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ABSTRACT

Soils are reservoirs of antibiotic resistance genes (ARGs), but environmental dynamics of ARGs are largely unknown.
Long-term disturbances offer opportunities to examine microbiome responses at scales relevant for both ecological and
evolutionary processes and can be insightful for studying ARGs. We examined ARGs in soils overlying the underground coal
seam fire in Centralia, PA, which has been burning since 1962. As the fire progresses, previously hot soils can recover to
ambient temperatures, which creates a gradient of fire impact. We examined metagenomes from surface soils along this
gradient to examine ARGs using a gene-targeted assembler. We targeted 35 clinically relevant ARGs and two horizontal
gene transfer-related genes (intI and repA). We detected 17 ARGs in Centralia: AAC6-Ia, adeB, bla A, bla B, bla C, cmlA, dfra12,
intI, sul2, tetA, tetW, tetX, tolC, vanA, vanH, vanX and vanZ. The diversity and abundance of bla A, bla B, dfra12 and tolC
decreased with soil temperature, and changes in ARGs were largely explained by changes in community structure. We
observed sequence-specific biogeography along the temperature gradient and observed compositional shifts in bla A, dfra12
and intI. These results suggest that increased temperatures can reduce soil ARGs but that this is largely due to a
concomitant reduction in community-level diversity.
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INTRODUCTION

The dissemination of antibiotic resistance genes (ARGs) is a
pressing public health concern. The One Health Initiative recog-
nizes the intrinsic link between evolution of bacterial resistance
in clinical and environmental settings (Kahn 2016). Clinically rel-
evant ARGs have been detected in ‘pristine environments’ (Lang
et al. 2010) as well as a variety of marine, plant and soil mi-

crobiomes (Fierer et al. 2012; Gibson, Forsberg and Dantas 2014;
Wang et al. 2015a; Fitzpatrick andWalsh 2016). Soil is considered
to be an environmental reservoir of ARGs, with greater ARG di-
versity than the clinic (Nesme and Simonet 2015). Despite that
we can easily detect ARGs in soil, dynamics of soil ARGs are
not fully understood (Allen et al. 2010). Understanding of the
dissemination of ARGs in the environment is impeded by our
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modest understanding of their diversification,maintenance and
dissemination (Hiltunen, Virta and Laine 2017).

Understanding the propagation and dissemination of ARGs
in soil is difficult because multiple interacting factors influence
their fate (Allen et al. 2010; Berendonk et al. 2015). Perhaps most
obviously, ARGs can be selected when there is environmental
exposure to antibiotic (Laine, Hiltunen and Virta 2016). Environ-
mental exposure can result from the anthropogenic use of an-
tibiotics, for example in agriculture or via wastewater treatment
outputs (Kumar et al. 2005; Rizzo et al. 2013), or it can result from
environmental antibiotic production by microorganisms in situ
(Nesme and Simonet 2015). Antibiotic exposure can kill sensitive
populations and allow for propagation of resistant strains. Ad-
ditionally, ARGs can be horizontally transferred (Hiltunen, Virta
and Laine 2017) and are often detected on plasmids and other
mobile genetic elements (Van Hoek et al. 2011; Pal et al. 2015).
Thus, ARGs on mobile genetic elements may be disseminated
more rapidly than through population growth alone. Further-
more, several ARGs are thought to have evolved >2 billion years
ago (Aminov and Mackie 2007), and these may be maintained
in the absence of selective pressure from antibiotics and trans-
ferred vertically. Another complicating factor for understand-
ing ARG dissemination is the influence of the dynamics of soil
microbial communities. While interspecies competition can im-
pact ARG abundance, one study of many habitats showed that
abiotic soil conditions can be important drivers of ARG profiles
(Fierer et al. 2012). Anthropogenic influences, such as nitrogen
addition to the soil, can also impact ARGs (Forsberg et al. 2014).
Similarly, studies with changing abiotic conditions, such as in-
creased temperatures, have reported subsequent reductions in
ARG abundance (Qian et al. 2016; Tian et al. 2016). In these exam-
ples and others, environmental disturbance can alter soil micro-
bial community structure (Shade et al. 2012; Garner et al. 2016;
Nunes et al. 2016), and then can impact local ARGs and their
dissemination.

Long-term disturbances that impact multiple microbial gen-
erations can provide opportunities to investigate the changes
in ARGs in response to environmental stress. One such distur-
bance is Centralia, PA, the site of an underground coal seam
fire that ignited in 1962. As this town was evacuated in 1984,
it also represents a post-urban ecosystem of minimal contem-
porary anthropogenic influence. This fire continues to advance
along the coal seam, creating a gradient of contemporary and
historical fire impact and allowing for observation of multiple
microbial generations’ responses to disturbance and their po-
tential recovery. Surface soil microbial communities in Centralia
are exposed to elevated temperatures (21◦C–57◦C) (Lee et al. 2017)
and coal combustion pollutants (Janzen and Tobin-Janzen 2008)
that include trace elements such as arsenic, copper, aluminum
and lead (Janzen and Tobin-Janzen 2008; Melody and Johnston
2015). While temperature increases are large, deposition of coal
combustion pollutants occurs at a slow rate and varies based
on the subsurface structure and geochemical properties of the
burning coal (Janzen and Tobin-Janzen 2008). Depth of the coal
seam varies from surface level to 46 m (Elick 2011). Further-
more, surface temperatures cool to ambient levels as the fire
progresses, but coal combustion pollutants are not necessar-
ily removed. Previously, we observed changes in bacterial and
archaeal community structure with fire history that was well
explained by temperature rather than soil properties such as
arsenic concentration (Lee et al. 2017).

We leveraged the long-term disturbance in Centralia to ex-
amine ARG biogeography given both the abandonment of hu-
man habitation and the presence of multigenerational stres-
sor for the microorganisms. We investigated 12 metagenomes

of microbial communities from surface soils along the Centralia
temperature gradient for 35 clinically relevant ARGs conferring
resistance to eight classes of antibiotics, as well as multidrug
efflux pumps and two HGT-relevant genes repA and intI. We
used gene-targeted assembly of the metagenomes to capture a
breadth of ARG diversity. To examine the potential extent of HGT
in Centralia, we askedwhether changes in community structure
explained any changes in ARG profiles. Because we previously
identified changes in community structure along the stressor
(Lee et al. 2017), we also asked whether functional redundancy
(e.g. different ARG sequences belonging to the same resistance
class) within the soil microbial community moderated the im-
pact of a disturbance on ARG profiles. Functional redundancy
allows that changes in community structure can occur without
subsequent change inARG abundance. Also, becausewe focused
on clinically relevant ARGs rather than potentially novel ARGs
from thermophilic lineages, we hypothesized that ARG abun-
dance would decrease with temperature, as observed in other
studies (Diehl and Lapara 2010; Qian et al. 2016; Tian et al. 2016).
We were, however, also interested in biogeography of specific
gene sequences and hypothesized that they may have unique
responses, even within the same resistance class.

METHODS
Reference database construction

Reference gene databases of diverse, near full-length sequences
were constructed using selected sequences from FunGene
databases (Fish et al. 2013) for the following genes: AAC6-Ia,
adeB, ANT3, ANT6, ANT9, bla A, bla B, bla C, CAT, cmlA, dfra1,
dfra12, ermB, ermC, intI,mexC,mexE, qnr, repA, strA, strB, sul2, tetA,
tetD, tetM, tetQ, tetW, tetX, tolC, vanA, vanC, vanH, vanT, vanW,
vanX, vanY and vanZ. Seed sequences and Hidden Markov Mod-
els (HMMs) for each gene were downloaded from FunGene, and
diverse protein and corresponding nucleotide sequences (ref-
erence sequences) were selected with gene-specific search pa-
rameters (Table S1, Supporting Information). Briefly, minimum
size amino acid was set to 70% of the HMM length; minimum
HMM coverage was set to 80% as is recommended by Xander
software for targeted gene assembly (Wang et al. 2015b); and a
score cutoff was manually selected based on a notable score re-
duction between consecutive sequences, as suggested by the Ri-
bosomal Database Project (personal communication). Reference
sequences were de-replicated before being used in subsequent
analysis, and final sequence numbers are included in Table S1
(Supporting Information).

Sample collection, sequencing and quality control

Study site, soil sampling and soil biogeochemistry were all per-
formed as described (Lee et al. 2017). Briefly, surface soils were
sampled along a gradient of fire impact that was determined
from historical characterizations of the site (Elick 2011): fire af-
fected (n = 6), recovered (n = 5) and reference (n = 1). Fire-
affected soils had elevated temperatures due to fire; recovered
soils were at ambient temperature but historically had ele-
vated temperatures from the fire; and the reference soil was
never impacted by the fire. The reference sample was used as
a qualitative control and is not intended as a quantitative and
definitive comparison to non-impacted soils. Microbial com-
munity DNA was obtained using a phenol chloroform extrac-
tion (Cho et al. 1996) and purification with MoBio DNEasy Pow-
erSoil kit without vortexing. All samples were sequenced on
the Illumina HiSeq 2500 platform with 2 × 150 bp paired-end
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format at the Joint Genome Institute and quality filtered using
BBDuk (https://sourceforge.net/projects/bbmap/). Metagenome
coverage was estimated using Nonpareil (Rodriguez-R and
Konstantinidis 2014).

Gene-targeted assembly and quality control

A gene-targeted metagenome assembler (Wang et al. 2015b)
was used to assemble ARGs of interest from quality-filtered
metagenomes. For each gene of interest, seed sequences,
HMMs and reference gene databases, as described above, were
included. The rplB reference gene database, seed sequences and
HMMs from the Xander package were used. In most instances,
default assembly parameters were used, except to incorporate
differences in protein length (i.e. if the protein was shorter than
150 aa (default), as was the case for dfra1, dfra12, AAC6-Ia, ermB,
ermC, qnr, vanX and vanZ) (Table S1, Supporting Information).
While the assembler includes chimera removal, additional
quality control steps were added. Specifically, final assembled
sequences (contigs) were searched against the reference gene
database as well as the non-redundant database (nr) from NCBI
(28 August 2017) using BLAST (v. 2.2.26, Camacho et al. 2008).
Genes were re-examined if the top hit had an e-value > 10−5 or
if top hit descriptors were not the target gene. Genes with low-
quality results were re-assembled with adjusted parameters.
Aligned sequences from each sample were dereplicated and
clustered at 90%, 97% and 99% amino acid identity using the RDP
Classifier (Wang et al. 2007). Our quality control analyses can
be accessed on GitHub (‘assembly˙assessments’ repository in
https://github.com/ShadeLab/PAPER Dunivin Antibiotics 2017/
tree/master/assembly assessments).

Ecological analyses

Phylum-level rplB relative abundance was used to examine dif-
ferences in community structure. Relative abundance for each
site was averaged among samples of the same fire classifica-
tion (i.e. fire-affected, recovered, reference) and compared to
16S rRNA gene sequence data from a previous work (Lee et al.
2017). For subsequent ecological analyses, the RDP Classifier
was used to generate an OTU table from 90%, 97% and 99%
amino acid identities. We refer to contigs clustered at 99% iden-
tity as ‘ARG sequences’ throughout the remainder of the text.
The OTU tables were analyzed in R (R Development Core Team
2008). OTU tables were separated based on the gene(s) of in-
terest (rplB and ARGs). Due to Nonpareil-estimated differences
in coverage, rplB and ARG OTU tables were rarefied to an even
sampling depth (258 and 180 assembled sequences, respectively)
using the vegan package (Oksanen et al. 2017). Pieluo’s even-
nesswas calculated, and richnesswas estimated using PhyloSeq
(McMurdie and Holmes 2013). The Psych package was used to
calculate Spearman’s rank correlations between alpha diversity
(richness and evenness) and soil temperature for both rplB and
ARGs. Bray-Curtis distance was used to obtain dissimilarity ma-
trices, and principal component analysis was used to visual-
ize beta diversity. Distance matrices of rarefied, relativized data
were analyzed using Mantel tests with Spearman’s rank corre-
lations. Mantel tests were performed on rplB, ARG and spatial
distance matrices of sample locations.

Resistance gene comparison

Weassessed ARG biogeography at the gene, taxonomic class and
sequence levels. To compare the abundance of ARGs among data

sets, total counts of rplB were used to normalize the abundance
of each ARG sequence. Total counts of each ARGwere calculated
as the sum of the relative abundance of each ARG sequence.
The Psych package (Revelle 2017) was used to calculate Spear-
man’s rank correlations between soil geochemical properties
and total gene counts for each ARG. Pairwise correlations for the
total abundance of each resistance gene were also calculated.
For taxonomic analysis of each ARG, the top BLAST result and
the taxize package (Chamberlain et al. 2017) were used to assign
taxonomy to each ARG sequence. When the top hit was an un-
cultured bacterium, the second or third hit was used, and when
all three top hits were unknown, the taxonomy was labeled un-
known. Total counts of each taxonomic class were summed for
each ARG, and Spearman’s rank correlations were used to test
for correlations between class abundance and temperature for
all ARGs with representatives from at least three taxonomic
groups. Spearman’s rank correlations were performed on nor-
malized and relativized abundance information, but only rela-
tivized abundance is shown because it agreed with normalized
data and also had unique features. Furthermore, we examined
biogeography of individual ARG sequences. A Venn analysis was
performed between ARGs in fire affected and recovered sam-
ples using the VennDiagram package (Chen and Boutros 2011).
Themeannormalized abundance for eachARG sequence among
samples was plotted against the number of sites it was observed
in (occurrence). ARG sequences present in only one site were
subsequently removed, and we used hierarchical cluster and
heatmap analysis with the pheatmap package (Kolde 2015) to
examine similar sequence biogeography along the temperature
gradient.

Reproducibility, code and data

Our computing workflows and R script can be accessed
on GitHub (https://github.com/ShadeLab/PAPER Dunivin
Antibiotics 2017). Metagenomes are available from IMG/GOLD
study ID: Gs0114513.

RESULTS AND DISCUSSION
Soil samples and gene-targeted assembly

We previously collected soils along the Centralia temperature
gradient (Lee et al. 2017). We submitted DNA extracted from 12
soils (temperature range = 12.1◦C–54.2◦C) to the Joint Genome
Institute for small-scale Community Science Project; we did not
submit all 18 originally collected samples because there was a
12-sample limit with the small-scale award, and so we chose
samples for sequencing that were representative of the thermal
gradient. We sequenced metagenomes from soils that had ele-
vated temperatures due to the fire (fire-affected, n = 6), those
that were historically impacted (recovered, n = 5) and those
with no documented impact (reference, n = 1) (Fig. S1, Support-
ing Information). Quality-filtered metagenome size ranged from
21 to 51 Gbp, and Nonpareil-estimated coverage (Rodriguez-R
and Konstantinidis 2014) varied from 29.12% to 89.96% (Table S2,
Supporting Information). Though we measured a suite of geo-
chemical data (Table S3, Supporting Information), our previous
work found temperature to be the strongest driver of commu-
nity structure (Lee et al. 2017), and we found that ARGs only cor-
related with temperature (Table S4, Supporting Information).

We used a gene-targeted metagenome assembler to probe
Centralia metagenomes for ARGs. While this gene-centric
methodology does not permit analysis of entire gene cassettes
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Table 1. Resistance genes tested in this study.

Antibiotic specificity Gene

Aminoglycoside AAC6-Ia, ANT3, ANT6, ANT9, strA,B
β-Lactams bla a, b, c
Chloramphenicol CAT, chloramphenicol efflux pump
Macrolide ermB,C, qnr
Multidrug efflux adeB, mexC,E, tolC
Plasmid intI, repA
Sulfonamide sul2
Tetracycline tetA,D,M,Q,W,X
Trimethoprim dfra1, dfra12
Vancomycin vanA,C,H,T,W,X,Y,Z

or flanking regions, it improves detection of low abundance
genes, increases the length of assembled gene sequences and is
capable of detecting strain-level sequence variation (Wang et al.
2015b). In addition to assembling ARGs of interest, we assem-
bled rplB, a single copy gene and phylogenetic marker. We found
that rplB assembled using these methods was comparable 16S
rRNA gene data (Supplementary results; Fig. S2, Supporting
Information), showing that gene-targeted assembly produced
results consistent with previous work.

Detected ARGs and changes in their abundance with
temperature

We examined a suite of genes encoding resistance to amino-
glycosides, beta-lactams, chloramphenicol, sulfonamides, tetra-
cyclines, trimethoprim and vancomycin, as well as plasmid-
related and genes encoding multidrug efflux pumps (Table 1).
From Centralia metagenomes, we assembled 1165 unique ARGs
clustered at 99% amino acid identity. Thoughwe targeted 35 dis-
tinct types of ARGs and two HGT-related genes, only 17 of these
could be assembled from Centralia metagenomes. The genes
ANT3, ANT6, ANT9, CAT, dfra1, ermB, ermC,mexC,mexE, qnr, repA,
strA, strB, tetD, tetM, tetQ, vanC, vanT, vanW and vanY were not
observed, suggesting that they were either below detection or
absent. For detected ARGs, we found positive correlations be-
tween vanA, H and X genes and between tolC and dfra12 (Fig.
S3, Supporting Information). vanAHX genes are known to be as-
sociated with one another in VanA-type operons (Périchon and
Courvalin 2009), and genes tolC and dfra12 have previously been
observed in isolates (Wannaprasat, Padungtod and Chuanchuen
2011). While sul2 and intI1 have been previously shown to be cor-
related (Johnson et al. 2016), we did not observe a significant cor-
relation between these genes. This discrepancy could be because
our analysis does not distinguish between integron classes. Sev-
eral ARGs in Centralia were negatively correlated with soil tem-
perature (Fig. 1; Table S4, Supporting Information), but no ARGs
were correlated with other measured soil geochemical proper-
ties (results not shown; Table S3, Supporting Information). The
most abundant ARGs detected in Centralia were adeB, bla B and
dfra12 (Fig. 1; Fig. S4, Supporting Information). We note that
the highest ARG normalized abundance was typically in Cen04
(13.3◦C) but that this is due to low rplB abundance in the sample.

Our results are generally in agreement with other studies of
ARGs in soils. For example, Fitzpatrick and Walsh (2016) also
reported low abundance or absence of qnr, tet and van genes
in soil. Several studies also reported that genes encoding di-
hydrofolate reductases and/or beta-lactamases were abundant
in soils (Forsberg et al. 2014; Fitzpatrick and Walsh 2016; Li,
Xia and Zhang 2017). Previous studies reported reductions in

clinically relevant ARGs with increased temperatures in di-
gesters and compost (Diehl and Lapara 2010; Qian et al. 2016;
Tian et al. 2016). Diehl and Lapara (2010) observed a negative rela-
tionship between temperature and genes encoding tetracycline
resistance and class 1 integrons in anaerobic digesters, but not
aerobic ones. This may be further relevant to Centralia soils, as
there likely are pockets of anaerobic activity in hot soils, espe-
cially at venting sites, which havemeasurably higher%moisture
content due to steam escaping (Table S3, Supporting Informa-
tion). To our knowledge, this is the first description of a reduc-
tion in ARG abundanceswith temperature in situwith soil. These
results suggest that ARGs may be reduced in soil environments
by increasing temperature. Thus, we speculate that increases
in temperatures expected to reduce microbial community di-
versity may result in decreased clinically relevant ARGs in the
environment.

Diversity of ARGs

Wealso examined the amino acid-level diversity of ARGs in Cen-
traliametagenomes.We tested sequence cutoffs of 90%, 97%and
99% amino acid identity, but overarching patterns did not vary
based on sequence cutoff (results not shown). Thus, our subse-
quent diversity analysis applied the most stringent cutoff (99%
amino acid identity), as was applied in the original gene targeted
assembly paper (Wang et al. 2015b). ARG richness was negatively
correlated with temperature (ρ = −0.57; P < 0.05), but evenness
had a variable response with temperature (ρ = −0.47; P > 0.05)
(Fig. 2B and D). ARG alpha diversity (within-sample) trends were
thus similar to rplB and 16S rRNA gene diversity trends (Sup-
plementary results; Fig. 2A and C), highlighting the influence of
community structure on soil ARG profiles. In addition, overall
differences in the composition of ARGs among sites were related
to differences in rplB community structure (Mantel’s r = 0.54;
P < 0.05 on 999 permutations; Fig. S5, Supporting Information).
This result also supports that compositional shifts in member-
ship amongCentralia siteswere driving the observed differences
in ARGs, not propagation of ARGs by gene transfer. These results
agree with a recent analysis that reported congruence between
community structure and ARG profiles in soils (Forsberg et al.
2014). Similar to patterns in rplB and 16S rRNA genes, ARG pro-
files could not be explained by distance between sample sites
(Mantel’s r = 0.01, P > 0.05 on 999 permutations). This suggests
that local dispersal of ARGs, which could be indicative of HGT,
is not a common mechanism of ARG dissemination in this sys-
tem. However, when we considered fire-affected and recovered
metagenomes separately, we found that rplB community struc-
ture explained ARG composition in fire-affected soils (Mantel’s
r = 0.71; P < 0.05 on 719 permutations), but not in recovered soils
(Mantel’s r = 0.30; P > 0.05 on 119 permutations). We determined
that this result was not driven by one anomalous sample by per-
forming iterative ‘leave-one-out’ Mantel tests with four of five
recovered soils, and all tests showed no correlation between rplB
and ARGs (results not shown). The reason for no relationship be-
tween rplB and ARG in recovered soils is unclear (one hypothesis
is that there is no signal given higher diversity), but this observa-
tion very indirectly suggests a potential larger influence of HGT
in recovered soils than fire-affected soils that could be explored
in future work.

ARG distribution and sequence-specific biogeography

Only 12 ARG sequences were shared between fire-affected and
recovered soils (Fig. 3A). On one hand, this is expected because
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line and P-value corresponding to the Spearman’s rank correlation are shown. Shape indicates soil classification based on fire history.
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soils are heterogeneous and have high ARG diversity (Fitzpatrick
and Walsh 2016). Forsberg et al. (2014) observed 2895 ARG se-
quences in a functional antibiotic resistance screen from18 agri-
cultural and grassland soils. Of these, only 2.6% were present
in two or more soils, which is comparable to our data (1.1%).
Similarly, the distinction between fire-affected and recovered
soil in our study is in part explained by generally high ARG di-
versity, with minimal overlap of ARG sequences detected be-
tween all sites. Furthermore, most ARG sequences (94.16%),
whether they were rare (<1.5% normalized abundance to rplB)
or prevalent, were detected only in one metagenome (Fig. 3B).
Though the gene-targeted assembly approach maximizes ob-
servation of diversity given metagenome coverage, it is pos-
sible that even greater coverage of these metagenomes could

result in detection ofmore shared ARG sequences between sam-
ples. There were 13 distinct biogeographical dynamics that indi-
cated genes sensitive to the fire, and these were classified into
two categories based on their prevalence and patterns of detec-
tion: abundant-transient and rare-transient sequences (Fig. 4).
Abundant-transient ARG sequences belonged to genes adeB,
bla B, dfra12, intI, sul2 and vanZ. These sequences had a rplB-
normalized abundance of ≥1.5% of the total community within
at least onemetagenome. Rare-transient biogeographic patterns
were observed for ARG sequences belonging to adeB, bla A, bla B,
CEP, dfra12, intI, tolC, vanA, vanX and vanH. Rare-transient se-
quences represented those with ≤1.5% of the total commu-
nity. However, stepwise relationships with temperature were
observed for several ARG sequences, suggesting the potential
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enrichment by fire formicrobes harboring these ARG sequences.
Two clusters of rare-transient sequences with no temperature
relationship were observed based on differences in normalized
abundance (Fig. 4), suggesting that they had no relationshipwith
fire or temperature. Thus, we observed sequence-specific bio-
geography for ARG sequences along the temperature gradient,
showing that the average changes in ARG abundance do not al-
ways fully explain the biogeography of each unique resistance
gene sequence detected within that gene family.

ARG compositional shifts

We examined both rplB-normalized and relativized abundance
patterns to compare changes in composition of ARGs and
changes in proportional contributions of ARGs. For this analysis,
compositionwas considered at the phylumor Proteobacteria class
levels based on top BLAST hits. For ARGs that represented more
than three phyla or Proteobacteria classes (bla A, bla B, dfra12, intI)
(Tables S5 and S6, Supporting Information), we explored for cor-
relations with temperature. We observed changes in ARG com-
position with temperature for bla A, dfra12 and intI (Fig. 5).

Generally, community structure was associated with ARG
composition. rplB-level reduction in Betaproteobacteria corre-
sponded with reductions in Betaproteobacteria-related ARG.
Betaproteobacteria-related bla A and dfra12 genes decreased with
temperature (Fig. 5; Table S6, Supporting Information). Thus, re-
ductions in total bla A and dfra12 counts are largely explained
by a reduction in Betaproteobacteria. This pattern does not ex-
tend to bla B since Betaproteobacteria-related bla B genes were

only detected in one soil (Cen16). We did not detect changes
in Gammaproteobacteria based on rplB. This corresponded with
consistent relative abundances of Gammaproteobacteria-related
bla A, bla B, dfra12 and intI (Table S6, Supporting Informa-
tion). Gammaproteobacteria-related dfra12 increased in relative
abundance with soil temperature (ρ = 0.95, P < 0.05), fur-
ther highlighting that a reduction in total dfra12 relative abun-
dance is not due to changes in Gammaproteobacteria-related
sequences. Phylum-level community structure, therefore, corre-
sponded with compositional changes in ARGs, highlighting the
influence of the underlying community on soil ARGs.

We observed evidence for functional redundancy of ARGs in
Centralia through compositional shifts along the temperature
gradient. Total bla A relative abundance decreased with temper-
ature (Fig. 1); however, taxonomic groups of bla Awere differen-
tially impacted along the temperature gradient (Fig. 5; Table S6,
Supporting Information). Both normalized and relativized abun-
dance of Actinobacteria-related bla A genes increased (ρ > 0.6,
P < 0.05) while Betaproteobacteria-related bla A genes decreased
(ρ < 0.6, P < 0.05) with temperature (Table S6, Supporting Infor-
mation). Thus, fire impacted the abundance and composition of
bla A. A decrease in total bla A (Fig. 1) was accompanied by an in-
crease in Actinobacteria-related bla A. This asymmetric response
with temperature suggests an impact of functional redundancy
on soil ARG profiles. We also observed a shift in intI composition
despite consistent intI abundance along the temperature gradi-
ent. The relative abundance of Beta- and Gammaproteobacteria-
related intI decreased with temperature (ρ < 0.6, P < 0.05), but
the relative abundance of Nitrospirae-related intI increased with
temperature (ρ > 0.6, P < 0.05) (Fig. 5; Table S6, Supporting In-
formation). We therefore observed changes in composition of
intI with fire despite a lack of change in total intI abundance.
Notably, previous studies have described Nitrospirae-related intI.
Oliveira-Pinto et al. (2016) isolated an intI gene cassette related to
Nitrospirae from a metal-rich stream, and Goltsman et al. (2009)
identified both integrase and ARGs on chromosomes of Nitrospi-
rae strains isolated from acid mine drainage. It is unclear, how-
ever, whether Nitrospirae-related intI genes are associated with
ARG transfer. As intI encodes for a DNA integrase, this result
suggests that Nitrospirae might contribute more to HGT in fire-
affected soils, but we cannot determine whether this putative
gene transfer would include ARGs. We posit that reductions in
ARG abundance due to increased temperature could increase
subsets of clinically relevant ARGs, and studies using temper-
ature as a control for ARGs should consider sequence-level ARG
dynamics within the system.

CONCLUSIONS

This case study of ARG biogeography over a long-term, severe
thermal disturbance demonstrates the importance of commu-
nity structure on soil ARG abundance and composition. Despite
the stressor and the withdrawal of human activity, the diversity
of ARG observed in Centralia is comparable to other soil systems
(Forsberg et al. 2014; Fitzpatrick andWalsh 2016). For several clin-
ically relevant ARGs, we observed a reduction in total abundance
with increased temperature. While this has been reported in an-
thropogenic systems (Diehl and Lapara 2010; Qian et al. 2016;
Tian et al. 2016), we further probed Centralia datasets for com-
positional and sequence-specific ARG biogeography and found
nuanced results. Generally, the reduction in ARG abundance
could be explained by indirect effects (i.e. compositional shifts
in the community). We posit that increased temperatures could
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result in a reduction in the diversity and abundance of ARGs in
the environment, but our data also suggest that this reduction
will not impact all ARG sequences similarly. ARG biogeographi-
cal dynamics in soil are thus largely dependent on community
structure, which may also drive observed fine-scale abundance-
occurrence patterns.

SUPPLEMENTARY DATA

Supplementary data are available at FEMSEC online.
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