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Abstract: During the operation of rotating machinery, the vibration signals measured by sensors are
the aliasing signals of various vibration sources, and they contain strong noises. Conventional signal
processing methods have difficulty separating the aliasing signals, which causes great difficulties in
the condition monitoring and fault diagnosis of the equipment. The principle and method of blind
source separation are introduced, and it is pointed out that the blind source separation algorithm
is invalid in strong pulse noise environments. In these environments, the vibration signals are first
de-noised with the median filter (MF) method and the de-noised signals are separated with an
improved joint approximate diagonalization of eigenmatrices (JADE) algorithm. The simulation
results found here verify the effectiveness of the proposed method. Finally, the vibration signal of the
hybrid rotor is effectively separated by the proposed method. A new separation approach is thus
provided for vibration signals in strong pulse noise environments.
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1. Introduction

In the process of rotating machinery operation, the vibration signals measured by vibration sensors
are often composed of the vibrations of multiple components [1,2]. Elucidating how to analyze, process,
and identify these signals are very important for judging the working state of rotating machinery and
fault diagnosis [3]. It is very difficult to analyze and process these sensor signals directly, which is bound
to cause a lot of difficulties in mechanical condition monitoring and fault diagnosis [4]. The traditional
modern signal processing method is obviously insufficient for vibration signals with multiple overlaps
for rotating machinery [5–8].

In recent years, the development of digital signal processing technology has changed rapidly,
and a large number of methods are used at present for the extraction and noise reduction of rotation
fault signals. The empirical mode decomposition (EMD) proposed by Norden E. Huang et al. [9] is a
non-stationary signal analysis method that can find the hidden feature information in a signal, and it is
widely used in the fault extraction and noise reduction of rotating machinery [10–12]. The minimum
entropy deconvolution [13,14] designs the optimal filter to eliminate the random noise in the bearing
impact signal under the condition of maximizing the kurtosis value. The adaptive filter [15,16] needs to
introduce an additional noise signal and extract the bearing fault impact signal by designing an optimal
filter. According to the characteristics of bearing fault vibration and impact, the matching trace [17,18]
defines atoms to disassemble the vibration signal and extract the impact characteristic components.
In mathematical morphology analysis [19,20], the pre-defined structure operator is used to carry out
corrosion, expansion, opening, and closing operations on the signal, such as to suppress the noise and
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extract the characteristic signal. Cyclostationary signal analysis [21,22] relies on the cyclostationary
characteristics of the bearing fault impulse signal to design a filter to eliminate random noise. A Wiener
filter [23,24] is used to eliminate the stationary random noise in the fault impulse signal. A wavelet
transform [25,26] first decomposes the vibration signal into different frequency bands, then defines
the threshold to eliminate the noise components and reconstructs the characteristic signal. A Kalman
filter [27,28] first establishes the vibration state model and signal observation model of rolling bearing,
then iteratively eliminates the noise in the signal. Stochastic resonance [29,30] uses noise to enhance
the fault characteristic component of the bearing vibration signal. All of the above mentioned methods
are universal, can effectively eliminate background noise and interference components, and extract
fault signals in specific environment, but they are not suitable for complex interference situations,
and especially when the interference components in vibration signals are similar to fault signals, it is
difficult to distinguish them by the above method, let alone eliminating interference components and
extract fault signals. Blind source separation (BSS) technology can realize the separation of multiple
aliased signals [1,31]. Meanwhile, blind source separation is not affected by the time and frequency
overlap of source signals, and the separated output signal will not lose the weak feature information in
the source signal.

So far, many effective and distinctive blind source separation algorithms have been constructed.
Typical algorithms include fast fixed-point [32] algorithms, natural gradient [28] algorithms,
second-order blind identification (SOBI) [33] algorithms, equivalation adaptive separation via
independence (EASI) [34] algorithms, and joint approximate diagonalization of eigenmatrices
(JADE) [35] algorithms. When separating the noiseless mixed signals, these algorithms all show
good separation performance. However, when separating signals with strong noise, there will be a lot
of errors, even when the signal-to-noise ratio is low, where there will be a completely wrong conclusion
because these algorithms are derived without considering the noise model. During the operation of the
machine, the vibration signal measured by the vibration sensor inevitably contains a signal noise. When
the blind source separation algorithm is used to separate the mixed vibration signals directly, it may
cause great errors or draw incorrect conclusions. Therefore, it is very important to reduce noise before
the blind separation of mechanical vibration signals, such as improve the signal-to-noise ratio. Median
filtering [36] is a kind of nonlinear filtering method which has a strong ability to suppress impulse
noise and has the characteristics of preserving edge profile information. It has been widely used in
signal processing, for instance, in suppressing impulse noise. In order to solve the problem of the
fault feature extraction of rotating machinery under a strong impulse noise, a fault separation method
combining median filtering (MF) and an improved JADE algorithm (MF-JADE) is proposed. First,
the median filtering method is used to de-noise the aliasing signal under strong impulse interference,
then the improved JADE algorithm is used to separate the signal after noise reduction.

The contents of the following sections are as follows: Section 2 introduces the multi-sensor
test system model. Section 3 presents the median filter algorithm. Section 4 presents the JADE
algorithm. Section 5 presents the blind source separation method of multi-fault vibration signals based
on MF-JADE. Simulated and experimental verifications are conducted in Sections 6 and 7. Finally,
the conclusions and outlook are both given in Section 8.

2. Multi-Sensor Test System Model

Generally, the signal measured by each sensor is a linear mixture of multiple original signals,
as shown in Figure 1.
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Figure 1. Diagram of a multi-source, multi-sensor testing procedure. 
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Figure 1. Diagram of a multi-source, multi-sensor testing procedure.

In Figure 1, the signals sent by n original signal sources (s1, s2, s3, . . . , sn) are measured by m sensors
and output observation signals (x1, x2, x3, . . . , xn). In the actual test process, when multiple sensors are
used for observation, the number of sensors are generally required to be not less than the number of
signal sources, that is, m ≥ n. Assuming that the transmission is instantaneous and that the sensor
receives a linear mixture of the original signal sources, the output of the i-th sensor is given as follows:

xi =
n∑

j=1

ai js j(t) + vi(t); i = 1, 2, 3, . . . , m (1)

where ai j is the mixing coefficient and vi(t) is the observation noise of the i-th sensor. The matrix form
is given as follows: 

x1

x2

x3
...

xn


=


a11 . . . a1n

...
...

...
am1 . . . amn
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sn
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(2)

which is also written as follows:
x(t) = As(t) + v(t) (3)

In the formula, A ∈ Rm×n is an unknown rank full-rank mixed matrix, s(t) is an n-dimensional
source vector, and v(t) is an additive noise vector, and its statistics are independent.

y(t) = Wx(t) (4)

The purpose of blind source separation is to find a separation matrix W, so that y(t) = Wx(t) is
the optimal estimate of s(t).

A is a mixed matrix. To separate the source signal is to find the separation matrix U to make the
following true:

_
S(t) = UX(t) = UAS̃(t) (5)

If
UA = I (6)

If I is a unit matrix, then
_
S(t) is an effective separation of S̃(t).

Since blind source separation estimates the input signal according to only the observed signal,
without any prior knowledge about the source signal, there are some uncertainties between the
estimated input signal and the source signal, which are mainly reflected in the uncertainties in the
estimation of the amplitude and order of the input signal. However, these two uncertainties do not
affect the analysis of the signal, because most of the information of the signal is contained in the
waveform rather than in the magnitude and order.
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3. Median Filter

Median filtering belongs to a nonlinear sorting statistical filtering method. It sets a fixed length
window to scan data by analyzing the distribution of sample data. In this process, the data in
the window are sorted and the median value is taken as the output data after filtering at a certain
point [37,38]. The median sequence obtained is the filtered signal. The sorting operation of this process
can suppress the impulse noise in the signal well, but it retains the edge profile information of the
original data and has a weak ability to suppress the stationary random noise superimposed linearly on
the signal, therefore, the median filter is mainly used in signal processing which needs to suppress the
impulse noise and retain the edge profile information.

The mathematical description of the one-dimensional signal median filter is given as follows.
Suppose that a dataset consisting of k data is

{
x(1), x(2), . . . , x(k)

}
, let D be a filter window of length

L = 2N + 1, where N is a positive integer. We define the dynamic sub-window as follows:

WN(m : n) =
{
x(m, n− i);−N ≤ i ≤ N

}
(7)

We set 2N + 1 data in the input window at the n-th time as{
x(n−N), . . . , x(n), . . . , x(n + N)|n + N ≤ k

}
, where the output of the median filter is then defined as

follows:

s(n) =
{

med[x(n−N), . . . , x(n + N)]; m ≺ n ≤ N −m
y(n); others

(8)

where med[•] denotes that the operation of the data in the window is arranged in an ascending order
and then the median value is taken.

Scanning the samples with windows, the output sequence median s(n)(1 ≤ n ≤ k−N + 1) is the
filtered signal. It can be seen that the superposition principle is no longer tenable at this time, so the
median filter is a non-linear filtering method, and its ability to suppress smooth noise is weak.

The above process shows that the median filter is a neighborhood operation, which selects the
median of the window sequence as the output calculation. In the output median sequence of dynamic
window D, there is a white noise component of a Gaussian distribution that is superimposed linearly
in the sequence, and it has a defect, that is, difficult to process the edge signal. Therefore, this filtering
method can protect the details of the linear superimposed stationary random noise and the ability to
suppress the Gaussian white noise is weak.

4. Independent Component Analysis Based on JADE

If the vibration source signals are statistically independent of each other, the process of blind
source separation is typically carried out to find the independent elements in the observed mixed
signals. The key step here is to find the mixed matrix A or the separated matrix U.

4.1. Hybrid Matrix A Estimation Based on the Fourth-Order Cumulant

The JADE algorithm is an algorithm based on a fourth-order cumulant. For n random variables
x1, . . . xn, fourth-order cumulants are defined as follows:

cum(xi, x j, xk, xl) = E[xix jxkxl] − E[xix j]E[xkxl] − E[xixk]E[x jxl] − E[xixl]E[x jxk] (9)

where i, j, k, l = 1, 2, . . . , n. The elements of row i and column j corresponding to the fourth-order
cumulant matrix can be expressed as follows:

[Cx(M)]i, j =
n∑

k=1

n∑
l=1

cum(xi, x j, xk, xl)mkl (10)
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where mkl is the k, l element of any weight matrix M of order n× n. If the mean value of each variable
in X is zero, according to Equations (9) and (10), the cumulant matrix of X can be expressed as follows:

CX(M) = E[(XTMX)XXT] −RXtr(MRX) −RXMRX −RXMTRX (11)

where tr(·) is the trace of the matrix and RX is the covariance matrix of matrix X. It has been proven
in [39] that the fourth-order cumulant matrix can be expressed as follows:

CX(M) = A∆(M)AT (12)

∆(M) = Diag(λ1aT
1 Ma1 . . . λnaT

n Man) (13)

where λi is the eigenvalue of CX(M), ai is the column vector of A, and i = 1, 2, . . . , n; A = [a1, a2, . . . , an].
Take two n× n-order matrices M1 and M2, then, according to Equation (10), we can obtain the

following:
CX(M1) = A∆(M1)AT (14)

CX(M2) = A∆(M2)AT (15)

∆(M1) and ∆(M2) are diagonal matrices.

G = CX(M1)C−1
X (M2) = (A∆(M1)AT)(A∆(M2)AT)

−1
= A∆A−1 (16)

Here, ∆ = ∆(M1)∆(M2)
−1 is a diagonal matrix.

From Equation (10), it can be concluded that

GA = A∆ (17)

Therefore, the diagonal element of ∆ can be regarded as the eigenvalue of G, and A is the
eigenvector of G. Theoretically, finding the eigenvector of G is equivalent to finding the mixed matrix
A.

4.2. Signal Whitening

The above discussion is based on the condition that matrix A is invertible and the source signals
are statistically independent of each other. Therefore, in the actual situation, it is necessary to first add
the central and whitening process to the observation signal to ensure that the conditions are established.
Centralization is to replace xi(t), i = 1, 2, . . . , n with xi(t) − E[xi], such that the observation sequence
xi(t) becomes a zero mean sequence. Whitening is to remove the correlation between the components
and ensure the statistical independence between the components. Without losing generality, if the
matrix of observation variables after centralization is still set as X(t) = [x1(t), . . . , xn(t)]

T, t = 1, 2, . . . , N,
where N is the number of observation points, then its covariance matrix can be expressed as follows:

RX = E[XXT] = VΣ2V (18)

If V is the unitary matrix and Σ is the eigenvalue diagonal matrix of RX, then the whitening
transformation matrix Q can be expressed as follows:

Q = Σ−1VT (19)

The whitened signal can be expressed as follows:

Z(t) = QX(t) (20)
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where the covariance matrix of which can be written as follows:

RZ = E[ZZT] = Σ−1VTVΣ2VTVΣ−1 = I (21)

In order to realize whitening, we make H = QA, then

Z(t) = HS̃(t) (22)

In Section 4.1, the process of finding A based on X(t) has been transformed into the process of
finding H based on the whitened matrix Z(t).

4.3. Joint Approximate Diagonalization

In practical calculation, because of the existence of numerical calculation error and interference
noise, it is impossible to achieve complete diagonalization, only approximate diagonalization. It is
impossible to find the optimal H value for any two matrices, i.e., M1 and M2, so the joint approximate
diagonalization method is used instead. Based on the whitened signal Z(t), we take a p n× n-order
arbitrary matrices M1, . . .Mp. In order to meet the accuracy requirements, we generally take p = n2.
Next, we find Cz(Mi)(i = 1, 2, . . . , p) for each Mi, find a unitary matrix H, and make the following
formula reach a minimum value:

C(H) =
∑
Mi

o f f [HTCZ(Mi)H] (23)

where o f f (·) is defined as the sum of squares of all nondiagonal elements of the matrix. The estimation
of the independent elements of mixed signals can be expressed as follows:

S(t) = HTZ(t) (24)

5. Blind Source Separation of Multi-Fault Vibration Signals Based on MF-JADE

Sensors are usually arranged on the X and Y axes of rotating machinery, the collected signals
are transmitted, and the statistical independence of each signal is easily affected by the transmission
time difference, noise, and so on. When blind source separation is performed, median filtering and
whitening processing are required first.

5.1. Basic Steps

Step 1: Carry out median filtering and centralized processing for the fault signal data observed in
each channel;

Step 2: Whiten the data with Equations (18)–(20) to get Z(t), t = 1, 2, . . . , N.
Step 3: Take p weight matrices for M1, . . .Mp, and calculate the fourth-order cumulant matrix

CZ(Mi), i = 1, 2, . . . , p of Z(t) according to Equation (11), where generally p = n2.
Step 4: The matrix group CZ(Mi) of Step 3 is jointly approximately diagonalized to minimize the

optimization objective function (Equation (23)), and thus the unitary matrix H is obtained.
Step 5: Calculate the separation matrix U = HTQ.
Step 6: Estimate the source signal according to Equation (5).
Step 7: Analyze the signal characteristics and conduct fault diagnosis.

5.2. Evaluation Index of Separation Effect

In order to quantitatively explain the effect of BSS, it is necessary to consider a variety of
performance evaluation indices to reflect the error measurement between the separated signal and the
original source signal from different aspects. In this paper, three independent meta-analysis evaluation
indices, i.e., the correlation coefficient, ρi, secondary residual, VQM, and performance index, PI, are
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introduced. If si is the i-th vibration source signal and
_
s is the separation signal corresponding to si,

the correlation between si and
_
s can be expressed as follows:

ρi =
cov(si,

_
s i)√

cov(si, si)cov(
_
s i,

_
s i)

(25)

where cov(·) represents variance. When the signal separated by the independent component analysis
(ICA) algorithm is close to the corresponding source signal, the closer the value of

∣∣∣ρi
∣∣∣ to 1, the better

the separation effect.
A calculation formula with an amplitude correction factor was adopted for the secondary residual,

which can be expressed as follows:

VQM = 10lg
E[

∣∣∣∣_s i(t) − rsi(t)
∣∣∣∣2]

E[
∣∣∣rsi(t)

∣∣∣2] (26)

The smaller the value of VQM, the better the separation effect. When the value is less than −23
dB, the separation effect is better.

By Equations (5) and (6), we let Φ = UA. Ideally it should be a unit array. Considering the
uncertainty of the arrangement order of output vectors in the ICA method, Φ can be a matrix with only
one element in each row and column. At this time, a source signal corresponds to a separate signal,
which is an effective separation. PI is the index to measure the difference between the actual Φ matrix
and the one-to-one correspondence requirements above. Its formula can be expressed as follows:

PI =
1

n(n− 1)

n∑
i=1

( n∑
k=1

|hik|

max j
∣∣∣hi j

∣∣∣ − 1) + (
n∑

k=1

|hki|

max j
∣∣∣h ji

∣∣∣ − 1)

 (27)

where hi j is the (i, j) element of matrix Φ. The smaller the PI value, the better the separation effect.
In addition, the vibration signals generated by the friction and collision of fatigue-damaged

parts must have certain periodic characteristics. Therefore, for rotating machinery, the frequency
characteristics, such as the resonance frequency, are key factors to reflect the effectiveness of the
separation signal, which also needs to be included in the evaluation index of the separation effect.

6. Simulations

In order to verify the effectiveness of the algorithm, three periodic signals with different frequencies
were used to simulate the vibration mixing caused by different rotating frequencies for machines.
Generally, the vibration signal of a single rotating shaft can be simply regarded as the superposition of
its rotating frequency and its double frequency. The expression of the source signal can be expressed as
follows:

si(t) =
2∑

k=1

Aki sin(2πk fit + ϕki) (i = 1, 2, 3) (28)

where Aki is the amplitude of the i-th source signal, fi is the frequency conversion of the i-th source
signal, k fi is the k-times frequency conversion of the i-th source signal, ϕki is the phase, and Aki and ϕki
are randomly generated by the computer. Here, the fi values are 25, 50, and 75 Hz respectively.

Figure 2a,b shows the time domain waveform and spectrum of the source signals. After the source
signal is mixed by a random matrix, Gaussian white noise and impulse noise with a 25 dB SNR are
added, and the time-domain waveform and spectrum are shown in Figure 2c,d. The time domain
waveform and spectrum obtained by the FastICA algorithm are shown in Figure 2e,f. Figure 2g,h show
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the time-frequency waveform based on MF-FastICA. Figure 2i,j show the time-frequency waveform
based on MF-JADE.

It can be seen from Figure 2f that in the case of pulse signal interference, the source signal has not
been separated, and there is a large error. This can show that the algorithm based on the noiseless
model will produce a lot of errors in the separation of noisy data, even leading to incorrect results.

Comparing Figure 2h,b, it can be seen that the corresponding relationship between the separated
signal and the source signal is y1 → s1, y2 → s2, y3 → s3 . It can be seen from Figure 2h that the
separation method based on MF-FastICA has more frequency components marked by red circles.
However, it is much better than the direct separation based on the FastICA method.

Comparing Figure 2j,b, it can be seen that the corresponding relationship between the separated
signal and the source signal is y1 → s1, y2 → s2, y3 → s3 . The separation and source signals only
exist in the uncertainty of amplitude and sequence, which does not affect the identification of fault
characteristics. In Figure 2j, the peaks of 75 Hz and 150 Hz are very obvious in the first figure, and other
frequencies are basically suppressed, indicating that this signal has been well separated. The peaks
of 50 Hz and 100 Hz are also very obvious in the second figure, although there are peaks of other
frequencies. In the third figure, the peaks of 25 Hz and 50 Hz are also very obvious. The evaluation
index values are shown in Table 1. As can be seen from Table 1, the method proposed in this paper is
better than the traditional methods of FastICA and JADE.
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Figure 2. Simulation analysis of vibration signals with strong noises. (a)The source signals in the
time domain. (b) The source signals in the frequency domain. (c) The signals mixed noises in the
time domain. (d) The signals mixed noises in the frequency domain. (e) The separated signals with
noise by joint approximate diagonalization of eigenmatrices (JADE). (f) The separated signals with
noise by JADE. (g) The separated signals by MF-FastICA. (h) The separated signals by MF-FastICA.
(i) The separated signals by the MF-JADE method. (j) The separated signals by the MF-JADE method.
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Table 1. Evaluation indices comparison for blind source separation.

Algorithm si ρi VQM/dB PI

Fast-ICA s1 0.455 1.612

s2 0.523 −2.765 3.415

s3 0.632 −3.316

JADE s1 0.579 −3.422

s2 0.814 −8.563 3.413

s3 0.611 −2.013

MF-FastICA s1 0.915 −14.213

s2 0.921 −13.612 0.965

s3 0.936 −15.518

MF-JADE s1 0.998 −23.612

s2 0.986 −20.965 0.311

s3 0.997 −22.953

The simulation results show that before the blind separation of vibration signals under the
interference of impulse noise, the median filter method can effectively remove impulse noise, improve
the signal-to-noise ratio, and effectively achieve the extraction of fault features.

7. Experiments

In order to verify the separation performance of the proposed algorithm for the measured mixed
vibration signal, an experimental platform was built to analyze the measured mixed rotor vibration
signal. Since there may be multiple potential source signals in the process of rotor rotation, such as the
vibration signal of ball bearings, axial vibration signals, and noise signals from shafts, and since the
sensor is measuring at the same time, the signal measured by the sensor is the mixed vibration signal.
In order to satisfy the assumption that the number of sensors is greater than or equal to the number of
source signals in blind source separation, five sensors were used in the experiment. The installation
positions of the sensors are shown in Figure 3b. The rotating speed of the rotor was about 3200r/min
and the sampling frequency was 5 KHz. Figure 3a shows the rotor test bench. The testbed was used to
simulate the rub impact fault, and the simulated fault debugging part is shown in Figure 3c.

Figure 4a shows the time-domain vibration signals collected by the sensor in the case of a rub
impact fault. In the case of a rub impact fault, the classic FastICA algorithm was directly used to
separate the sampling signals. The time-domain waveform of the separated signal is shown in Figure 5a.
Comparing Figures 4a and 5a, it can be seen there is no obvious difference between the mixed signal
measured by the actual rotor test bench and the separated signal in the time domain.

Figure 6a shows the time-domain vibration signals separated by the JADE algorithm. Figure 7a
shows the time-domain vibration signals separated by median noise reduction and the JADE algorithm.
Comparing Figures 4a and 7a, it can be seen the impulse noise is well suppressed after median filtering.

In order to compare the complex vibration of the rotor before and after separation more intuitively,
it is necessary to analyze the spectrum of each data signal before and after the separation and observe
the different characteristics of the signal before and after the separation from the frequency domain.
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Figure 4. Time-frequency waveforms of rotor vibration signals. (a) The time-domain signals. (b) The 
frequency-domain signals. 

  

(a) (b) 

Figure 5. The signals separated by FastICA. (a) The time-domain signals. (b) The frequency-domain 
signals. 

  

0 200 400 600 800 1000
-2

0

2

0 200 400 600 800 1000
-2

0

2

0 200 400 600 800 1000
-2

0

2

0 200 400 600 800 1000
-2

0

2

0 200 400 600 800 1000
-2

0

2

Number of Samples

A
m

pl
itu

de
/m

m

0 100 200 300 400

200
400
600
800

1000

 

 

0 100 200 300 400

200

400

 

 

0 100 200 300 400

100
200
300

 

 

0 100 200 300 400

100
200
300

 

 

0 100 200 300 400

100
200
300

f/Hz

FF
T

 

 

y 1

y 2

y 3

y 4

y 5

0 1000 2000 3000 4000 5000
-10

-5
0

5

0 1000 2000 3000 4000 5000
-10

-5
0
5

0 1000 2000 3000 4000 5000
-5
0
5

10

0 1000 2000 3000 4000 5000
-10

-5
0
5

0 1000 2000 3000 4000 5000
-5
0
5

10

Number of Samples

A
m

pl
itu

de
/m

m

0 100 200 300 400

200
400
600
800

1000
1200

 

 

0 100 200 300 400

100
200
300

 

 

0 100 200 300 400

100
200
300
400
500

 

 

0 100 200 300 400

50
100
150
200
250

 

 

0 100 200 300 400

200

400

f/Hz

FF
T

 

 

y 1

y 2

y 3

y 4

y 5

Figure 6. The separated signals by the JADE method. (a) The time-domain signals.
(b) The frequency-domain signals.

Figure 6. The separated signals by the JADE method. (a) The time-domain signals. (b) The frequency-
domain signals. 

  
(a) (b) 

 
Figure 7. The separated signals by the MF-JADE method. (a) The time-domain signals.               
(b) The frequency-domain signal. 

In the first figure in Figure 7 b, it can be seen the frequency of 50 Hz is highlighted while the 
other frequencies are suppressed. Since the power frequency used in daily life is 50 Hz, it can be 
determined that the signal is a power frequency signal. The second figure in Figure 7 b has two 
frequency values, one is 50 Hz, which can be calculated as the rotor’s rotating frequency, and the 
other is 100 Hz, which is two-fold frequency. Since the amplitude of the first-fold frequency is greater 
than that of the second-fold frequency, it can be seen that the signal is the unbalanced rotor fault 
signal. From the third and fourth figures in Figure 7 b, it can be seen that the amplitude of the first 
octave is less than that of the second octave and that there are other octave spectral lines, so it can be 
seen that the signal is the rotor rub impact fault signal. From the fifth figure in Figure 7 b, it can be 
seen that the frequency of this figure is distributed over the entire frequency band. From Figure 7 a, 
it can be seen that the signal is random in the time domain. Combining these two points, it can be 
determined that this signal is a noise signal. 

Comparing Figure 5 and Figure 7, the improved method proposed in this paper can effectively 
separate the rub impact fault and mass disk imbalance fault caused by the rub impact and the noise 
signal. However, using the classical FastICA and JADE separation method, we can only separate the 
50 Hz power frequency signal of the rotor system, as shown in Figure 5 and Figure 6 

8. Conclusions 

In order to solve the problem of fault feature extraction for rotating machinery in a strong 
impulse noise environment, a fault separation method combining the median filter and an improved 
JADE algorithm (MF-JADE) has been proposed here. Through simulation and an experimental study 
of the vibration signal separation of a hybrid rotor, the following conclusions may be made: 

0 1000 2000 3000 4000 5000
-2

0

2

0 1000 2000 3000 4000 5000
-2

0

2

0 1000 2000 3000 4000 5000
-2

0

2

0 1000 2000 3000 4000 5000
-2

0
2

0 1000 2000 3000 4000 5000
-2
0
2

Number of Samples

A
m

pl
itu

de
/m

m

0 50 100 150 200 250

500
1000
1500
2000

 

 

0 50 100 150 200 250

500
1000
1500

 

 

0 50 100 150 200 250

500
1000
1500

 

 

0 50 100 150 200 250

200
400
600
800

1000
1200

 

 

0 50 100 150 200 250

500
1000
1500

f/Hz

FF
T

 

 

y 1

y 2

y 3

y 4

y 5

Figure 7. The separated signals by the MF-JADE method. (a) The time-domain signals.
(b) The frequency-domain signal.

It can be seen from Figure 4b that most of the frequencies are submerged in the noise, and the
frequencies are mixed, except that the frequencies in the third figure are not submerged by the noise.
As shown in Figure 5b, the spectrum after direct separation still contains a lot of noise, and each
frequency is not completely separated, which shows that the separation effect of the FastICA algorithm
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is significantly worse when the data contain strong impulse noise. Comparing Figures 5b and 7b, it can
be seen the spectral line of 100 Hz in Figure 5b is submerged by noise and cannot be identified, while
the characteristic spectrum line of 100 Hz in Figure 7b is highlighted. This shows that the performance
of the MF-JADE algorithm is better than that of direct separation when it is used to separate aliased
signals in impulsive noise environments, where it can effectively suppress noise signals and highlight
the periodic signals.

In the first figure in Figure 7b, it can be seen the frequency of 50 Hz is highlighted while the
other frequencies are suppressed. Since the power frequency used in daily life is 50 Hz, it can be
determined that the signal is a power frequency signal. The second figure in Figure 7b has two
frequency values, one is 50 Hz, which can be calculated as the rotor’s rotating frequency, and the other
is 100 Hz, which is two-fold frequency. Since the amplitude of the first-fold frequency is greater than
that of the second-fold frequency, it can be seen that the signal is the unbalanced rotor fault signal.
From the third and fourth figures in Figure 7b, it can be seen that the amplitude of the first octave is
less than that of the second octave and that there are other octave spectral lines, so it can be seen that
the signal is the rotor rub impact fault signal. From the fifth figure in Figure 7b, it can be seen that the
frequency of this figure is distributed over the entire frequency band. From Figure 7a, it can be seen
that the signal is random in the time domain. Combining these two points, it can be determined that
this signal is a noise signal.

Comparing Figures 5 and 7, the improved method proposed in this paper can effectively separate
the rub impact fault and mass disk imbalance fault caused by the rub impact and the noise signal.
However, using the classical FastICA and JADE separation method, we can only separate the 50 Hz
power frequency signal of the rotor system, as shown in Figures 5 and 6.

8. Conclusions

In order to solve the problem of fault feature extraction for rotating machinery in a strong impulse
noise environment, a fault separation method combining the median filter and an improved JADE
algorithm (MF-JADE) has been proposed here. Through simulation and an experimental study of the
vibration signal separation of a hybrid rotor, the following conclusions may be made:

1. Blind separation of the observation signal with strong impulse noise was carried out directly,
and the error of the separation result was large, where even an incorrect result could be obtained.

2. The median filtering method can effectively remove the impulse noise signal without losing
the useful components of the original signal, improve the signal-to-noise ratio, and provide
precondition for the accurate realization of blind separation.

3. For the measured signal, although the independence assumption of blind source separation is not
strictly true, the MF-JADE algorithm is still effective in the actual vibration signal separation.

4. The combination of a median filtering method and a blind source separation algorithm provides
a new method for the separation of aliased signals in strong impulse noise environments.
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