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Automatic parameter selection 
for electron ptychography 
via Bayesian optimization
Michael C. Cao1, Zhen Chen2, Yi Jiang3* & Yimo Han1*

Electron ptychography provides new opportunities to resolve atomic structures with deep sub-
angstrom spatial resolution and to study electron-beam sensitive materials with high dose efficiency. 
In practice, obtaining accurate ptychography images requires simultaneously optimizing multiple 
parameters that are often selected based on trial-and-error, resulting in low-throughput experiments 
and preventing wider adoption. Here, we develop an automatic parameter selection framework to 
circumvent this problem using Bayesian optimization with Gaussian processes. With minimal prior 
knowledge, the workflow efficiently produces ptychographic reconstructions that are superior to 
those processed by experienced experts. The method also facilitates better experimental designs by 
exploring optimized experimental parameters from simulated data.

Ptychography is a computational imaging method that has gained great interests in the electron microscopy 
community1–4. The technique was first proposed by Hoppe in 19695 and re-invigorated in recent years with the 
developments of fast electron detectors6–11 that can rapidly collect thousands of diffraction patterns per second. 
Various iterative reconstruction algorithms have been developed to retrieve the scattering potentials of the 
sample and the wave function of the illumination from intensity measurements12–14. It has been demonstrated 
that electron ptychography can break the Abbe diffraction limit of imaging systems15 and set a new world record 
in spatial resolution (0.39 Å) in atomically thin two-dimensional (2D) materials3. As one of the phase-contrast 
imaging techniques, electron ptychography also has high dose efficiency for low-dose imaging ranging from low-
dimensional nanomaterials16,17 to biological specimens18,19. An even more critical breakthrough is that electron 
ptychography can inversely solve the long-standing problem of multiple scattering in thick (> 20 nm) samples 
and enables a lattice-vibration-limited resolution (0.2 Å)4, as well as three-dimensional depth sectioning4,20.

Despite its great success in achieving record-breaking resolution, ptychography remains a niche technique in 
electron microscopy due to many practical challenges in both experimental setup and data analysis. In particular, 
there exist many types of parameters that significantly influence image quality and need to be carefully selected 
for different data or applications. For example, physical parameters that describe processes such as noise genera-
tion, partial coherence, and probe vibration can be modeled in an iterative ptychographic reconstruction, which 
essentially solves a non-convex optimization problem. Choosing appropriate parameters to account for these 
practical errors is paramount to achieving solutions that are close to the real object. Other parameters, including 
the number of iterations, update step size, and initial probe, also influence reconstructions by controlling the 
convergence process. For simplicity, in the work, we categorize all parameters described above as reconstruction 
parameters. In addition, experimental parameters, such as scan step size, probe defocus, and camera length also 
need to be determined before measurement and often limit the best image quality of a given data. Due to virtually 
infinite possibilities and complex trade-offs between various parameters, it is practically impossible to design 
and optimize ptychography experiments by searching the entire parameter space. In practical applications3,4,16,17, 
scientists often select parameters manually based on their experiences with the sample or instrument. This can 
potentially introduce biases to scientific conclusions drawn from the results. Although a few key parameters 
were systematically studied in previous literature18,21,22, exploring multiple parameters greatly reduces the overall 
throughput and creates a high barrier for general researchers to adopt the technique.

Here we present a general framework for fully automatic parameter tuning in electron ptychography by 
leveraging Bayesian optimization (BO) with Gaussian processes23—a popular strategy for global optimization 
of unknown functions. Using experimental ptychography data and state-of-the-art reconstruction algorithms, 
we demonstrated that our approach can automatically produce high-resolution images after exploring only 1% 
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of the discretized reconstruction parameter space. We also optimized experimental parameters for ultra-low 
electron dose levels, providing insights for more robust experimental designs that further to enhance ptychog-
raphy’s usability. Instead of relying on human intuition and judgment, automatic parameter selection promotes 
objective and reproducible protocols, paving the way for fully autonomous experiments and data processing for 
ptychography applications.

Results
Bayesian optimization with Gaussian process.  Bayesian optimization with Gaussian process is fre-
quently used to find global maxima and minima of a black-box function that is unknown and expensive to 
evaluate. The technique has been used in a wide variety of applications in machine learning24,25, Monte Carlo 
simulation26, and autonomous controls in microscopy experiments27–29. In general, BO consists of three steps: 
(1) compute a surrogate function that models the true objective function based on sampled points, (2) determine 
the next point(s) to be sampled based on an acquisition function, (3) evaluate the objective function at the cor-
responding points. The surrogate function is described by kernel functions, which affect the periodicity, smooth-
ness, and length scales of the objective function. It also predicts values and their standard deviations at unsam-
pled points, which is used by the acquisition function to balance finding the extrema (exploitation) or reducing 
the uncertainty in the surrogate (exploration). In contrast, direct search methods such as Mesh Adaptive Direct 
Search30 or Nelder-Mead31 that do not use a surrogate are more likely to get trapped in local minima32.

In ptychography, we utilize BO to optimize an objective function that evaluates reconstruction quality and 
varies for each dataset. Figure 1 illustrates the complete workflow. The initial set of ptychography reconstruc-
tions are generated based on randomly chosen parameters. Based on these reconstructions, Gaussian process 
models a surrogate function, and candidate points thereafter are chosen according to the acquisition function. 
The following reconstructions are performed with these parameters, the quality is measured, and the surrogate 
and acquisition functions are updated. The updated acquisition function then suggests the next candidate set 
and the process is iterated (Fig. 1b). After sufficient iterations, the set of parameters that generate the highest 
quality reconstruction is determined (Fig. 1c).

Automatic reconstruction parameter tuning.  To demonstrate BO as an efficient framework for 
automatic selection of reconstruction parameters, we apply the approach to an experimental dataset of bilayer 
MoSe2/WS2 that is publicly available from ref.16. Ptychographic reconstructions were carried out using the least 
square maximum likelihood (LSQ-ML) algorithm33 implemented in the PtychoShelves package34, which incor-
porates many advanced techniques such as mixed-states ptychography35, position correction33, variable probe 
correction36, batch update33, and multislice ptychography4,37. These features play crucial roles in previous works 
that successfully achieved dose-efficient and large field of view (FOV) imaging16,38 as well as deep sub-angstrom 
spatial resolution of thick crystalline materials4. Because different parameters have different computational costs 
per iteration, we perform time-limited reconstructions that terminate after reaching a time threshold specified 
by the user. This provides more practical comparisons by balancing the trade-offs of parameters such as the 
number of probe modes and batch size. Assuming strong phase approximation, which generally works well for 
2D materials, the parameter space is discretized and consists of eight common parameters with 4800 possible 

Figure 1.   Schematic of automatic reconstruction tuning with Bayesian optimization. (a) The process aims to 
find the best ptychographic reconstruction by optimizing an unknown quality function that is data-dependent 
in general. (b) Bayesian optimization loop strategically determines the next point (indicated in orange) to 
sample, performs ptychographic reconstruction, and then updates the surrogate model based on the image 
quality. As the number of iterations increases, the surrogate model becomes closer to the true quality function 
and more points around the optimum are exploited. (c) The image with the best quality during BO is retrieved 
as the final reconstruction.
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combinations. Detailed descriptions of each reconstruction parameter are provided in the “Methods” section 
and Supplementary Table 1.

Fourier ring correlation (FRC) analysis39 was used as a quantitative metric to evaluate the quality of ptycho-
graphic reconstructions. Without the “ground truth” for experimental data, FRC analysis measures the similarity 
between two independent reconstructions and is often used to estimate “spatial resolution” in phase retrieval 
problems40 or cryogenic electron microscopy reconstructions41. Our automatic parameter tuning workflow aims 
to maximize the area under the normalized FRC curve, ranging from 0 to 1 with 1 corresponding to identical 
images. The process starts by trying 5 initial random sets of reconstruction parameters, then leverages BO to 
search for the next point that is most likely to produce better reconstruction quality, and stops after exploring 
50 points in total—only 1% of the entire parameter space. A fully random parameter selection strategy was also 
investigated as comparison. Each sampling strategy was carried out 10 times (with different initial starts) and 
the averaged best FRC scores and their standard deviation after each search are shown in Fig. 2a. It is obvious 
that BO can consistently achieve higher FRC scores than random sampling, even if it starts with worse averaged 
FRC scores. The frequency of specific reconstruction parameter values also demonstrates that BO tends to sample 
more points around the optimal parameters. For example, for all 3-minute reconstructions, the percentage of 
position correction used in BO and random sampling are 71.2% and 48.4%, respectively. Selected reconstruc-
tions from BO and random sampling are shown in Fig. 2b,d, respectively. The reconstructed atoms from BO are 
visibly sharper than the ones from random sampling, which agrees with the evaluation based on FRC and their 
diffractograms (Fourier intensity) (Fig. 2c,e). It is worth noting that the diffraction spot that corresponds to an 
Abbe resolution of 0.42 Å is visible in the reconstruction with optimized parameters, surpassing the resolution 
(0.69 Å) reported in our previous work16.

Figure 3 illustrates the importance of reconstruction parameter tuning by showing 5-min reconstructions. 
The best results (Fig. 3a,b) found by BO used 7 mixed-states probe modes, a sparse batch size of 300, a Gauss-
ian noise model, and position correction. These parameters agree well with the choice made by experienced 
scientists who are familiar with the algorithm and the data16. For comparison, a smaller batch size of 60 pro-
duces reconstructions (Fig. 3c,d) with broader atoms and a slightly lower FRC score than the optimal results. 
Moreover, reconstructions with no position correction and only a single probe mode are shown in Fig. 3e–h, 
respectively. These two features often have the largest effects on electron ptychography data as they correct major 
experimental errors such as partial coherence, beam vibration, sample drift, and scan noises. Without them, the 
reconstructed images have significantly worse quality and larger inconsistencies that are reflected in their FRC 
scores. The complete list of reconstruction parameters used for Fig. 3 is summarized in Supplementary Table 2.

Using the efficient and automatic parameter tuning enabled by BO, one can gain deeper understandings of 
optimal reconstruction parameters and systematically study how they change with time. As shown in Fig. 4, for 
the experimental dataset of MoSe2/WS2 , the phase of the object converges to the bilayer structures within 10 min, 
as the probe modes quickly become more physical shapes. As time further increases, the FRC scores continue 
to improve, mainly thanks to scan position correction that often requires more iterations to refine large drifts or 
global position errors. The plots for individual reconstruction parameters are provided in Supplementary Fig. 1. 
For all time limits, BO indicates that the best results are obtained with a large number of probe modes, position 
correction, and a Gaussian noise model. It also suggests that no probe variation correction is needed—this is 

Figure 2.   Performance of Bayesian optimization versus a random search. (a) Plot of FRC score behavior over 
the number of parameter searches using BO versus a random search strategy. In 10 trials, BO consistently 
outperforms random search with higher FRC score and lower uncertainties as the number of parameter searches 
increases. (b,d) Best reconstruction for one trial after 50 parameter searches using (b) Bayesian optimization 
and (d) random search. (c,e) Diffractograms of reconstructions in (b) and (d), respectively.
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within our expectations since the scan FOV is relatively small (5 nm × 5 nm). In the early reconstruction stage 
(< 25 min), the sparse batch selection scheme leads to higher FRC scores since the algorithm has a faster initial 
convergence rate. On the other hand, given enough time (number of iterations), the algorithm benefits more from 
the compact batch selection scheme that is known to have slower convergence but is more robust to noise33. We 
further compared the reconstructed atomic distances with the structure model and confirmed that the compact 
batch indeed produces more accurate results than the sparse batch at longer time limits.

Optimization of experimental parameters for low‑dose ptychography.  The dose of the illumina-
tion beam plays a crucial role in electron microscopy. For example, a high electron dose can damage the sam-
ple structure by energetic electrons, especially for radiation-sensitive samples, such as batteries, metal-organic 
frameworks, or biological materials42,43. In contrast, low dose mode results in noisy diffraction patterns, reduc-
ing spatial resolution or even introducing additional artifacts in ptychographic reconstructions. Therefore, it is 
critical to explore optimal imaging conditions at the allowed dose of illumination.

In general, experimental conditions, such as scan step size and probe size, often determine the best quality 
one can achieve after ptychographic reconstruction. The optimal experimental parameters should balance vari-
ous physical factors such as the signal-to-noise ratio (SNR) of diffraction patterns, scanning probe overlap, and 
the sampling requirement in the detector plane44,45. Due to the complex trade-offs between different factors, it is 
generally challenging, even for human experts, to determine the optimal parameters that maximize the recon-
struction quality in different experiments. For instance, at a fixed electron dose, a small scan step size leads to a 
large number of diffraction patterns with low electron counts collected in the detector. Increasing scan step size 
could improve the SNR but reduce the spatial overlap between adjacent probes. Although larger probe defocuses 
could provide better overlap in real space, it requires higher sampling (more pixels) in the detector plane, which 
again lowers the SNR since the averaged electron count per pixel is decreased.

Using Bayesian optimization with Gaussian processes, we performed a comprehensive and automatic param-
eter tuning to search for the optimal scan step size, aperture size, probe defocus, and detector size (Supplementary 
Table 3) at different electron dose levels. For each point in the 4D parameter space, we first simulated diffraction 
patterns using a twisted bilayer MoS2 structure (Supplementary Fig. 2) as the test object and carried out ptycho-
graphic reconstructions using the LSQ-ML algorithm. With the ground truth available, BO directly maximizes 
the accuracy of reconstruction, which is quantified using the structural similarity index measure (SSIM)46. The 
metric explicitly calculates the difference between two images in terms of luminance, contrast, and structure, 
providing a general evaluation of reconstruction quality. The Gaussian width used in SSIM was set to 1.5. As 
illustrated in Supplementary Fig. 3, other widths and evaluation metrics such as peak signal-to-noise ratio 

Figure 3.   Optimized ptychographic reconstructions of bilayer MoSe2/WS2 compared with sub-optimal 
parameters. Two datasets that cover the same scan area were reconstructed independently for 5 min using 
the LSQ-ML technique. (a,b) Reconstructed phase with the parameters optimized by Bayesian optimization, 
including 7 mixed-state probe modes, a batch size of 300, and scan position correction. (c–h) Reconstructions 
where one of the optimal parameters is changed. All sub-optimal parameter combinations decrease the 
reconstruction quality to varying degrees. (c,d) Reconstructions with a batch size of 60, which increases the time 
per iteration, and reduces the total number of iterations. (e,f) Reconstructions without position correction. (g,h) 
Reconstructions with a single probe mode.
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(PSNR) have similar parameter spaces and optimal points. Figure 5a–d shows the best reconstructions after 800 
points are explored at various dose levels from 100 to 50,000 e −/Å2 . As references, reconstructions with a fixed 
set of experimental parameters (2 Å scan step size, 20 mrad aperture size, -55 nm defocus, 256 × 256 detector 
size), which are similar to the ones used in ref.16, are shown in Fig. 5e–h. For quantitative evaluations, the SSIM 
and PSNR of reconstructions are shown in Fig. 5i,j, respectively. The experimental parameters optimized by BO 
produce significantly better resolution and more accurate structures, especially at lower dose levels where the 
physical requirements for good reconstructions are more stringent. At high dose levels, the data have sufficient 
SNR and the reconstruction quality becomes less sensitive to experimental parameters.

The results from BO allowed us to estimate the entire 4D parameter space and observe how optimal experi-
mental conditions depend on the total electron dose. As shown in Fig. 6, small probe and scan step size produce 
better results at extremely low-dose regimes. However, with increasing total electron counts, one can theoreti-
cally use a larger scan step size (> 5 Å) given sufficient probe overlap and detector pixels. Similarly, it is more 
advantageous to use a relatively small detector size (e.g. 128 × 128) at low dose levels as more pixels lead to poor 
SNR. Lastly, with the exception of 100 e −/Å2 , most of the optimal conditions found by BO have large (> 30 
mrad) aperture size, indicating that in addition to its size, the probe structure also influences the quality of 
ptychographic reconstructions. This agrees with previous literature18 that shows specialized focusing optics can 
produce superior images. Because the focusing probe is typically characterized by a few physical parameters in 
electron microscopy, we believe the probe structure can be further optimized using the BO framework.

Discussion
As a general technique for black-box optimization, BO provides a framework that easily extends to other param-
eter tuning tasks beyond the eight reconstruction parameters and four experimental parameters studied in this 
work. For instance, in multi-slice ptychography, one can optimize model parameters such as the sample thick-
ness and the number of layers. By minimizing the data error between reconstruction and data, BO facilitates 
automatic estimation of experimental conditions, including probe defocus or global scan position errors, which 
cannot be measured accurately by electron microscopes. In addition, our parameter tuning workflow has impli-
cations for non-iterative reconstruction techniques47,48 and other inverse problems such as X-ray ptychography 
and tomography.

Currently, automatic parameter tuning and typical electron ptychography experiments operate on similar time 
scales (a few hours), which prohibits online optimization. However, multiple hardware and software improve-
ments can be made to further enhance computational efficiency. First of all, because the majority of the workflow 
is ptychographic reconstruction, utilizing more advanced hardware, such as high memory-bandwidth GPUs can 

Figure 4.   Ptychographic reconstructions of bilayer MoSe2/WS2 at different time limits. The best reconstruction 
parameters at each time limit were automatically optimized by BO. (a) Best FRC scores vs. reconstruction time. 
(b–d) Best reconstructions and their diffractograms (insets) after 3, 10, and 40 min, respectively. The zoom-ins 
in (a) shows that reconstructed atoms become more resolved as time increases.
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significantly reduce the processing time by more than tenfold compared to the current work. The total processing 
time can be further shortened by carrying out multiple reconstructions in parallel and using multi-points opti-
mization strategies49. In addition, experienced scientists may leverage additional properties about reconstruction 
algorithms or data to reduce the parameter space in BO. The reduction can be implemented at the beginning 
or during the parameter tuning workflow. Lastly, recent developments such as physics-informed BO50, causal 
BO51, and deep kernel learning29, may provide more solutions that facilitate more intelligent decision-making 
by exploiting underlying relationships between different parameters.

Lastly, we want to emphasize the importance of the objective function for optimizing reconstruction qual-
ity. An ideal objective function should reflect the accuracy of ptychographic reconstructions so that automatic 
parameter tuning produces true sample structures rather than artifacts. In numerical simulations, accuracy 
can be directly quantified since a ground truth is available. For experimental data, the complete information 
is unknown to researchers and many prevailing evaluation metrics (e.g. the FRC score) only characterize the 
precision of reconstructions. The FRC analysis is often used in ptychography literature16,33,38,40,52 and correlates 
with accuracy to some extent, especially when the dominating factor is dose (Supplementary Fig. 4). Neverthe-
less, there exist reconstruction and experimental parameters that lead to deceiving results with high precision 
but low accuracy. For instance, applying image regularization techniques such as de-noising may “improve” the 
FRC score by removing noisy artifacts in the object but reduce sharp features if the image is over-smoothed. 
The experimental data of bilayer MoSe2/WS2 provides another example as its 1-bit FRC resolution is close to 
0.2 Å (Supplementary Table 2), while the spatial resolution estimated based on the diffractogram is only 0.42 Å 
(Fig. 2c). To avoid such systematic bias, one should be attentive to limitations of different metrics and, if possible, 
incorporate additional knowledge into the parameter tuning workflow to directly optimize accuracy, or combine 
with precision measurement via multi-objective optimization53.

Figure 5.   Ptychographic reconstructions of simulated bilayer MoS2 at different total electron doses with an 
optimized set of experimental parameters compared with an expert-chosen set. (a–d) Phase of the reconstructed 
objects using experimental parameters that are optimized by Bayesian optimization. (e–h) Reconstructions 
using a fixed set of experimental parameters that are similar to ref.16. (i,j) SSIM and PSNR of reconstructions at 
different dose levels, respectively.



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:12284  | https://doi.org/10.1038/s41598-022-16041-5

www.nature.com/scientificreports/

Conclusion
In summary, we demonstrated a human-out-of-loop parameter tuning framework for electron ptychography 
based on Bayesian optimization with Gaussian processes. The workflow does not require strong prior knowledge 
about the input data or advanced reconstruction techniques, and can automatically determine parameters that 
correctly account for various experimental errors and produce high-resolution ptychographic reconstruction 
of experimental data. The results suggest the most important parameters for the bilayer MoSe2/WS2 data are 
the number of probe modes and position correction, which are in good agreement with human experiences and 
theoretical studies. Similarly, BO can be used to search for the optimal experimental conditions in complex multi-
dimensional parameter space, allowing better designs for ptychography applications such as low-dose imaging. 
With rapid developments in computing hardware, software, and advanced BO techniques, we anticipate that fully 
automatic parameter tuning will achieve sufficient throughput for real-time electron ptychography applications.

Methods
Ptychographic reconstruction.  Ptychographic reconstructions were carried out using a customized 
library based upon the PtychoShelves package34. The library, which is maintained at https://​github.​com/​yijia​
ng1/​fold_​slice, supports electron ptychography data and provides a python interface. For reconstruction param-
eter tuning studies, we further modified the code to allow for time-limited reconstruction instead of standard 
iteration-limited reconstruction.

Supplementary Table 1 summarizes eight types of reconstruction parameters that are explored during auto-
matic parameter tuning. These parameters influence both the quality and efficiency of ptychographic reconstruc-
tion and are frequently adjusted for different experimental data. The core algorithm is the maximum likelihood 
ptychography with a least-squares solver33, which provides both Gaussian and Poisson probability distribution 
to model data noise. The method also used a mini-batch update strategy to efficiently balance reconstruction 
speed and convergence rate. Thus, the number of diffraction patterns in each batch and the batch selection 
scheme (sparse vs. compact) are tunable parameters in reconstruction. In addition, the number of probe modes 
in mixed-states ptychography35 can be adjusted to account for partial coherence16 and probe vibration54. In the 
orthogonal probe relaxation (OPR) technique36, which is often used to reduce artifacts caused by probe variation 
in a single scan, the number of orthogonal modes kept in truncated singular value decomposition controls the 
amount of structural changes allowed at each scan position. Moreover, position correction can refine inaccurate 

Figure 6.   Optimal experimental parameters for electron ptychography. At each electron dose level, BO 
attempts to optimize scan step size (a), detector size (b), probe defocus (c), and aperture size (d).

https://github.com/yijiang1/fold_slice
https://github.com/yijiang1/fold_slice
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scan positions and intensity correction accounts for changes in probe intensity. Lastly, the “multimodal” option 
specifies if all or only the first probe mode are used to update the object function.

In general, the upper bounds for the number of mixed-states probe modes, the OPR modes, and the batch 
size are limited by the data size and the GPU (NVIDIA GeForce GTX 1080 Ti) memory. For simplicity, we define 
position correction, intensity correction, and multimodal as binary variables. If an option is set to true, then the 
feature is used throughout the entire reconstruction process.

Bayesian optimization with Gaussian process.  Bayesian optimization was carried out with the Scikit 
Optimize library55. After each ptychographic reconstruction, the image quality and corresponding parameters 
are used to update the GP model. Here we used the Matern kernel56—a popular covariance function defined as:

where d(xi , xj) measures the Euclidean distance between two points, Ŵ(ν) is the gamma function, and Kν is the 
modified Bessel function of the second kind. ν is a positive parameter that controls the smoothness of the kernel 
and l is the length scale, which is updated during BO. For all reconstructions parameter tuning studies in this 
paper, ν is set to 1.

To sample the next point, we used a portfolio strategy known as “GP Hedge”57, which selects points using a 
pool of acquisition functions, including negative probability of improvement58, expected improvement59, and 
upper confidence bound60. Lastly, the automatic parameter tuning workflow randomly sample a small number 
of initial points for Gaussian Process modeling before the Bayesian optimization process.

Experimental parameter tuning.  For experimental parameter optimization, we generated a simulated 
potential of bilayer MoS2 with a 30◦ twist. Single-atom potentials61 placed at appropriate coordinates were 
summed to generate the full potential of the bilayer. Interpolation was used to avoid the large singularity at the 
center of individual potentials. The resulting potential is 2048 × 2048 pixels with a pixel size of 0.125 Å.

For all simulated data, the scan field of view was about 6 nm × 6 nm and the pixel size was fixed at 0.125 Å. 
The beam energy was set 80 keV. Each 4D dataset was simulated assuming the strong phase approximation, and 
then reconstructed with a single probe mode, compact batch selection scheme, and no additional corrections. 
The batch size was chosen dynamically to fully utilize the GPU memory. All reconstructions were run for 500 
iterations on a single NVIDIA V100 GPU, and took from ∼ 10 s to ∼ 10 min, depending on the data size.

As summarized in Supplementary Table 2, most experimental parameters are defined as continuous variables, 
giving an infinite parameter space. Bayesian optimization attempted to maximize the SSIM46 between a recon-
struction and the ground truth. The Hammersley sampling method62 was used to explore 100 initial points that 
randomly cover the entire parameter, after which BO was used to search for additional 700 sets of parameters.

Data availability
The experimental electron ptychography data used for reconstruction parameter tuning is published in ref.16. 
An example script of Bayesian optimization is available at https://​github.​com/​yijia​ng1/​fold_​slice. All other data 
and code are available from the corresponding author at reasonable request.
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