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A B S T R A C T

Chagas disease, triggered by the flagellate protozoan Trypanosoma cruzi (T. cruzi) plays a potentially threat to
historically non-endemic areas. Considerable evidence established that the immuno-endocrine balance could
deeply influence the experimental T. cruzi progression inside the host's body. A high-resolution multiple reaction
monitoring approach (MRMHR) was used to study the influence of melatonin on adrenal and plasma steroidal
hormones profile of T. cruzi infected Wistar rats. Young (5weeks) and middle-aged (18months) male Wistar rats
received melatonin (5mg/Kg, orally) during the acute Chagas disease. Corticosterone, 11-dehydrocorticosterone
(11-DHC), cortisol, cortisone, aldosterone, progesterone and melatonin concentration were evaluated.
Interleukin-1 alpha and β (IL-1α and β), IL-6 and transforming growth factor beta (TGF-β) were also analyzed.
Our results revealed an increased production of corticosterone, cortisone, cortisol and aldosterone in middle-
aged control animals, thus confirming the aging effects on the steroidal hormone profile. Serum melatonin levels
were reduced with age and predominantly higher in young and middle-aged infected rats. Melatonin treatment
reduced the corticosterone, 11-DHC, cortisol, cortisone, aldosterone and progesterone in response to T. cruzi
infection. Decreased IL-1 α and β concentrations were also found in melatonin treated middle-aged infected
animals. Melatonin treated middle-aged control rats displayed reduced concentrations of TGF-β. Melatonin le-
vels were significantly higher in all middle-aged rats treated animals. Reduced percentages of early and late
thymocyte apoptosis was found for young and middle-aged melatonin supplemented rats. Finally, our results
show a link between the therapeutic and biological effects of melatonin controlling steroidal hormones pathways
as well as inflammatory mediators.

1. Introduction

Chagas disease is an anthropozoonosis from the Central and South
American continent, caused by the protozoan flagellate Trypanosoma
cruzi (T. cruzi) and considered a neglected parasitic illness which has
spread from its original boundaries to historically non-endemic areas
due to widespread migration [1,2]. Around 6–7 million subjects are
infected with T. cruzi worldwide. According to the Bulletin of the World
Health Organization the increased frequency of T. cruzi infected people
in the United States, Europe and the Western Pacific Region is evi-
denced [2]. Chagas disease has become an important threat being
considered an extremely debilitating illness, normally linked to pov-
erty, affecting populations with low visibility and exerts a considerable
impact on morbidity and mortality with more than 10,000 deaths

annually in Latin America [3] Chagas disease has increased incidence in
immunocompromised people and elderly population [4].

It is well established that immune cells share receptors for hormones
and cytokines through the action of systemic and local regulatory me-
chanisms. When one of these systems is disturbed by pathogen invasion,
the physiological profile of these interactions changes, triggering the
release of proinflammatory cytokines and hormones. The immuno-en-
docrine balance can deeply influence the experimental T. cruzi pro-
gression inside the host's body [5].

Some available data also reveal that a deregulation of the hy-
pothalamic-pituitary-adrenal (HPA) axis during the acute T. cruzi in-
fection induces an immunosuppression that is related to endocrine
changes involving a circuit with regulatory properties in which cyto-
kines and hormones produced by the HPA axis play essential role [6].
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This immuno-endocrine cross-talk begins when HPA axis stimulation
promotes the secretion of pituitary adrenocorticotropic hormone
(ACTH) and adrenocortical glucocorticoids (GCs), triggered by the re-
lease pro-inflammatory cytokines like IL-6 or IL-1β into the circulation
[7,8]. Others data show that glucocorticoids drive changes in the mi-
tochondrial biogenesis [9] interfering with the stress response. Al-
though active glucocorticoids in the circulation are primarily derived
from the adrenal gland as part of the HPA axis, they can also be pro-
duced from their inactive substrate 11-dehydrocorticosterone (11-DHC)
by the enzyme 11β-HSD1 [10] as well in other sites such as thymus,
brain and intestinal tract [11]. Additionally, elevated corticosterone
levels contribute to the aging process and age-related diseases [12].

Melatonin (N-acetyl-5-methoxytryptamine) is a pleiotropic [13]
signaling substance with vital role in adjusting the circadian rhythmi-
city [14,15] and mitochondrial homeostasis [16]. The finding of mel-
atonin synthesis in mitochondria [16] where it likely functions as an
effective antioxidant [13,16,17], anti-apoptotic [18], anti-aging [19],
oncostatic [20], immunomodulatory [21–23], free radical scavenger
[24] and anti-inflammatory, demonstrate that the melatonergic path-
ways are present in different species and types of cell, such as immune
cells out of pinealocytes [25–27]. Confirming this relationship, the
presence of MT1 and MT2 melatonin receptors and its necessary bio-
synthetic machinery for producing this indoleamine in mitochondria
has been described [25].

Several works have shown that besides the coordination of several
different genes and hormones, melatonin is the main hormone in the
regulation of our sleep-wake cycles. Although many conflicting results
have been yielded, advanced age is related increased oxidative stress,
respiratory functional decline, susceptibility to apoptosis [28] as well as
a worse prognosis during the late phase of Chagas disease [29]. As long
as age travels, a decay in pineal melatonin concentrations happens
[30], triggering alterations in mitochondrial dynamics and immune
cells phenotype [31] which leads to an unbalanced healthy homeostasis
in aged people [30,32,33], as well as fastening the aging process [34].

The purpose of this study was to investigate the effects of melatonin
on the regulation of steroid hormones and cytokine signaling during the
development of acute T. cruzi infection. These findings have significant
functional relevance, since an immunoendocrine imbalance occurs
during both aging and Chagas disease. Then, we focused on the quan-
tification of melatonin by Elisa and circulating steroids (corticosterone,
11-dehydrocorticosterone (11-DHC), cortisol, cortisone, aldosterone
and progesterone) at tissue and systemic level by using a high-resolu-
tion multiple reaction monitoring (MRMHR) - based mass spectrometry
approach. The cytokine repertoire, including IL-1α and IL-1β, IL-6 and
TGF-β were also evaluated during the development of acute T. cruzi
infection.

2. Material and methods

2.1. Reagents

The molecular standards cortisol, cortisone, corticosterone, pro-
gesterone, aldosterone, cortisone-d8, corticosterone-d4 and formic acid
were purchased from Sigma-Aldrich (St. Louis, MO, USA). 11-
Dehydrocorticosterone (11-DHC) from Steraloids Inc. (Newport, RI,
USA). Methanol (MeOH), acetonitrile (ACN), both HPLC grade, and
Milli-Q water system were available from Merck (Kenilworth, NJ, USA).
For solid-phase extraction, a Waters Extraction Manifold (Milford, MA,
USA) was used, and HyperSep C18 cartridges (500mg sorbent, 2.8 mL)
provided by Thermo Fisher Scientific (Bellefonte, PA, USA). RPMI 1640
medium, anti-corticosterone antibody and trypan staining were pur-
chased from Sigma (Sigma-Aldrich, St Louis, MO, USA). The commer-
cial enzyme-linked immunosorbent assay (ELISA) kit for IL-1β (Catalog
#RLB00), IL-6 (Catalog # R6000B) were obtained from R&D Systems
(Minneapolis, MN, USA). TGF-β (Catalog # MB100B) levels were ana-
lyzed using a commercial ELISA Kit (BioLegend, San Diego, CA, USA).

Melatonin (Catalog # RE54021) levels were analyzed using a com-
mercial ELISA Kit (IBL, Hamburg, Germany). Fetal bovine serum (FBS)
was purchased from Gibco (GIBCO-Life Technologies, Baltimore, MD,
USA).

2.2. Animals

All animal assays were designed only after due approbation of the
Ethics Committee (number: 15.1.886.609) on Animal Use of the
University of São Paulo, Campus of Ribeirão Preto, complying with the
guiding principles of the National Council for the Control of Animal
Experimentation (CONCEA-Brazil). Male Wistar rats, 5 weeks (n=20)
to 18months (n=20) old, weighing between 100–150 g and
500–600 g respectively, were kept in an accredited animal facility at the
College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP). Animals
were placed in a regulated environment temperature, between 22 and
24 °C and maintained on a 12h light-dark cycle, with ad libitum access
to commercial rodent diet and water.

2.3. Experimental infection, treatment and euthanasia

Male Wistar rats were infected with the Y strain of T. cruzi (1× 105

blood trypomastigotes/animal, intraperitoneally). Melatonin treatment
(5 mg/kg/day; orally; suspended in 0.1 mL of polyethylene glycol 400
solution) started concomitantly with parasite infection and it was daily
maintained until the day of the experiments (9 days post-infection
(dpi). Animals were randomly divided into eight groups: young control
(no melatonin treated - YC), young melatonin treated (YMC), young T.
cruzi infected (YI), young T. cruzi infected melatonin treated (YMI),
middle-aged control (MC), middle-aged melatonin treated (MMC),
middle-aged T. cruzi infected, (MI) and middle-aged T. cruzi infected
melatonin treated (MMI). After a short time animals were humanely
anaesthetized with tribromoethanol 2.5% by administration of 0.1mL/
10 g of body weight and decapitated (at 9th dpi) for blood, serum and
tissue collection for the performance of experimental protocols.

2.4. Tandem mass spectrometry (LC-MS/MS)

Corticosterone and 11DHC from plasma and adrenal were quanti-
fied by mass spectrometry (MS) as previously described (Peti et al.,
2018). Tissues were homogenized (Mixer Homogenizer, Labortechnik,
Wasserburg, Bavaria, Germany) in methanol:water (1:1 v/v), cen-
trifuged, and the supernatant was recovered. Supernatants and plasma
were purified as previously described (Galvão et al., 2016). Samples
were analyzed using the mass spectrometer TripleTOF 5600+(Sciex,
Foster, CA, USA) coupled with the liquid chromatography system
Nexera (Shimadzu Corp., Kyoto, Japan). Data were processed using
PeakView and MultiQuant software.

2.5. Cytokine assays and melatonin levels

Serum samples were used for the detection IL-1β, IL-6, TGF-β and
melatonin levels using two-site sandwich ELISA with monoclonal an-
tibody. Standard curves were used for evaluating cytokine concentra-
tions (pg/mL) read at 450 nm and quantified by using an automated
microplate ELISA reader (BIOTEK SYNERGY H1M). MILLIPLEX assay
kit (Cat. # RECYTMAG-65K Millipore) and MAGPIX Multiplexing
System (MilliporeSigma) was used for the detection of IL-1α.

2.6. Statistical analysis

Graph Pad Prism version 5.0 was used to analyze all data (GraphPad
Software, Inc., San Diego, CA, USA; one-way ANOVA with Bonferroni's
post test) based on variance difference significance among groups.
Significance was assured for p < 0.05 (mean ± standard error of the
mean (SEM).
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3. Results

Studies in rats have demonstrated that during T. cruzi infection
proinflammatory mediators such as IL-1α and IL-6 trigger the stimu-
lation of the HPA axis [6]. Only one paper describe the relationship of
melatonin and steroidal hormones [35], and for experimental Chagas
disease nothing is known concerning to the role of this indoleamine
upon the systemic and tissue levels of steroidal hormones such as 11-
DHC, cortisol, cortisone, aldosterone and progesterone.

The MRMHR method is one of accurate method of analysis through
liquid chromatographic tandem mass spectrometry for evaluation of
low-concentration metabolites in biological samples. This method was
applied in the adrenal tissue and plasma samples of rats and allows the
quantification of lower steroid hormones concentrations simulta-
neously with precision and accuracy.

To get some insight into the ability of melatonin to modulate the
hormonal response of T. cruzi infected rats, we evaluated the produc-
tion of corticosterone (Fig. 1), 11-DHC (Fig. 2), cortisone (Fig. 3),
cortisol (Fig. 4) and aldosterone (Fig. 5) and progesterone (Fig. 6) in
young and middle-aged animals. Treatment with melatonin reduced the
basal levels of these hormones in all middle-aged melatonin treated
rats, infected or not, as compared to their untreated groups. However,
the plasma levels of corticosterone (Fig. 1D), 11-DHC (Fig. 2D), corti-
sone (Fig. 3D), cortisol (Fig. 4D) did not significantly decline among all
infected melatonin-treated animals. On the other hand, reduced con-
centrations of progesterone were induced by melatonin, for juvenile

and infected subjects (Fig. 6D).
Our results confirm that the aging affects the steroidal hormone

profile, since an increased production of corticosterone (Fig. 1A), 11-
DHC (Fig. 2C), cortisone (Fig. 3A), cortisol (Fig. 4A), aldosterone
(Fig. 5A) and progesterone (Fig. 6C) was observed in middle-aged
control animals as compared to young ones. Corticosterone (Fig. 1C),
11-DHC (Fig. 2C), cortisone (Fig. 3C) and cortisol (Fig. 4C) con-
centrations were significantly lower in plasma from uninfected middle-
aged melatonin treated animals. T. cruzi infection down-regulated the
adrenal production of cortisone (Fig. 3A–B), cortisol (Fig. 4A–B) and
aldosterone (Fig. 5A–B) in middle-aged infected rats, as compared to
their respective uninfected counterparts.

The next step, the pro-inflammatory cytokines involved in the HPA
regulation: IL-1α, IL-1β, IL-6 and TGF- β were evaluated. A significant
increase in IL-1α (Fig. 7A and B) concentrations was observed for in-
fected middle-aged and young rats, when compared with the control
ones. As expected, the immunosenescence process was linked to ele-
vated levels of IL-1 β (Fig. 7C and D) and IL-6 (Fig. 8A and B) as found
for all middle-aged rats as compared to juvenile ones. We further ex-
amine if melatonin's actions were related with alterations in the kinetics
of cytokine output during the early T. cruzi infection. Our results de-
monstrated reduced IL-1α and IL-1β production, a key cytokine that has
been entangled with chagasic cardiac hypertrophy, for middle-aged
infected melatonin supplemented rats (Fig. 7B and D). Melatonin
treated middle-aged rats displayed lower levels of IL-6, excepting the
young ones (Fig. 8A and B). Reduced concentrations of TGF-β were

Fig. 7. IL-1α levels (pg/mL), were measured by MILLIPLEX assay (A-B) and IL-1β levels (pg/mL), measured by ELISA (C-D), after melatonin treatment, from young
and middle-aged Wistar rats, on the 9th day post-infection of experimental T. cruzi infection, for the following groups: young control (YC), young melatonin control
(YMC), young infected (YI), young melatonin infected (YMI), middle-aged control (MC), middle-aged melatonin control (MMC), middle-aged infected (MI) and
middle-aged melatonin infected (MMI). (A) Control groups and (B) Infected groups. Results are shown as the means± SEM of n= 5 to 6 rats. One-way ANOVA
followed by Bonferroni's multiple comparison test was used to compare groups (*P < 0.05).

V. Brazão, et al. BBA - Molecular Basis of Disease 1866 (2020) 165914

9



triggered for young infected rats when compared to the untreated ones
(Fig. 8D). Melatonin treated middle-aged control groups displayed re-
duced concentrations of TGF-β (Fig. 8C).

Since, an important decay in endogenous melatonin synthesis oc-
curs with aging, systemic levels of this hormone were quantified in
young and middle-aged groups. Serum melatonin levels were reduced
with age and predominantly higher in young and middle-aged infected
rats compared to control animals (Fig. 9). Melatonin levels were sig-
nificantly higher in all middle-aged rats (control or infected) supple-
mented with melatonin, as compared to untreated ones.

The anti-apoptotic abilities of melatonin were evidenced in our
study. Early and late thymocyte apoptosis from all middle-aged mela-
tonin-treated animals were statistically reduced as compared to non-
supplemented ones respectively (Fig. 10A and B). However, as shown in
Fig. 10, the percentages of early (A) and late thymocyte apoptosis (B)
did not significantly decline among all young melatonin-treated ani-
mals. Significantly higher proportions of both early (A) and late
apoptotic thymocytes (B) were displayed for all middle-aged animals,
as compared to young counterparts (Fig. 9) triggered by the aging
process.

The percentage of viable thymocytes in all young and middle-aged
melatonin treated infected rats, was statistically enhanced when com-
pared to untreated counterparts (Fig. 10C). Oppositely, a significant

drop in the proportion of viable thymocytes in middle-aged control
animals was observed as compared to young groups (Fig. 10).

4. Discussion

A bulk of evidence has shown that altered steroidal hormone pro-
duction might be related to a number of stress-induced disorders such
as major depression, stress/trauma, hypertension, immune suppression
and septic shock [36–38]. Although the exact underlying complex
mechanisms of the Chagas disease pathology are still unveiled, the
coexistence of endocrine and immunological disturbances occurs
during the early T. cruzi infection although the mechanisms are not well
established [3,39]. Then, herein our aim was the quantification of the
steroidal hormones in a sensitive and specific way, using the MRMHR
method, and explores the impact of melatonin supplementation on
cytokine production and steroidal hormones fractions during the early
T. cruzi infection.

Aging process is associated with functional changes in the nervous,
endocrine and immune systems [40]. Mitochondrial dysfunction also
appears to contribute to progression of the aging process leading to
defects in the steroidogenesis. As we age, morphological and functional
changes of the adrenal gland occur leading to alterations in hormonal
output and decline in adrenal androgen synthesis, although increased

Fig. 8. IL-6 levels (A-B) and TGF-β (C-D) (pg/mL) were measured by ELISA, after melatonin treatment, from young and middle-aged Wistar rats, on the 9th day post-
infection of experimental T. cruzi infection, for the following groups: young control (YC), young melatonin control (YMC), young infected (YI), young melatonin
infected (YMI), middle-aged control (MC), middle-aged melatonin control (MMC), middle-aged infected (MI) and middle-aged melatonin infected (MMI). (A) Control
groups and (B) Infected groups. Results are shown as the means± SEM of n= 5 to 6 rats. One-way ANOVA followed by Bonferroni's multiple comparison test was
used to compare groups (*P < 0.05 and **P < 0.01).
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expression and activity of enzymes related to glucocorticoid synthesis
occurs, promoting an immunoendocrine imbalance, with adrenal hy-
pertrophy and cortisol hypersecretion [41] While the adrenal cortisol
concentration increases with the aging process, a reduced melatonin
release by pineal gland is evident, being cortisol considered by some
authors as an antagonist mediator for pineal melatonin release. In line
with this, our data show that serum melatonin levels were reduced in
middle aged animals as compared to young ones.

Since in rodents stress responses are controlled by corticosterone
production. Some researchers have described enhanced plasmatic cor-
tisol concentrations and hypertrofic adrenal glands in mice, after a
stress episode. Other papers have considered cortisol as a key for stress
activation in both mice [42] and rats [43]. Furthermore, cortisol dis-
plays enhanced glucocorticoid potency when compared to corticos-
terone [44].

Interestingly, independent corticosterone secretion was observed in
rat testis out of the HPA axis bustle from progesterone [45]. This helps
to explain how the higher age-related corticosterone concentrations,
may be due to the elevated availability of progesterone, which can be
correlated with the individual concentrations of progesterone and
corticosterone. Lymphoid organs are able to produce locally corticos-
terone through the action of the inactive metabolite, from 11-DHC to
11β-HSD1, being this last compound normally elevated in aged animals
[46]. Furthermore, physiological investigations have also shown al-
dosterone autonomous secretion in age-related subjects leading to en-
hanced risk of developing cardiovascular diseases [47]. Interestingly,
this pattern of steroidal composition during the aging process parallels
our findings. We found that the adrenal production of corticosterone,
cortisone, cortisol and aldosterone were markedly increased in middle-
aged control animals as compared to young ones. Furthermore, in-
creased plasma concentrations of 11-DHC and progesterone were in-
duced by aging process, as observed for middle-aged rats as compare to
young counterparts.

An increase in the secretion of corticosterone induced by T. cruzi
drive a systemic inflammation which is closely correlated with hyper-
trophic adrenal glands, specially the fasciculate zone, and thymic

alterations in infected animals [48]. Yet, Villar et al. have reported that
patients with cardiac forms of chronic Chagas disease have higher
adrenal expression of several steroidogenic enzymes, including cyto-
chrome P450, family 11, subfamily A, polypeptide 1 (CYP11A1),
CYP11B1, 11β-hydroxysteroid dehydrogenase type 1 (HSD1), and
steroidogenic acute regulatory protein [48]. Chumbinho et al. (2012)
also described that the mortality rate in T. cruzi infected mice was under
the direct influence of aldosterone. According to the same authors, al-
dosterone blockage with spironolactone (an aldosterone antagonist)
attenuates the parasite load and reduces the severity of Chagas cardi-
omyopathy [49]. Currently is also known that a prolonged aldosterone
treatment (between 4 and 5weeks) triggers enhanced oxidative stress
production and accounts for a proinflammatory phenotype. Although
the exact role of melatonin on aldosterone production has remained
controversial, we found that melatonin treatment decreased the adrenal
aldosterone production in all treated rats. Our findings demonstrate
that the adrenal steroid production (cortisone, cortisol and aldosterone)
in middle-aged and infected rats was worsened with a significant re-
duction of these adrenal hormones as compared to their respective
uninfected counterparts. Interestingly, T. cruzi infection per si triggered
significant increased systemic levels of melatonin in both young and
middle-aged infected animals as compared to uninfected ones. In in-
fected animals the immune system orchestrates a cellular and humoral
response and all these cells display receptors for this indoleamine, being
able to produce this hormone. Then, we propose that melatonin en-
hanced levels has a wide range of inducers, such as seasonal period,
immune response, infection and animal species.

An adequate melatonin supplementation, even if started on late life,
has been investigated for their potential to reversibly counteract the
age-related impairment of thymopoiesis and immune dysfunctions in
old animals [50]. Cortisol secretion is inhibited by melatonin's action
[51], indicating that there is an upside down relationship between
circadian cortisol and melatonin cycles [52]. Yet, these inhibitory ef-
fects were reversed when cells were co-treated with the MT1/MT2
antagonist luzindole, suggesting the presence of functional melatonin
receptors in the adrenal cortex [51]. However, nothing is known about
endogenous 11-DHC levels and melatonin treatment. Our findings de-
monstrated that the exogenous administration of melatonin exerts an
inhibitory effect on the adrenal secretion of corticosterone, 11-DHC,
cortisone and cortisol in elderly T. cruzi infected rats. Longer melatonin
schedules in T. cruzi-infected rats trigger enhanced serum concentra-
tions of this indoleamine, specially in middle-aged groups.

It is well explained that the exposure to glucocorticoids and hy-
droxyl radical induce thymocyte apoptosis, and melatonin treatment
reverts this process [53,54]. Sainz et al. described that melatonin
treatment triggered a reduction in pro-apoptotic markers in the cortex
of the murine thymus [55]. A plethora of in vivo and in vitro experiments
conclusively demonstrate that melatonin can protect primary lymphoid
organs against apoptosis through a mechanism that is dependent of its
anti-apoptotic properties [54] and its ability to modulate cell pro-
liferation [50]. Another potential theory to explain melatonin's anti-
apoptotic effects is its role in the down regulation on the glucocorticoid
receptor in thymocytes [53] as well as the antioxidant properties of this
indoleamine. Our experiments support the previously reported, since
we found that early and late apoptotic thymocytes were reduced in T.
cruzi middle-aged melatonin supplemented groups.

Glucocorticoids have been reported as the central mediators of
thymocyte apoptosis during T. cruzi infection, worsening thymocyte
depletion probably due to enhanced glucocorticoid levels [3,6]. Fur-
thermore, some papers describe that the age-related deregulation in
pinealocytes and thymocytes is linked with enhanced mortality per-
centages triggered by distinct pathologies such as infectious diseases,
cancer, and autoimmunity, as well as reduced vaccine response in the
elderly [5,56–58]. Over a lifetime, increased apoptosis in various cell
types occurs. For animal models, thymocyte apoptosis has also been
described for older mice [59,60] and the most significant changes are

Fig. 9. Melatonin (pg/mL) levels were measured by ELISA, after melatonin
treatment, from young and middle-aged Wistar rats, on the 9th day post-in-
fection of experimental T. cruzi infection, for the following groups: young
control (YC), young melatonin control (YMC), young infected (YI), young
melatonin infected (YMI), middle-aged control (MC), middle-aged melatonin
control (MMC), middle-aged infected (MI) and middle-aged melatonin infected
(MMI). Results are shown as the means± SEM of n=5 to 6 rats. One-way
ANOVA followed by Bonferroni's multiple comparison test was used to compare
groups (*P < 0.05).

V. Brazão, et al. BBA - Molecular Basis of Disease 1866 (2020) 165914

11



found in the thymic cortex [61]. In line with this, for all middle-aged
animals, we found higher proportions of both early and late apoptotic
thymocytes, as compared to young counterparts. Furthermore, reduced
rates of thymocyte viability for infected animals and for middle-aged
control groups was evidenced.

Overproduction of systemic cytokines and pro-inflammatory mar-
kers, such as IL-1β and IL-6 [62–65] are a common phenomenon during
the aged-related changes and may be linked to metabolic and patho-
physiological changes that occur during different acute inflammatory
diseases [66]. Upon mitochondrial dysfunction, several pro-in-
flammatory cytokines such as IL-1, IL-6, and TNF-α are produced by
endothelial cells, consequently up-regulating intercellular adhesion
molecule-1 (ICAM-1) expression which attracts monocyte activation
and adhesion [67] For a well orchestrated stress response, mitochondria
play an essential role to provide energy being totally integrated to the
HPA axis. Studies carried out in the naturally found old male

senescence-accelerated murine model have confirmed elevated IL-1β,
IL-6 and TNF-α levels in aged animals. Additionally, a hyper response of
the HPA axis, through the activity of a wide range of immune cell
mediators, including IL-1β and IL-6 is also observed during acute
Chagas' disease [68]. A close connection between T. brucei infection in
humans and the higher production of IL-6 has been already described
[69,70]. Enhanced IL-6 gene expression has been observed after in vitro
T. cruzi infection of ACTH-producing cells [71].

Notably, experimental assays have found a relationship between IL-
6 and the induction of heighten concentrations of glucocorticoid and
ACTH [72,73]. Dinkel et al. (2003) reported that chronically higher
glucocorticoid concentrations in rats are correlated with increased IL-
1β and TNF-α mRNA expressions. Interestingly, it has been postulated
that the higher expression of nuclear factor-κB (NF-κB), mitogen-acti-
vated kinase (MAPK) as well as pro-inflammatory cytokines could be a
consequence of the enhanced corticosterone concentrations, which lead

Fig. 10. Thymocyte apoptosis was measured by double staining with FITC-labeled annexin V and PI in young and middle-aged Wistar rats, on the 9th day post-
infection of experimental T. cruzi infection, for the following groups: young control (YC), young melatonin control (YMC), young infected (YI), young melatonin
infected (YMI), middle-aged control (MC), middle-aged melatonin control (MMC), middle-aged infected (MI) and middle-aged melatonin infected (MMI). Data are
expressed as: (A) percentages (%) of early apoptotic cells (annexin V+/PI−), (B) late apoptotic cells (annexin V+/PI+) (%), (C) cell viability of thymocytes (%).
Results are shown as the means± SEM of n= 5 to 6 rats. One-way ANOVA followed by Bonferroni's multiple comparison test was used to compare groups
(*P < 0.05).
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to sustain the inflammatory state [74]. Another study demonstrates that
chronic chagasic patients have a series of important metabolic and
hormonal abnormalities directly correlated with the increased IL-6
concentrations [75]. In line with these earlier studies, we also demon-
strated the regulatory properties of IL-1β and IL-6 during aging and T.
cruzi infection where a significant increased serum levels of these cy-
tokines were found in middle-aged rats.

Melatonin has a protective ability, inhibiting long-term changes in
inflammatory responses at different levels [76], thereby reducing the
production of several pro-inflammatory immune mediators, including
leukotrienes, prostanoids, cytokines and adhesion molecules. Further-
more, after melatonin administration in old mice, reduced concentra-
tions of the Th-1 cytokines profile and elevated IL-10 concentrations
were found [77,78]. Attaining similar kind of response in a rat model of
heart stroke submitted to melatonin therapy, it was demonstrated that
melatonin triggered a reduced inflammation reaction besides protecting
against multi-organ injury as a result from severe heat exposure [79].
Peng et al. have evidenced that after melatonin administration, an
important reduction in the output of inflammatory cells, neutrophils
and IL-1β in the bronchoalveolar lymphoid tissue occur [80]. Further-
more, Shin et al. demonstrated that in lung tissue exposed to lipopo-
lysaccharide, melatonin treatment downregulated the expression of
TGF-β1 [81]. Our findings constitute the first report of reduced serum
IL-1β and IL-6 levels in middle-aged T. cruzi infected rats under mela-
tonin therapy. Melatonin also exerts a negative influence on TGF-β
production, with reduced levels for young infected and middle-aged
control rats.

In summary, for the first time our compelling data clearly showed
the age-related changes in adrenal and plasma steroidal hormones
profiling as well cytokine production in Wistar rats confirming the ef-
ficiency of melatonin intervention in the regulation and signaling hor-
monal pathways and inflammatory mediators.
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