action of coherence from the environment. The non-Markovianity   denotes the maximal total amount of the 
backflow of information from the environment to the system in the dynamical evolution.

Non-Markovian RTN
We assume that the environmental noise t( )ξ  obeys a stationary non-Markovian RTN process which jumps ran-
domly between the values ±1 with with an amplitude ν and an average transition rate λ. For this noise process, 
the time evolution of the conditional probability is governed by a generalized master equation63,70,71

t
P t t d K t P t P t

t
P t t d K t P t P t

( , , ) ( )[ ( , , ) ( , , )],

( , , ) ( )[ ( , , ) ( , , )],
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where τ−K t( ) denotes the memory kernel of the environmental noise and the initial condition is 
P t t( , , ) ,ξ ξ δ′| ′ ′ = ξ ξ′ for ξ ν= ± . The environmental noise t( )ξ  is non-Markovian because the Chapman-Kolmogorov 
equation is no longer valid unless the memory kernel is proportional to a δ function72. The solution of the conditional 
probability can be obtained by taking the Laplace transform over Eq. (8) as  ∫ξ ξ ξ ξ| ′ ′ = | ′ ′

+∞ −P p t P t t e dt( , , ) ( , , ) pt
0

. 
In Laplace domain, the conditional probability can be analytically solved as
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where ∼K p( ) is the Laplace transform of the memory kernel of the environmental noise. In Eq. (9), we derive the 
exact expression of the conditional probability of a non-Markovian RTN process with an arbitrary memory kernel 

τ−K t( ) in the Laplace domain. To obtain the solution of the time domain conditional probability ξ ξ| ′ ′P t t( , , ), 
we should take the inverse Laplace transform over Eq. (9). In the memoryless limit of the environmental noise, 
namely, the memory kernel K t t( ) ( )τ δ τ− = −  and the statistical property of the environment only exhibiting 
Markov i an  charac ter,  t he  condit iona l  prob abi l i t y  in  t ime  domain  c an  b e  w r it ten  as 
P t t e e( , , ) [1 ] [1 ]t t t t1

2
2 ( )
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− ′, which returns to the previous result given in ref. 72. 
Due to the stationary character of the environmental noise, the one-point unconditional probability is time 
independent
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where the initial distribution is stationary ξ δ δ= +ξ ν ξ ν−P( )0
1
2 ,

1
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.
We focus on the statistical characteristics of the non-Markovian RTN. The noise process is with zero average

ξ〈 〉 =t( ) 0, (11)

and its second-order correlation function satisfies

 ξ ξ
ν
λ

− ′ = 〈 ′ 〉 = =
+

.∼
−LC t t t t C p C p
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Here −1L  denotes the inverse Laplace transform. It is clear that the second-order correlation function of a 
non-Markovian RTN process satisfying the generalized master Eq. (8) closely depends on the memory kernel of 
the environmental noise. Based on the Bayes rule, the higher odd-order correlation functions vanish

ξ ξ ξ〈 〉 =−t t t( ) ( ) ( ) 0, (13)n1 2 2 1

and the higher even-order correlation functions factorize as

ξ ξ ξ ξ ξ ξ ξ〈 〉 = 〈 〉〈 〉t t t t t t t( ) ( ) ( ) ( ) ( ) ( ) ( ) , (14)n n1 2 2 1 2 3 2 

for all sets of time sequences t t t tn n1 2 2 1 2> > > >−  ( ≥n 2). The factorization relations in Eqs. (13) and (14) 
for the higher-order correlation functions of a stationary non-Markovian RTN process were first derived in ref. 63 
which were also derived when a stationary RTN process exhibits only Markovian character73,74. It is worth noting 
that the more general factorization relations for the higher-order correlation functions of the environmental noise 
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t t t t t t( ) ( ) ( ) ( ) ( ) ( )n n1 2ξ ξ ξ ξ ξ ξ〈 ⋅ ⋅ ⋅ 〉 = 〈 〉〈 ⋅ ⋅ ⋅ 〉 for t t tn1> > ⋅ ⋅ ⋅ >  ≥n( 2) when the RTN process exhibits non-
stationary character and in the limit of stationary character of the environmental noise, it recovers to the factori-
zation relations for the higher odd- and even-order correlation functions in Eqs. (13) and (14) due to the 
vanishing of the odd moments of the environmental noise.

Exact Solution of the Dephasing Factor
Based on the statistical characteristics of the environmental noise ξ t( ) obtained above, we can derive that the 
partial cumulants higher than the second order vanish

t t t( ) ( ) ( ) 0, (15)n1
pc

ξ ξ ξ〈 〉 =

for every ordered set of time instants > > > ≥t t t n( 2)n1 . Consequently, the time evolution of the dephasing 
factor yields the integro-differential equation as follows67

∫= − − ′ ′ ′
d
dt

F t C t t F t dt( ) ( ) ( ) , (16)
t

0

with the initial condition F(0) 1= . By means of Laplace transform of Eq. (16) and based on the second-order 
correlation function in Eq. (12), the dephasing factor can be analytically expressed as
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It is clear that the dephasing factor induced by a non-Markovian RTN process is closely associated with the 
memory effect of the environmental noise. Here, Eq. (17) gives the exact expression of the dephasing factor 
induced by a non-Markovian RTN process with an arbitrary memory kernel τ−K t( ) in Laplace domain. In 
contrast to our previous work in refs. 64,67, it is more convenient to calculate the dephasing factor induced by a 
non-Markovian RTN process based on the expression derived in Eq. (17) rather than to calculate the statistical 
characteristics of the environmental noise in terms of Eqs. (8)–(14) and then to derive the closed differential 
equation for the dephasing factor based on the closure of the higher-order correlation functions of the environ-
mental noise64,67.

To derive the exact expression of the dephasing factor F t( ) in time domain, we can take inverse Laplace trans-
form over the Laplace domain dephasing factor F p( ) in Eq. (17). The Laplace domain dephasing factor F p( ) in Eq. 
(17) can be generally expressed as a proper rational function which is the quotient of two real polynomials
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where the degrees of the numerator polynomial N p( ) and denominator polynomial D p( ) are m and n (m n< ), 
respectively. The exact expressions of the numerator polynomial N p( ) and denominator polynomial D p( ) are 
closely associated with the Laplace transform of the memory kernel of the environmental noise. To derive the 
time domain dephasing factor, we should obtain the roots of the denominator polynomial D p( ). For the case that 
the degree of D p( ) is two or three (quadratic or cubic polynomial), we can derive the time dependent dephasing 
factor based on the theoretical framework previously established in ref. 67. Here, we further derive the general 
expression of the time domain dephasing factor for an arbitrary degree of the denominator polynomial D p( ). In 
general, a real polynomial can have both real and complex roots and due to the fact that its nonreal complex roots 
always occur in pairs, the denominator polynomial D p( ) can be decomposed as
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where …a a, , r1  are the r mutually different real roots, …b b, , c1  are the c mutually different pair of nonreal roots, 
and we have assumed that the leading coefficient of D p( ) is 1. The positive integer exponents ej and jε  in the 
decomposition of the denominator polynomial D p( ) satisfy e n2j
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where the real coefficients jkα  and the complex coefficients βjk satisfy
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By means of the inverse Laplace transform, the dephasing factor in time domain can be expressed as
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Correspondingly, the first derivative of the dephasing factor satisfies
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We can obtain the first time derivative of the dephasing factor by directly taking derivation over the time 
domain dephasing factor in Eq. (22) or by means of inverse Laplace transform similarly as we dealt with above. As 
a consequence, the dephasing rate can be expressed as

L

L
t F t

F t
F p
F p

( ) ( )
( )

[ ( )]
[ ( )] (24)

1

1γ = − = − .
−

−

� ��

�

Based on the dephasing rate t( )γ  and the definition in Eq. (7), we can further obtain the maximal backflow of 
coherence information from the environment, namely, the non-Markovianity. However, to derive the expression 
of the non-Markovianity, we should know the discrete time constants …t t t, , , n1 2  for the absolute of the dephas-
ing factor | |F t( )  to obtain the relative extrema, namely, the stationary points and singular points by d/ | | =dt F t( ) 0. 
Due to the continuity of the dephasing factor F t( ) and based on the initial condition =F(0) 1, the stationary and 
singular points for the relative minima and maxima in the absolute of the dephasing factor | |F t( )  appear alter-
nately. Consequently, the non-Markovianity can be formally expressed as
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where the integral in the sum is taken over all the time intervals −t t[ , ]j j2 1 2  in which the dephasing rate t( )γ  is 
below zero. In general, the number of the time intervals t t[ , ]j j2 1 2−  is infinite and it is very difficult to calculate the 
non-Markovianity analytically by means of the expression in Eq. (25). We here introduce an relatively easy 
method to calculate the non-Markovianity numerically by rewriting Eq. (6) as
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Based on the definition for non-Markovianity in Eq. (7) and the vanishing of the dephasing factor F( ) 0∞ =  
in the long time limit, the non-Markovianity via numerical calculation can be easily expressed as
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Theoretical Results and Discussion
There are two dynamics regimes which can be identified in terms of the jumping amplitude ν and transition rate 
λ of the environmental noise exhibiting only Markovian character75,76: the weak coupling regime with ν λ<  and 
the strong coupling regime with ν λ> . In the following, we mainly focus on the dephasing dynamics of the quan-
tum system in the two dynamics regimes by considering three important types environmental memory kernels.

Memoryless limit.  We first consider the case that environmental noise is in the memoryless limit 
τ δ τ− = −K t t( ) ( ), e.g., the statistical property of the environment is Markovian. In this case, the Laplace 

transform of the memory kernel yields K p( ) 1=
∼  and thus the Laplace domain dephasing factor in Eq. (17) and 

its first derivative in Eq. (23) can be reduced to
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By taking the inverse Laplace transform of Eq. (29), we can obtain the dephasing factor in time domain as
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This expression is consistent with the well-known results obtained in refs. 77–79. Correspondingly, the dephas-
ing rate can be written as
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Figure 1(a) shows the dephasing factor F t( )| | as a function of the evolution time induced by the RTN in the 
memoryless limit for different values of the coupling ν. In weak coupling (ν λ< ), the dephasing factor only dis-
plays monotonical decay which reflects that the quantum dephasing dynamics of the system is always Markovian 
and the non-Markovianity is zero. Furthermore, the decay in the dephasing factor becomes fast as the coupling 
increases implying that the coupling can enhance the quantum dephasing dynamics of the system. In strong cou-
pling (ν λ> ), the decay in the dephasing factor is nonmonotonical with periodic zeros which indicates that the 
quantum dephasing dynamics of the system is non-Markovian and the non-Markovianity is no longer zero due 
to coherence revivals. In addition, as the coupling increases, the oscillatory behavior exhibited in the dephasing 
factor is more and more obvious and the emergence of coherence revivals becomes ahead of time. Figure 1(b) 
shows the non-Markovianity   as a function of the coupling ν. The quantum dynamical dephasing of the system 
displays a transition from Markovian (zero non-Markovianity) to non-Markovian (non-zero non-Markovianity) 
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Figure 1.  (a) Time evolution of the dephasing factor F t( )| | in the presence of the Markovian RTN for different 
values of the coupling ν. (b) Scaled non-Markovianity = +

∼
/( 1))    as a function of the coupling ν.
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as the coupling increases with the boundary of the weak and strong coupling regimes ν λ= . In the strong cou-
pling regime, the non-Markovianity become large as the coupling increases which suggests the enhancement of 
the non-Markovian character in the quantum dephasing dynamics of the system.

Exponential memory kernel.  We consider that the statistical property of the environmental noise is 
non-Markovian, where the memory kernel of the environment is of a widely used exponential form 
K t e( ) t( )τ κ− = κ τ− −  with the decay rate κ80,81. In this case, the Laplace transform of the memory kernel satisfies 
K p( )

p
=

∼ κ
κ+

. Thus, in Laplace domain the dephasing factor together with its first derivative in Eqs. (17) and (23) 
can be respectively expressed as
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This result is completely compatible with that we obtained in refs. 64,67 when the environmental noise is sta-
tionary. The expression of the dephasing factor in time domain can be, by taking the inverse Laplace transform of 
Eq. (32), written as the form as we derived in Eq. (22) which we also derived in ref. 67.

Figure 2 shows the dephasing factor | |F t( )  as a function of the evolution time induced by the non-Markovian 
RTN for different values of the memory decay rate κ. As shown in Fig. 2(a), in the weak coupling regime, the 
dephasing factor displays nonmonotonical decay with nonzero coherence revivals for a given memory decay rate. 
In contrast, in the strong coupling regime, as displayed in Fig. 2(b), the dephasing factor shows nonmonotonical 
oscillatory decay with zero coherence revivals. In addition, the dephasing factor gets reduced and the nonmono-
tonical oscillations in the dephasing factor get enhanced as the environmental memory effect increases. These 
results imply that the memory effect of the environmental noise can reduce the quantum dynamical dephasing 
but enhance the non-Markovian character exhibited in the quantum dephasing dynamics of the system.

Figure 3 shows the non-Markovianity   induced by the non-Markovian RTN as a function of the coupling ν 
for different values of the memory decay rate κ. For a given memory decay rate, the quantum dephasing dynamics 
of the system displays an obvious transition from Markovian (zero non-Markovianity) to non-Markovian 
(nonzero non-Markovianity) as the coupling increases and the transition boundary depends on the memory 
decay rate: The stronger the environmental memory effect is, the smaller the transition boundary of the coupling 
is. In addition, for a given coupling, as the memory decay rate decreases, the non-Markovianity increases. These 
results indicate that the non-Markovian character of the environment can increase the non-Markovian character 
in the quantum dephasing dynamics of the system and expand the non-Markovian dynamics region.

Modulatable memory kernel.  We consider that the environmental noise is a modulatable non-Markovian 
process, where the memory kernel of the environment satisfies K t e t( ) cos[ ( )]t( )τ κ τ− = Ω −κ τ− −  with the 
decay rate κ and external modulation frequency Ω of the environment82,83. In this case, the memory kernel in 
Laplace domain yields =

∼ κ κ

κ
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( )2 2  and the dephasing factor in Eq. (17) and its first derivative in Eq. (23) 
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Figure 2.  Time evolution of the dephasing factor F t( )| | in the presence of the non-Markovian RTN for different 
values of the memory decay rate κ in (a) the weak coupling regime with ν λ= .0 6  and (b) the strong coupling 
regime with ν λ= 3 . Dash black line indicates the memoryless case of the RTN.
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The dephasing factor in time domain can be, by taking the inverse Laplace transform of Eq. (32), expressed in 
the form as we derived in Eq. (22). The expression of the dephasing factor in Eq. (33) is consistent with that in Eq. 
(32) when there is no environmental external modulation 0Ω = .

We first plot the phase diagram in the κ ν∼  plane to identify Markovian and non-Markovian quantum dynamics 
regions of the system in the presence of the non-Markovian RTN without frequency modulation 0Ω =  in Fig. 4. As 
shown in the figure, we can clearly see that the quantum dynamics of the system is not always non-Markovian when the 
environmental statistical property is non-Markovian, and that the non-Markovian character in the quantum dephasing 
dynamics depends both on the environmental non-Markovian character and the coupling between the system and the 
environment64. In strong coupling (ν λ> ), the quantum dephasing dynamics of the system is always non-Markovian 
(nonzero non-Markovianity) whereas it exhibits a transition from non-Markovian (nonzero non-Markovianity) to 
Markovian (zero non-Markovianity) in weak coupling (ν λ< ) resulting from the memory effect of the environmental 
noise: The stronger the coupling is (the larger ν is), the larger the threshold value of the memory decay rate thκ  for the 
transition boundary is. In addition, the threshold value thκ  depends closely on the value of the coupling ν. For example, 
the threshold value of the memory decay rate κ is 1 23thκ λ= .  for the coupling ν λ= .0 8 .

Figure 5 shows the time evolution of the dephasing factor F t( )| | induced by the non-Markovian RTN for dif-
ferent values of the external modulation frequency Ω of the environment in two dynamics regions identified in 
Fig. 4. In the Markovian dynamics region as shown in Fig. 5(a), the dephasing factor first decays fast and then 
starts to display non-Markovian character as the external modulation frequency of the environment increases. 
These results indicate that the environmental external modulation can make the quantum dephasing dynamics of 
the system undergo a transition between Markovian (zero non-Markovianity) and non-Markovian (nonzero 
non-Markovianity) in this dynamics region. In contrast to the Markovian dynamics region, the environmental 
external modulation can only enhance the non-Markovian character in the quantum dephasing dynamics in 
non-Markovian dynamics region as displayed in Fig. 5(b). These results suggest that the quantum dephasing 
dynamics can be well modulated by the external modulation frequency of the environment.
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Figure 3.  Scaled non-Markovianity = +
∼

/( 1)    as a function of the coupling ν for different memory 
decay rate κ. Dash black line indicates the case of the Markovian RTN.

Figure 4.  Phase diagram via intensity plot of the scaled non-Markovianity = +
∼

/( 1)    in the κ ν∼  plane for 
the transition between Markovian and non-Markovian dephasing dynamics with no frequency modulation 0Ω = .
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Conclusions
We have theoretically studied the dynamical dephasing of a quantum system coupled to an environment exhibit-
ing non-Markovian random telegraph fluctuations which depends on the environmental memory effect. We have 
derived the exact expression of the dephasing factor closely associated with the memory kernel of the environ-
mental noise. Based on three important types memory kernels of the environmental noise, we have shown that 
the dephasing dynamics of the quantum system is not always non-Markovian, and that the non-Markovian char-
acter in the quantum dephasing dynamics depends both on the environmental non-Markovian character and the 
coupling between the system and environment. Moreover, we have shown that the quantum dephasing dynamics 
of the system can be modulated by the external modulation frequency of the environment. We hope that the 
investigation in the paper will be helpful for further understanding of the non-Markovian quantum dephasing 
dynamics of open quantum systems and will be effective in suppressing and controlling the quantum dynamical 
dephasing in the presence of a non-Markovian environment.
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