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Abstract: The root tissues play important roles in water and nutrient acquisition, environmental
adaptation, and plant development. In this study, a diversity panel of 388 wheat accessions was
collected to investigate nine root system architecture (RSA) traits at the three-leaf stage under two
growing environments: outdoor pot culture (OPC) and indoor pot culture (IPC). Phenotypic analysis
revealed that root development was faster under OPC than that under IPC and a significant correlation
was observed between the nine RSA traits. The 660K single-nucleotide polymorphism (SNP) chip
was used for a genome-wide association study (GWAS). Significant SNPs with a threshold of −log10

(p-value) ≥ 4 were considered. Thus, 36 quantitative trait loci (QTLs), including 13 QTL clusters that
were associated with more than one trait, were detected, and 31 QTLs were first identified. The QTL
clusters on chromosomes 3D and 5B were associated with four and five RSA traits, respectively. Two
candidate genes, TraesCS2A01G516200 and TraesCS7B01G036900, were found to be associated with
more than one RSA trait using haplotype analysis, and preferentially expressed in the root tissues.
These favourable alleles for RSA traits identified in this study may be useful to optimise the root
system in wheat.

Keywords: Triticum aestivum L.; root system architecture; genome-wide association study; quantita-
tive trait loci; candidate genes

1. Introduction

Bread wheat (Triticum aestivum L.) is one of the most important staple crops worldwide.
The cultivated area of wheat is approximately 217 million hectares, annually producing
approximately 765 million tonnes [1]. However, the demand for wheat continues to increase
owing to a rapid increase in population. According to the speculation by the Food and
Agriculture Organisation of the United Nations, approximately 840 million tonnes of
wheat will be required annually by 2050 [2]. However, wheat production is facing serious
challenges with the increasing global climate change in recent years [3,4]. Wheat breeding
for high yield and stress tolerance will remain the main strategy for a long time. Roots,
the underground parts of plants, absorb nearly all of the nutrients required for plant
development and are primarily exposed to osmotic stress [5]. Optimal RSA improves
the wheat yield and stress tolerance [6,7]. Therefore, it is important to study the genetic
mechanisms of crop RSA traits to optimise the root system for further breeding.

Int. J. Mol. Sci. 2022, 23, 1843. https://doi.org/10.3390/ijms23031843 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23031843
https://doi.org/10.3390/ijms23031843
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://doi.org/10.3390/ijms23031843
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23031843?type=check_update&version=3


Int. J. Mol. Sci. 2022, 23, 1843 2 of 20

RSA traits include root length, root surface area, root diameter, root tip number, and
root volume [8]. RSA traits play important roles in determining crop development [9,10],
yield formation [11,12], and stress tolerance [13]. For marker-assisted selection and key
gene identification, the QTLs for RSA traits were explored in different crops [14,15]. Zhang
et al. [16] analysed the seminal root length in rice using a recombinant inbred line (RIL)
population of 150 lines under different water supply conditions, and identified two QTLs
that explained 10% and 11% of phenotypic variation. Li et al. [17] identified 46 environment-
specific QTLs for the crown root traits in maize, among which 12 QTLs were detected in
multiple environments. Wu et al. [18] identified two major QTLs of swollen roots in
turnips, providing a new idea regarding the molecular mechanism underlying storage
root formation. In addition, Ren et al. [19] collated the QTLs for RSA and other traits,
and found overlaps between QTLs for the root traits and those for nutrient uptake and
productivity in many crop species, suggesting that RSA traits are closely related to crop
development. These researches provided abundant information for further marker-assisted
selection. Steele et al. [20] constructed introgressed lines using the previously reported root
QTLs, which significantly improved the rice yield. Therefore, studying RSA traits is of
great significance.

Bread wheat is consumed by 30–40% of humans [1]. Many researchers have paid
attention to wheat root tissues. Manschadi et al. [10] analysed drought adaptation using
wheat seedlings, and revealed that the root tissues are more closely related to drought
tolerance than the aboveground tissues. Li et al. [21] found that deep roots, optimal
root length density and xylem diameter, and increased root surface area contribute to
drought tolerance. To elucidate the mechanisms of root development, many studies on QTL
mapping of RSA traits have been performed in wheat. Liu et al. [22] analysed RSA traits
using a diverse panel of 165 wheat cultivars, and identified 28 and 4 QTLs in hydroponic
and field environments, respectively. Alemu et al. [23] analysed RSA traits using 192
Ethiopian durum wheat accessions, and identified 4 major (–log10p ≥ 4) and 34 nominal
(–log10p ≥ 3.5) QTLs. Fan et al. [24] analysed the RSA traits in the seedlings of 188 RILs
subjected to different nitrogen concentrations, and detected 53 QTLs responsible for RSA
traits. In total, 26 published reports performed QTL exploration for RSA traits [5,19,22–45],
which provided ample information on RSA traits in wheat.

The wheat genome is enormous and complex. Research on the quantitative traits in
wheat lags behind the research on other crops [28]. Especially for the RSA traits, each trait is
controlled by multiple genes. Although researchers identified many QTLs for RSA traits, a
few genes were functionally verified to regulate root development using the forward genetic
approaches in wheat [46,47]. The mechanism for the RSA traits remains unclear, and more
loci need to be explored in wheat. For the completion of genome sequencing, many types
of SNP chips were developed, and the 660K SNP chip was considered to be the optimal
chip for GWAS in wheat [48]. In this study, a diversity panel of 388 wheat accessions, based
on pre-diversity assessment, was used to analyse RSA traits at the seedling stage under
two environments. The 660K SNP chip was used for GWAS. We expect to identify vital
QTLs and candidate genes to improve RSA.

2. Results
2.1. Population Structure and Linkage Disequilibrium (LD) Decay Analysis

The population structure was determined using STRUCTURE V2.3.4 according to the
∆K method of Bayesian clustering. We determined the slope breakpoint at K = 8. Thus,
the panel used in this study was divided into eight subpopulations (Sp1-Sp8, Figure 1a,
Table S1). Sp1 comprised 11 exotic varieties, 6 landraces, and 49 local cultivars. Sp2
consisted of 7 exotic varieties, 4 landraces, and 29 local cultivars. Sp3 comprised 5 exotic
varieties, 1 landrace, and 58 local cultivars. Sp4 contained 13 exotic varieties, 15 landraces,
and 19 local cultivars. Sp5 was composed of 10 exotic varieties, 3 landraces, and 28 local
cultivars. Sp7 consisted of 1 exotic variety, 1 landrace, and 28 local cultivars. Sp8 contained
19 exotic varieties, 7 landraces, and 40 local cultivars (Table 1, Figure 1b).
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Figure 1. Population structure and LD analysis of the wheat panel. (a) Subpopulations inferred by 
K-means structure analysis. (b) Principal component analysis of all wheat accessions. (c) Genome-
wide average LD decay over physical distance. Pair-wise single-nucleotide polyLD (r2) values based 
on the physical positions from the IWGSC RefSeq v.1.0 reference genome are plotted as a function 
of mapping distance (Mb) between markers. The different-coloured curves represent LD decay fits 
for sub-genomes A (purple), B (blue), D (green), and the whole genome (red). The thick horizontal 
black line represents the population-specific critical r2 value (0.1) above which LD may be due to 
linkage. 

Figure 1. Population structure and LD analysis of the wheat panel. (a) Subpopulations inferred by K-
means structure analysis. (b) Principal component analysis of all wheat accessions. (c) Genome-wide
average LD decay over physical distance. Pair-wise single-nucleotide polyLD (r2) values based on
the physical positions from the IWGSC RefSeq v.1.0 reference genome are plotted as a function of
mapping distance (Mb) between markers. The different-coloured curves represent LD decay fits for
sub-genomes A (purple), B (blue), D (green), and the whole genome (red). The thick horizontal black
line represents the population-specific critical r2 value (0.1) above which LD may be due to linkage.

Table 1. Components of eight subpopulations.

Sub-Population Number of
Accession Exotic Variety Local Landrace Local Cultivar

Sp1 66 11 6 49
Sp2 41 7 5 29
Sp3 64 5 1 58
Sp4 47 13 15 19
Sp5 41 10 3 28
Sp6 33 0 0 33
Sp7 30 1 1 28
Sp8 66 19 7 40

We estimated the degree of LD using 161,801, 184,658, and 58,479 SNP markers in
the A, B, and D sub-genomes, respectively. LD was analysed based on 717,701,068 pair-
wise comparisons of 404,938 SNPs. Pair-wise LD was estimated using the squared allele-
frequency correlation (r2). A plot of the LD estimates (r2) as a function of physical distance
(Mb) indicated clear LD decay with increasing physical distance (Figure 1c). A comparison
of LD between the sub-genomes and chromosomes showed variances in the LD decay.
Overall, the average LD decay distance in the whole genome was approximately 3.6 Mb.
LD decayed faster in the D genome (1.6 Mb) than in the A (3 Mb) and B (5.6 Mb) genomes
(Figure 1c). The faster LD decay in the D genome is compatible with the evolutionary
history of wheat.
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2.2. Phenotypic Variation of the RSA Traits

A total of 4656 (388 wheat accessions × 6 replications × 2 environments) seedling roots
were collected and observed for the nine RSA traits namely, total root length (TRL), total
root surface area (TRA), average root diameter (ARD), total root volume (TRV), number
of root tips (NRT), root length (RL), root surface area (RA), root volume (RV), and root
tips (RT) (Table S1). The frequency distribution of the investigated traits was normal, as
indicated by the kurtosis (bk) and skewness (bs) (Figure 2). This means that the traits
were quantitative and suitable for GWAS. Phenotypic variation analysis showed that the
nine RSA traits exhibited greater variation under OPC than under IPC, indicated by the
coefficient of variation (Table 2). In addition, the nine RSA traits were significantly higher
under OPC than under IPC (p ≤ 0.001). In other words, the root development was faster
under OPC than that under IPC. The broad-sense heritability (H2) of the nine RSA traits
ranged from 66.78% to 77.83%, indicating that the variations observed in these RSA traits
were mainly regulated by genotype.
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Table 2. Phenotypic analysis of nine RSA traits for this wheat panel under two environments.

Trait E Mean SD Min Max bk bs CV (%) H2 (%) p-Value <0.001

TRL
OPC 236.06 94.96 64.25 645.14 1.84 1.14 40.22% 77.83% 7.96175 × 10−51 ***
IPC 147.91 50.03 53.91 336.76 0.65 0.83 33.82%

TRA
OPC 31.68 12.98 9.50 86.52 1.25 0.91 40.97% 76.86% 2.91719 × 10−81 ***
IPC 16.45 4.93 7.11 36.00 0.55 0.80 29.94%

ARD
OPC 0.43 0.07 0.27 0.58 −1.06 −0.32 16.91% 66.78% 9.8363 × 10−58 ***
IPC 0.36 0.03 0.28 0.45 −0.29 0.37 8.52%

TRV
OPC 0.35 0.17 0.07 1.09 1.51 0.95 47.94% 76.86% 4.92408 × 10−89 ***
IPC 0.15 0.04 0.07 0.44 6.18 1.60 29.81%

NRT
OPC 360.80 186.97 113.00 1703.67 8.55 2.20 51.82% 72.38% 1.24864 × 10−28 ***
IPC 233.30 110.08 78.67 699.83 2.14 1.36 47.18%

RL
OPC 113.91 63.29 18.27 429.16 4.95 1.83 55.56% 75.71% 3.14966 × 10−23 ***
IPC 75.99 35.82 19.24 225.26 1.06 0.98 47.14%

RA
OPC 6.90 3.59 1.15 24.26 3.78 1.62 52.08% 76.15% 6.77309 × 10−28 ***
IPC 4.48 2.11 1.01 11.82 0.44 0.89 47.13%

RV
OPC 0.04 0.02 0.0067 0.1214 3.04 1.49 50.12% 76.06% 7.24198 × 10−31 ***
IPC 0.02 0.01 0.0053 0.0626 0.25 0.87 48.38%

RT
OPC 311.12 187.64 45.33 1641.83 8.30 2.20 60.31% 71.15% 4.80007 × 10−17 ***
IPC 216.96 106.31 67.33 678.00 2.22 1.36 49.00%

E, Environments; bk, kurtosis; bs, skewness; CV, coefficient of variation; H2, heritability; *** Significant at
p ≤ 0.001.

2.3. Correlations between RSA Traits

The relationships of the nine RSA traits between the two environments were analysed.
The results showed that each RSA trait showed a significant correlation (p ≤ 0.001) between
the two environments. This means that these traits were mainly regulated by genotype.
The relationships between the nine traits were calculated (Figure 3). The results showed
that significant positive correlations were observed between eight RSA traits, except for
ARD. ARD showed a significant negative correlation with NRT, RL, RA, RV, and RT in the
two environments. The correlation coefficients between RL, RA, and RV were higher than
0.94 in the two environments, indicating that these three traits were strongly correlated.
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2.4. GWAS of RSA Traits

After filtering low-quality SNPs (minor allele frequency < 0.05 and missing data > 0.1),
a total of 411,605 polymorphic SNP markers with effective chromosome information were
available for GWAS using a univariate mixed linear model of GEMMA (Table S2). Of these,
404,938 SNPs were mapped to 21 wheat chromosomes, with 161,801, 184,658, and 58,479
SNPs in the A, B, and D sub-genomes, respectively. The marker density varied among
different chromosomes (Figure S1, Table 3). We discovered that the minimum marker
density was 8.1 markers per Mb on chromosome 4D, whereas the maximum was 55.09
markers per Mb on chromosome 3B. Compared with the A and B sub-genomes, the D
sub-genome had fewer SNP markers and effective markers, especially chromosome 4D,
which contained 1702 SNPs. The markers of known chromosome positions were used
to analyse the genetic diversity. We found that there was little difference in the genetic
diversity among the three sub-genomes. The mean values of the expected heterozygosity
(He) and polymorphism information content (PIC) were 0.66–0.74 and 0.27–0.30 among the
three sub-genomes, respectively.

We performed a GWAS using the best linear unbiased predictions (BLUPs) of the nine
RSA traits. Significant SNPs for each trait were selected with a threshold of –log10 (p-value)
≥ 3.5 (Table S3, Figure S2). After analysing the data, 133 QTLs evenly distributed on 21
chromosomes were identified for the nine RSA traits, among which 38 were associated
with multiple RSA traits. Eight QTLs were overlapped with previously identified QTLs
(Table S3).

We focused on significant SNPs with a threshold of –log10 (p-value) ≥ 4. For conve-
nience, we selected tagged SNPs for each QTL exhibiting the strongest association with
RSA traits (Table 4), yielding 36 QTLs on 17 chromosomes (Figure 4), of which 13 were
associated with more than one RSA trait. Among these QTLs, five QTLs, mapped on
chromosomes 5B, 6B, 6D, 7A, and 7B, were co-localised with those identified in previous
studies (Table 4), indicating that our results were reliable.
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Table 3. Summary of the genetic diversity in three sub-genomes and chromosomes of this wheat
panel and evaluation of the effective number of independent SNPs, including the suggested p-
value thresholds.

Chromosome No. of
Markers

Effective
Number

Effective
Ratio

Suggested
p-Value

%
Markers

Length
(Mb)

Marker
Density He PIC

1A 28793 5643.19 0.20 1.77 × 10−4 7.00 594.02 48.47 0.65 0.26
2A 28676 6088.17 0.21 1.64 × 10−4 6.97 780.76 36.73 0.71 0.28
3A 19366 4607.43 0.24 2.17 × 10−4 4.70 750.73 25.80 0.68 0.28
4A 17856 4241.96 0.24 2.36 × 10−4 4.34 744.54 23.98 0.66 0.27
5A 22482 4935.88 0.22 2.03 × 10−4 5.46 709.76 31.68 0.78 0.31
6A 16438 3851.64 0.23 2.60 × 10−4 3.99 617.97 26.60 0.73 0.29
7A 28190 6297.36 0.22 1.59 × 10−4 6.85 736.69 38.27 0.68 0.27
1B 20584 4750.1 0.23 2.11 × 10−4 5.00 689.38 29.86 0.75 0.30
2B 28715 6701.21 0.23 1.49 × 10−4 6.98 801.25 35.84 0.73 0.29
3B 45766 7920.52 0.17 1.26 × 10−4 11.12 830.70 55.09 0.78 0.31
4B 13130 3016.41 0.23 3.32 × 10−4 3.19 673.47 19.50 0.72 0.29
5B 33874 6596.79 0.19 1.52 × 10−4 8.23 713.02 47.51 0.79 0.31
6B 25549 5554.71 0.22 1.80 × 10−4 6.21 720.95 35.44 0.69 0.28
7B 17040 4491.9 0.26 2.23 × 10−4 4.14 750.61 22.70 0.72 0.29
1D 10597 3058.85 0.29 3.27 × 10−4 2.57 495.44 21.39 0.68 0.28
2D 10430 3731.57 0.36 2.68 × 10−4 2.53 651.81 16.00 0.69 0.28
3D 7291 2668.7 0.37 3.75 × 10−4 1.77 615.48 11.85 0.67 0.27
4D 4128 1702.71 0.41 5.87 × 10−4 1.00 509.85 8.10 0.66 0.27
5D 8437 3285.78 0.39 3.04 × 10−4 2.05 566.04 14.91 0.65 0.26
6D 7486 2940.59 0.39 3.40 × 10−4 1.82 473.56 15.81 0.64 0.26
7D 10110 3669.4 0.36 2.73 × 10−4 2.46 638.65 15.83 0.64 0.26

A genome 161801 39.31 4934.47 32.79 0.70 0.28
B genome 184658 44.86 5719.38 32.29 0.74 0.30
D genome 58479 14.21 3950.83 14.80 0.66 0.27

Total 404938 95754.87 14,064.68 28.79 0.70 0.28
Average 2.51 × 10−4
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Table 4. QTLs and QTL clusters with RSA traits and overlapping with QTLs from previous studies.

Traits SNP CHR Mb p −log10 (p) R2 (%) Reference

ARD AX-94798162 2B 245.89 8.53 × 10−5 4.07 1.23
ARD AX-94757865 2B 797.54 6.71 × 10−5 4.17–4.38 2.24–2.76
ARD AX-110887844 2D 380.98 7.38 × 10−5 4.13 2.57
ARD AX-109125375 2D 640.04 9.95 × 10−5 4.00–5.38 1.82–3.41
TRV AX-108892435 3A 21.28 7.86 × 10−5 4.10 2.58
ARD AX-111490934 3B 49.29 9.67 × 10−5 4.01 3.59
TRV AX-94897906 4A 102.39 9.21 × 10−5 4.04 2.28
TRV AX-110712645 4B 606.85 7.29 × 10−5 4.14–4.74 4.77–5.11
TRV AX-95073736 5A 632.60 5.59 × 10−5 4.25 2.64
TRL AX-111537095 5B 639.68 9.81 × 10−5 4.01–4.30 4.16–4.95
ARD AX-95093123 5D 385.39 2.69 × 10−5 4.57 2.31
ARD AX-94999582 6A 104.36 6.99 × 10−5 4.16 4.23
ARD AX-94827303 6A 115.18 8.43 × 10−5 4.07 2.84
ARD AX-94502864 6B 710.32 7.22 × 10−6 5.14 3.17 [27]
ARD AX-94826824 6D 60.14 5.84 × 10−5 4.23 2.36
ARD AX-94468039 6D 86.37 7.64 × 10−5 4.12 3.18
ARD AX-110837768 6D 464.84 6.32 × 10−5 4.20 2.29 [28]
ARD AX-94849869 7A 19.01 7.99 × 10−5 4.10 3.46
RT AX-108852993 7A 40.26 7.97 × 10−5 4.10 3.76

NRT AX-94970901 7A 692.05 8.53 × 10−5 4.07 4.03 [27]
RT AX-95181992 7B 228.81 5.95 × 10−5 4.23 3.84

ARD AX-109581543 7B 403.54 3.66 × 10−5 4.44 3.03 [29]
ARD AX-110360435 7D 104.09 9.83 × 10−5 4.01 2.24

TRA/TRV AX-111630548 2A 61.28 8.82 × 10−5 4.05–4.29 2.68–3.20
TRA/TRV AX-110564036 2A 740.01 8.78 × 10−5 4.06–4.11 3.41–3.69
TRA/TRV AX-109537244 2B 694.26 8.70 × 10−5 4.06–4.29 2.52–2.64
NRT/RT AX-95193648 3A 0.56 2.39 × 10−5 4.62–4.92 3.97–4.29
NRT/RT AX-94711043 3B 0.99 1.17 × 10−5 4.93–5.14 4.28–4.42
NRT/RT AX-109337192 3B 2.28 3.94 × 10−5 4.40–4.80 3.77–4.16

TRL/RL/RA/RV AX-109237510 3D 549.74 9.90 × 10−5 4.00–4.16 3.68–4.58
NRT/RT AX-110444857 4A 584.71 9.92 × 10−5 4.00–4.37 4.64–4.78

NRT/RT/RL/RA/RV AX-86179446 5B 571.23 9.98 × 10−5 4.00–5.73 3.99–6.77 [28]
NRT/RT AX-110522657 5D 464.07 8.90 × 10−5 4.05–4.66 3.97–5.60
NRT/RT AX-111060833 6B 127.23 5.66 × 10−5 4.25–4.42 4.00–4.15

TRL/TRA AX-95155829 7B 36.49 4.72 × 10−5 4.33–4.58 4.51–4.80
TRL/TRA AX-94759416 7B 594.41 8.96 × 10−5 4.05–4.23 4.00–5.28
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2D 10430 3731.57 0.36 2.68 × 10−4 2.53 651.81 16.00 0.69 0.28 
3D 7291 2668.7 0.37 3.75 × 10−4 1.77 615.48 11.85 0.67 0.27 
4D 4128 1702.71 0.41 5.87 × 10−4 1.00 509.85 8.10 0.66 0.27 
5D 8437 3285.78 0.39 3.04 × 10−4 2.05 566.04 14.91 0.65 0.26 
6D 7486 2940.59 0.39 3.40 × 10−4 1.82 473.56 15.81 0.64 0.26 
7D 10110 3669.4 0.36 2.73 × 10−4 2.46 638.65 15.83 0.64 0.26 

A genome 161801    39.31 4934.47 32.79 0.70 0.28 
B genome 184658    44.86 5719.38 32.29 0.74 0.30 
D genome 58479    14.21 3950.83 14.80 0.66 0.27 

Total 404938 95754.87    14,064.68 28.79 0.70 0.28 
Average    2.51 × 10−4      

We performed a GWAS using the best linear unbiased predictions (BLUPs) of the 
nine RSA traits. Significant SNPs for each trait were selected with a threshold of –log10 (p-
value) ≥ 3.5 (Table S3, Figure S2). After analysing the data, 133 QTLs evenly distributed 
on 21 chromosomes were identified for the nine RSA traits, among which 38 were associ-
ated with multiple RSA traits. Eight QTLs were overlapped with previously identified 
QTLs (Table S3). 

We focused on significant SNPs with a threshold of –log10 (p-value) ≥ 4. For conven-
ience, we selected tagged SNPs for each QTL exhibiting the strongest association with 
RSA traits (Table 4), yielding 36 QTLs on 17 chromosomes (Figure 4), of which 13 were 
associated with more than one RSA trait. Among these QTLs, five QTLs, mapped on chro-
mosomes 5B, 6B, 6D, 7A, and 7B, were co-localised with those identified in previous stud-
ies (Table 4), indicating that our results were reliable. 
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2.5. QTL Clusters for Root System Architecture Traits

QTL clusters refer to the QTLs that were associated with more than one RSA trait. We
identified 13 QTL clusters located on chromosomes 2A, 2B, 3A, 3B, 3D, 4A, 5B, 5D, 6B, and
7B. Chromosomes 2A, 3B, and 7B contained two QTL clusters, and chromosomes 2B, 3A,
3D, 4A, 5B, 5D, and 6B harboured a single QTL cluster. One QTL cluster on chromosome 5B
(571.23 Mb) was associated with five RSA traits: RL, RA, RV, RT, and NRT. One QTL cluster
on chromosome 3D (549.74 Mb) was associated with four RSA traits: RL, RA, RV, and TRL.
Two QTL clusters on chromosome 2A (61.28 Mb and 740.01 Mb) and one QTL cluster on
chromosome 2B (694.26 Mb) were associated with TRA and TRV. Two QTL clusters on
chromosome 7B were associated with TRL and TRA. One QTL cluster on chromosome
3A, two on chromosome 3B, one on chromosome 4A, one on chromosome 5D, and one on
chromosome 6B were associated with RT and NRT. Therefore, these QTL clusters showed a
pleiotropic effect.
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2.6. Candidate Genes Associated with RSA

A total of 649 genes were identified in the 13 QTL clusters (Table S4). The genes
encoding the bHLH transcription factor, WUSCHEL-RELATED HOMEOBOX 4 (WOX4),
ROOT HAIR DEFECTIVE 6 (RHD6), GLABRA 3 (GL3), and ROOTHAIRLESS-LIKE 1
(LRL1), which are closely related to RSA traits, were found in the QTL clusters. We
analysed the significant SNPs in thirteen QTL clusters, and identified nine genes with non-
synonymous polymorphisms across the wheat panel (Table S5). The phenotypic variation
related to each haplotype of the above nine genes was characterised, and the phenotypic
differences between the haplotypes of two genes, TraesCS2A01G516200 with the SNP AX-
110564036 (GG/AA) and TraesCS7B01G036900 with the SNP AX-112287343 (CC/TT), were
significant (p ≤ 0.05) in more than one RSA trait.

TraesCS2A01G516200 (AX-110564036), mapped to chromosome 2A between 739.8 Mb
and 740.8 Mb, encoded a short-chain dehydrogenase/reductase (Figure 5a). AX-110564036
SNP caused an amino acid change from isoleucine (Ile) to valine (Val) at 167 bp in this gene
(Figure 5b). The 388 accessions were divided into two haplotypes (GG or AA) according to
their genotype at this SNP. We determined that 258 and 93 accessions harboured the GG
and AA haplotypes, respectively, whereas the remaining 37 accessions were heterozygous
or lacked genotype information. Under the two environments, the accessions carrying the
AA allele showed significantly higher values of the RSA traits TRL, TRA, and NRT than
those carrying the GG allele (p ≤ 0.05), indicating that the AA haplotype had a positive
effect on RSA (Figure 5c). RT-qPCR analysis showed that this gene was preferentially
expressed in the root tissues at the jointing and heading stages (Figure 5d). These results
showed that TraesCS2A01G516200 plays an important role in the RSA traits of wheat.

TraesCS7B01G036900 (AX-112287343), mapped to chromosome 7B between 35 Mb and
36 Mb, encoded a development and cell death domain protein (Figure 6a). AX-112287343
SNP caused an amino acid change from valine (Val) to alanine (Ala) at 396 bp in this gene
(Figure 6b). The 388 accessions were divided into two haplotypes (CC or TT) according to
their genotype at this SNP. We determined that 348 and 36 accessions harboured the CC
and TT haplotypes, respectively, while the remaining four accessions were heterozygous or
lacked genotype information. Under the two environments, the accessions with the CC
haplotype exhibited markedly higher RSA trait values for TRL, TRA, TRV, RL, RA, and
RV than those with the TT haplotype (p ≤ 0.05), indicating that the CC haplotype had
a positive effect on RSA (Figure 6c). The RT-qPCR analysis indicated that this gene was
preferentially expressed in the root tissues at the jointing and heading stages (Figure 6d).
These results showed that TraesCS7B01G036900 plays an important role in the RSA traits
of wheat.
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green dot represents the significant SNP AX-110564036. The LD block analysis of the SNPs in this 
region is shown below. The degree of linkage is represented by the coefficient of r2. (b) Gene struc-
ture of TraesCS2A01G516200 and its non-synonymous SNP. Yellow rectangles and black lines rep-
resent exons and introns, respectively. The arrow indicates the position of amino acid variations in 
TraesCS2A01G516200. (c) Box plots for RSA traits based on the allele at SNP AX-110564036. Differ-
ences between the haplotypes were statistically analysed using the Student’s t-test. The upper and 
lower edges of the box represent the 75th and 25th quantiles, respectively, and the whiskers show 
the 90th and 10th quantiles; the horizontal solid line represents the average; * Significant at p ≤ 0.05, 
*** Significant at p ≤ 0.001. (d) Expression profile of TraesCS2A01G516200 in different tissues, as de-
termined by RT-qPCR. The data are the means ± Sd of n = 3. 

Figure 5. GWAS results of the nine RSA traits and identification of candidate gene for the SNP
AX-110564036 on chromosome 2A. (a) Manhattan plot for the candidate region on chromosome 2A.
The green dot represents the significant SNP AX-110564036. The LD block analysis of the SNPs in
this region is shown below. The degree of linkage is represented by the coefficient of r2. (b) Gene
structure of TraesCS2A01G516200 and its non-synonymous SNP. Yellow rectangles and black lines
represent exons and introns, respectively. The arrow indicates the position of amino acid variations in
TraesCS2A01G516200. (c) Box plots for RSA traits based on the allele at SNP AX-110564036. Differences
between the haplotypes were statistically analysed using the Student’s t-test. The upper and lower
edges of the box represent the 75th and 25th quantiles, respectively, and the whiskers show the
90th and 10th quantiles; the horizontal solid line represents the average; * Significant at p ≤ 0.05,
*** Significant at p ≤ 0.001. (d) Expression profile of TraesCS2A01G516200 in different tissues, as
determined by RT-qPCR. The data are the means ± Sd of n = 3. ‘ns’ means ‘not significant’.
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structure of TraesCS7B01G036900 and its non-synonymous SNP. Yellow rectangles and black lines 
represent exons and introns, respectively. The arrow indicates the position of amino acid variations 
in TraesCS7B01G036900. (c) Box plots for RSA traits based on the allele at SNP AX-112287343. Dif-
ferences between the haplotypes were statistically analysed using the Student’s t-test. The upper 
and lower edges of the box represent the 75th and 25th quantiles, respectively, and the whiskers 
show the 90th and 10th quantiles; the horizontal solid line represents the average; * Significant at p 
≤ 0.05, ** Significant at p ≤ 0.01, *** Significant at p ≤ 0.001. (d) Expression profile of 
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Figure 6. GWAS results of the nine RSA traits and identification of the candidate gene for the SNP
AX-112287343 on chromosome 7B. (a) Manhattan plot for the candidate region on chromosome 7B.
The green dot represents the significant SNP AX-112287343. The LD block analysis of the SNPs in
this region is shown below. The degree of linkage is represented by the coefficient of r2. (b) Gene
structure of TraesCS7B01G036900 and its non-synonymous SNP. Yellow rectangles and black lines
represent exons and introns, respectively. The arrow indicates the position of amino acid variations in
TraesCS7B01G036900. (c) Box plots for RSA traits based on the allele at SNP AX-112287343. Differences
between the haplotypes were statistically analysed using the Student’s t-test. The upper and lower
edges of the box represent the 75th and 25th quantiles, respectively, and the whiskers show the
90th and 10th quantiles; the horizontal solid line represents the average; * Significant at p ≤ 0.05,
** Significant at p ≤ 0.01, *** Significant at p ≤ 0.001. (d) Expression profile of TraesCS7B01G036900
in different tissues, as determined by RT-qPCR. The data are the means ± Sd of n = 3. ‘ns’ means
‘not significant’.
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3. Discussion
3.1. Soil Culture and 660K SNp Chip Are Ideal Methods for GWAS of RSA Traits in Wheat

Bread wheat is a staple crop worldwide, whose RSA traits strongly affect crop devel-
opment and yield [49]. The spatial distribution of roots affects the absorption of water and
nutrients and plant development. Zhu et al. [50] established that the length and number of
seminal roots are particularly vital for the uptake of immobile nutrients. Devaiah et al. [51]
found that the differences between RSA traits lead to changes in nutrient absorption. In
addition, a deeper root system has higher water absorption capacity owing to its better
access to soil water [52]. More importantly, White et al. [53] indicated that shoot and root
architectures are inherited independently, and could be improved to increase the absorption
and utilisation of water and nutrients. Therefore, it is important to analyse the RSA traits
and explore the QTLs for these characteristics for further screening of key genes.

Some studies have identified several QTLs for RSA traits in wheat. To conveniently
obtain whole roots, plants were usually cultivated in Hoagland’s nutrient solution, sand,
or agarose gel [45,54]. Hydroponics is the most common approach used to obtain the
whole roots in wheat [22,31,32,42]. Although the QTLs for RSA traits that were identified
through hydroponic cultivation coincided with those for yield and nutrient absorption in
wheat [43,44,55], we were not sure whether the phenotype of RSA traits in hydroponics
was similar to that in soil cultivation. Therefore, soil cultivation is reliable to investigate
RSA traits, although it is time-consuming and difficult. In this study, 388 wheat accessions
were cultivated in soil under OPC and IPC, and the whole roots were sampled and cleaned
up at the three-leaf stage to obtain the RSA traits for further analysis. The nine RSA traits
showed high phenotypic variation at the seeding stage, indicating that the wheat panel
used in this study exhibited high genetic diversity. The nine RSA traits under the two
environments were significantly correlated, and the correlation between these RSA traits
was significant, indicating that some QTLs may contribute to more than one RSA trait. The
mean values of these RSA traits under OPC were significantly higher than those under
IPC. We found that the soil under the two environments was comparable, and the mean
temperature under IPC was higher than that under OPC. However, the root development
was faster under OPC than that under IPC. It may be due to the climatic conditions from
15 October 2019 to 9 November 2019 that were optimal for wheat seedlings in Xinxiang
(35.29◦ N, 113.83◦ E), Henan, China. The broad-sense heritability of the nine RSA traits
ranged from 66.78–77.83%, indicating that these traits were suitable for QTL exploration.

Because of the vastness of genomic data, it is expensive to explore QTLs through
genome re-sequencing in wheat. A series of high-density SNP chips, including 820K [56],
50K [57], 55K [58], 90K [33], and 660K chips, were designed and utilised for marker-
assisted breeding in bread wheat. The 660K SNP chip contains 229,266 SNPs in the gene
or promoter regions of 66,834 genes, representing 63.52% of the annotated genes in wheat.
It is an optimal chip for marker-assisted breeding and has been widely used for QTL
exploration for quality traits, agronomic traits, and disease resistance in bread wheat [48].
In the present study, the wheat panel was genotyped for GWAS using the 660K SNP chip.
It is reliable to screen for significant QTLs associated with RSA traits.

3.2. QTL Analysis for RSA Traits

A substantial number of studies have performed QTL mapping for RSA traits in dif-
ferent plants, of which 26 studies focused on RSA traits in wheat. They identified 410 QTLs
for RSA traits (Table 5). In this study, 36 QTLs with a threshold of −log10 (p-value) ≥ 4
were identified for nine RSA traits. Among these, five QTLs overlapped with previously
reported QTLs, and 31 new QTLs were identified. This indicates that these genomic regions
for the RSA traits are reliable and provide new information for further studies.
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Table 5. Published studies on RSA traits and their chromosome localisations.

Chr Traits Reference

1A RGA, TRL, NRT, TRV, RHL,
MRL, TRA, ARD [5,22,23,26,29,30,32,34,35,44,45]

1B TRL, NRT, RHL, TRA, ARD,
TRV, MRL [5,22,23,26,27,29,32,34–36,45]

1D NRT, TRA, TRL, ARD, NRT,
TRA [28,30,32,37]

2A TRL, TRV, ARD, TRA, NRT,
RGA, MRL [5,23,30,32–38,44]

2B RGA, TRL, TRV, TRA, ARD,
NRT, MRL [5,19,22–24,29–35,37,38,44,45]

2D TRL, RHL, TRV, TRA, ARD,
NRT, MRL [22,24,26,31–33,37,45]

3A RGA, TRL, NRT, RHL, MRL,
TRV, TRA, ARD [5,22–24,26,30,32–36,43,45]

3B RGA, TRL, NRT, MRL, ARD,
TRV, TRA [5,22–24,30,33–35,38,39,45]

3D ARD, TRL, NRT [32,38,39,45]

4A RGA, TRL, NRT, TRV, TRA,
ARD [22,23,25,28,30,32–35,37,38,42,45]

4B TRL, NRT, ARD, TRA, RGA,
TRV [5,22,23,28,30–32,34–37,39,42,43,45]

4D TRL, TRA, NRT, MRL, TRV [31,33,34,38]

5A TRL, ARD, TRV, NRT, TRA,
MRL [5,19,22,23,25,30,33–35,38,45]

5B RGA, TRL, NRT, TRA, MRL,
TRV, TRA, ARD [22,23,28–35,45,56,58]

5D TRV, TRL, TRA, ARD, MRL [22,28,29,32,34,37,45]

6A RGA, NRT, MRL, TRL, ARD,
TRA [5,22,23,29,31,34–36,44]

6B RGA, TRL, NRT, MRL, RHL,
TRA, ARD, TRV [5,19,22–24,26,29,34–36,39,43]

6D NRT, TRL, TRA, ARD, NRT,
MRL, RHL [24,26,28,29,33,34,40,46]

7A RGA, TRL, NRT, TRA, MRL,
ARD, TRV [5,22–24,29–35,37,39–42,45]

7B RGA, NRT, TRL, TRA, MRL,
ARD, RHL, TRV [5,19,22–24,26,29–31,33–36,39,45]

7D NRT, TRA, TRL, TRV, MRL [22,29,30,32,34,37,38,40,45]

This study identified thirteen QTL clusters associated with more than one RSA trait
that were distributed on ten chromosomes, indicating that there were co-localisations
among these RSA traits. From the relationship among the nine RSA traits, we found that
eight RSA traits showed significant positive correlations, and ARD showed a significant
negative correlation with NRT, RL RA, RV, and RT in the two environments. From these
results, we found that root traits are closely associated with each other, and some traits
could be controlled by the same QTL. This might be because of the pleiotropic effects of the
same gene or some RSA traits that might have a common genetic basis.

3.3. QTL Analysis Reveals the Key Genes for RSA

Key genes regulate RSA and root development. Therefore, the screening of key genes
is important for RSA improvement. Zhang et al. [59] found that WOX4, encoded by
AT1G46480, plays a central role in cambium development in Arabidopsis roots. Here, we
found TraesCS2A01G514000, a homologue of AT1G46480, in the QTL on chromosome 2A,
which was associated with TRA and TRV. Menand et al. [60] found that RHD6, encoded
by AT1G66470, was a positive regulator for root hair development. TraesCS3B01G007700
was found to be homologous with AT1G66470 and mapped to the QTL of chromosome
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3B that was associated with NRT and RT. Bernhardt et al. [61] found that a GL3 protein,
encoded by AT5G41315 in Arabidopsis, partially regulates root epidermal cell fates. Here,
we found that TraesCS2D01G575600, a homologue of AT5G41315, was located in the QTL of
chromosome 2D that was associated with ARD, which might influence root epidermal cell
fate. Karas et al. [62] found that LRL1, encoded by AT2G24260, is a partial regulator of root
hair development in Arabidopsis. Here, we found that TraesCS7D01G158300, a homologue
of AT2G24260, was located in the QTL of chromosome 7D that was associated with ARD.
Therefore, these genes were considered candidates for the respective RSA traits.

In addition, we manually screened the significant SNPs for haplotype analysis, and
found that nine genes showed non-synonymous polymorphisms across the wheat panel.
Two genes, TraesCS2A01G516200 (AX-110564036) and TraesCS7B01G036900 (AX-112287343),
have attracted our attention. The different combinations of haplotypes for the two genes
showed significant differences for RSA traits. Importantly, the two genes were highly ex-
pressed in the root tissues. Functional annotation analysis revealed that TraesCS2A01G516200
encoded a short-chain dehydrogenase/reductase and TraesCS7B01G036900 encoded a de-
velopment and cell death domain protein. These results indicate that these two genes may
be vital candidate genes for root architecture.

4. Materials and Methods
4.1. Plant Materials and Experimental Treatment

Based on pre-diversity assessment of more than 5000 wheat accessions using KASP
markers or 660 K SNP chip, a diversity panel of 388 wheat accessions was collected,
including 38 local landraces, 66 exotic cultivars, and 284 cross-derived cultivars in China.
The name and origin of each wheat accession are listed in Table S1. Wheat seeds of uniform
size were washed thrice with distilled water and germinated on wet filter papers in Petri
dishes for germination at 20 °C. After 2 days, nine germinating seeds of each accession
were evenly planted in one pot, and each pot was thinned to six seedlings after 10 days of
sowing. Each pot (height 15 cm; diameter 20 cm) was filled with 4.5 kg of soil (nutritional
soil: sieved tillage soil, 1:1) to easily obtain the whole root system.

For OPC, the pots were randomly buried in a field on 15 October 2019 at Xinxiang
(35.29◦ N, 113.83◦ E), Henan, China. To facilitate management, 10 blocks were set in the
field, each containing approximately 40 pots. The plants were watered to 70–80% of the
field capacity. The seedlings developed to the three-leaf stage after 25 days of sowing with
a mean temperature of 14.85 ◦C and 0 mm of rainfall. For IPC, the pots were randomly
placed in a phytotron. The seedlings were grown under 80% relative humidity, a 16 h light
(20 ◦C) / 8 h darkness (18 ◦C) photoperiod, and 8000 Lux light intensity. The seedlings
developed to the three-leaf stage after 30 days of sowing. The roots were cleaned with
water. For each wheat accession under the two environments, six biological replications
were sampled for further RSA trait measurement.

4.2. RSA Trait Measurement

The root samples were placed in plexiglass trays (200 mm × 250 mm) containing
4–6 mm of distilled water. The roots were manipulated to minimise tangling and overlap.
Nine RSA traits (Table 6), TRL, TRA, ARD, TRV, NRT, RL, RA, RV, and RT, were measured
using a recording scanner (Epson 1680, Suwa, Japan). The images were analysed using
Win RHIZO Pro Vision 5.0a (Regent Instruments Inc., Quebec, QC, Canada), which was
operationally semi-automated.
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Table 6. Abbreviations for RSA traits and their units.

Acronym RSA Traits Units

TRL Total root length Centimetres (cm)
TRA Total root surface area Square centimetres (cm2)
ARD Average root diameter Millimetres (mm)
TRV Total root volume Cubic centimetres (cm3)
NRT Number of root tips Number (no.)
RL Root length (root diameter ≤ 0.3 mm) Centimetres (cm)
RA Root surface area (root diameter ≤ 0.3 mm) Square centimetres (cm2)
RV Root volume (root diameter ≤ 0.3 mm) Cubic centimetres (cm3)
RT Root tips (root diameter ≤ 0.3 mm) Number (no.)

4.3. Phenotypic Data Analysis for RSA Traits

SPSS (Version 17.0) and R packages (R Version 4.1.1) were used for data analysis.
Genotype, environments, and genotype-by-environment interactions were considered as
random effects in a linear mixed model (LMM_4 K). The lme4 package in the R 4.1.1
program was used to estimate the BLUPs. The H2 of the RSA traits was calculated using
the mean values of each experiment among six replications using the formula:

H2 =
σ2

G

σ2
G +

σ2
GE
n + σ2

e
nr

where σ2
G is the genetic variance, σ2

GE is the genotype × environment, σ2
e is the error variance,

n represents the number of environments, and r represents the number of replications. The
mean values were used to analyse the differences using a t-test. The CV was calculated for
all the RSA traits [63].

4.4. Population Structure

Principal component analysis of the population was performed using the GCTA
software [64]. For population structure analysis, a Bayesian model-based (Markov Chain
Monte Carlo) clustering approach was used in the STRUCTURE software v2.3.4 with
unlinked markers (r2 = 0) [65]. The K-value, representing the number of subgroups, was
set from 2 to 20, and five independent runs for each K were performed with the burn-in
length set to 20,000 and iterations set to 10,000. The most likely number of subpopulations
was determined using the ∆K method based on the rate of change in LnP (D) between
successive K-values [66].

4.5. LD Analysis

Genome-wide LD analysis for the A, B, and D genomes was performed using the
PLINK software. The squared allele-frequency correlations (r2) were used to estimate the
LD by applying pair-wise comparisons among the filtered SNP markers. The values for
genomes A, B, and D were plotted against the genetic distance to determine LD decay.
The parameters for calculating r2 were set to –r2 –ld-window-kb 30000 –ld-window 1000
–ld-window-r2 0. A locally weighted polynomial regression (LOESS) curve was drawn to fit
the data using second-order local weighted scatter plot smoothing in the R program. The
critical distance spanning the QTL was defined based on the intersection point of the fitted
LOESS curve with the LD (r2 = 0.1).

4.6. Genotyping Data Using 660K SNp Chip

The wheat panel was genotyped using the Affymetrix Wheat 660K SNP Chip [48], which
was provided by the Beijing CapitalBio Technology Company (http://www.capitalbiotech.com,
accessed on 8 January 2022). SNP genotyping calling and allele clustering were performed using
the polyploid version of the Affymetrix Genotyping Console software. To ensure genotyping
accuracy, quality control, and filtering of raw data with missing data > 10%, a minor allele

http://www.capitalbiotech.com
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frequency < 5%, or Hardy-Weinberg Equilibrium > 0.01 were performed. The remaining
high-quality SNP markers were used for GWAS. The sequence of each polymorphic SNP
was identified using Basic Local Alignment Search Tool (BLAST)n 2.2.29+, and the physical
positions of all SNPs were determined by blasting them with the wheat reference genome
IWGSC RefSeq v1.0. The parameters of the blast result were set to: ratio (AL/QL) ≥ 0.95,
identity ≥ 0.95, and E-value < 1 × e−10. Two genetic diversity parameters, PIC and He,
were calculated for each SNP marker and each chromosome using the formulas described by
Botsteinet et al. [67] and Nei [68], respectively.

4.7. GWAS

GWAS was conducted using a univariate linear mixed model in the GEMMA soft-
ware [69]. The suggestive threshold for p-value (p = 1/Ne) was calculated using a modified
Bonferroni correction (genetic type 1 Error calculator, version 0.2), where Ne represents the
effective number of SNP markers [70]. A threshold was established at −log10p ≥ 4 to deter-
mine the marker–trait association significance. Moreover, the p-value of −log10p ≥ 3.5 was
used to establish a second, less restrictive threshold. Significant markers from GWAS were
visualised in Manhattan plots, and important p-value distributions were visualised using
quantile-quantile (Q-Q) plots drawn with the qqman package in R 4.1.1. The phenotypic
variance (R2) explained by significant SNPs was evaluated using the GCTA software [64].

4.8. Candidate Gene Identification, RNA Extraction, and RT-qPCR Verification

Candidate genes were selected using functional annotation and haplotype analysis.
For haplotype analysis, the significant SNPs in QTL clusters were used to identify non-
synonymous polymorphisms. The phenotypic differences between the haplotypes of the
nine RSA traits were analysed to identify the candidate genes.

The root, stem, and leaf tissues were sampled from wheat plants of cv. Chinese Spring
grown in the field at the jointing and heading stages, respectively. The total RNA was
extracted using the TRIzol reagent (TaKaRa, Ohtsu, Japan) according to the manufacturer’s
instructions. One microgram of the total RNA was used for first-strand cDNA synthesis
using the HiScript III First-Strand cDNA Synthesis Kit (Vazyme, Nanjing, China). qPCR
was performed on an ABI 7500 real-time PCR system (Applied Biosystems, Forest City, CA,
USA) using SYBR Premix Ex Taq Kit (TaKaRa, Japan). Three biological replications were
used for each experiment. TaActin3 was used as an internal control [71], and the relative
expression value was calculated using the 2−∆∆Ct method. All primers used for RT-qPCR
were listed in Table S6.

Supplementary Materials: The following supporting information can be downloaded at: https:
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