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The burn wound is a dynamic living environment that is affected by many
factors. It may present a progressive expansion of necrosis into the initially
viable zone of stasis within a short time postburn. Therefore, how to salvage
of the zone of stasis is of crucial importance in prevention and treatment
strategies of burn wound progressive deepening. This review focuses on the
cellular basis of tissue injury and the current progress of prevention and
treatment strategies of burn wound progressive deepening, in order to
provide references for the treatment of burn wounds in the early phase.
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Introduction

Burns wound surface is the source of dynamic local and systemic responses postburn

that strongly affect clinical outcome. Meanwhile, the wound changes rapidly in the early

phase of burns. In the first fews days, the secondary tissue damage may expand to the

initially viable tissues nearby after the primary burn injury both in area and depth

(1). Also, a better understanding of the mechanisms that lead to burn wound

conversion may lead to more novel therapies that limit burn wound progression in

the early stage, and ultimately lead to better healing.
Pathophysiological changes of early burn wounds

In addition to the immediate coagulation and necrosis of the tissue in the

coagulation zone of the skin wound after the burn, the zone of stasis also has a

progressive damaging effect in the early stages, especially in the 12–24 h after the

injury (2). A range of pathophysiological changes will appear in the zone of stasis: ①

Dilation of capillaries and venules, swelling and loose arrangement of vascular

endothelial cells, cracks appear between cells, and vascular endothelial cell

permeability increases. At the same time, vascular endothelial cells can release a

variety of inflammatory mediators and aggravate the inflammatory response. ②

During the early phase of burn injury, neutrophils detach from the blood vessels and

reach the interstitial space releasing oxygen free radicals, proteolytic enzymes, etc.,
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causing new damage to the tissue and causing the progression of

the wound. ③ During the burn, microthrombosis gradually

develops due to the accumulation of large numbers of

dissolved red blood cells in the lumen (3). The more

microthrombosis is formed, the worse the microcirculation

state of the wound is, and the degree of tissue necrosis is also

deepened, which is one of the reasons for the progressive

deepening of the wound after burn (Figure 1).
Treatment of the wound progression

Progression of burn wounds, or the conversion of superficial

burns to deep burns, is characteristic of many burns and leads

to worse outcomes. Appropriate treatment of the wound and

enhanced protection of the zone of stasis are very important

to prevent the deepening of the wound. This section will

summarize some of the findings of past studies and highlight

the lastest promising developments in various fields.
Early debridement

There are a lot of inflammatory mediators and endotoxin in

eschar and subeschar edema fluid. Improper treatment of early

burn wounds makes the wound become the source of infection

in burn patients (4). In the early stage of burn, the systemic

inflammatory reaction of the patient is not obvious.

Debridement in good physical condition can effectively reduce

the occurrence of visceral complications and systemic

infection after burn, improve the long-term prognosis, and

improve the quality of life of the patient. The common

methods of debridement used in burn surgery include the

sharp debridement and the blunt debridement.

The most common means of removing eschar is

escharectomy. The debridement effect of escharectomy is

undeniable, but at the same time, excessive removal of healthy

tissue is unavoidable. Moreover, hemorrhagic shock is often

caused by insufficient hemostasis after extensive excision of

eschar. In case of that, there are some precise debridement

techniques could be chosen, such as hydrodynamic

debridement system (5) and enzymatic debridement (6).

These alternative methods of eschar removal that are less

traumatic and more selective than escharectomy. Bromelain-

based enzymatic debridement and hydrotherapy using

pressurized saline flow can effectively remove necrotic tissue

with less pain. And the preservation of dermal tissue could

reduce surgical burden and improve long-term prognosis (7).

Apart of these methods, blunt debridement techniques are

promising as well. Dermabrasion and decompression in the

initial debridement in the early stage of burns can dredge the

blood circulation of the wound, reduce the burn damage,

improve the revival of the zone of stasis (8).
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Tissue engineering and stem cell therapy

Tissue engineering has begun to provide cellular therapies

for burns and many other tissue injuries in the human body.

Among which, stem cell biology has been an important part

of the equation when it comes to salvaging the zone of stasis.

It is particularly important to preserve the initially unaffected

and salvageable stasis area (9) during the treatment process.

In recent years, with the development of stem cell technology,

its application in wound treatment has also been further

developed. Many types of stem cells have been used in clinical

management to prevent the delayed necrosis of initially viable

tissues surrounding the zone of stasis, such as embryonic

stem cell (ESC), somatic stem cell (SSC), induced pluripotent

stem cell (iPSC) and mesenchymal stem cell (MSC) (10). In

this part, we will focus on the MSCs and describe their usages

and functional mechanisms. MSCs can be isolated from

different tissues, first from bone marrow, but also from

different tissues (11, 12). MSCs represent a type of pluripotent

stem cells that can differentiate into various mesenchymal

lineages, and are one of the most widely used stem cells in

the field of skin injury and repair (13), and play a certain role

in protecting the stasis area of burns (14). The mechanisms

by which MSCs limit wound deepening and promote wound

healing are mainly as follows.
Paracrine impact of MSCs
Studies have shown that MSCs can participate in tissue

repair through paracrine exosomes to regulate the wound

microenvironment (15, 16). Exosomes are nano-sized

extracellular vesicles (EVs) secreted by cells, which carry

biologically active substances such as nucleic acids, proteins,

and lipids, and function in various physiological and

pathological processes in the body. For example, mesenchymal

stem cell-derived exosomes (MSC-exosomes) are enriched

with various miRNAs and proteins that mediate multiple

intercellular signaling pathways and reduce inflammation by

regulating the levels of various cytokines, including

transforming growth factor-β1 (TGF-β1), hepatocyte growth

factor (HGF), nitric oxide (NO), and interleukin-4 (IL-4) (17).

MSCs can induce regeneration of the epidermal skin barrier

by increasing the synthesis of ceramide and dihydroceramides

(18). In addition to these functions, MSCs can also support

angiogenesis through paracrine influences. Pro-angiogenic

factors released by MSCs involve vascular endothelial growth

factor (VEGF), placental growth factor (PGF), transforming

growth factor-β (TGF-β), platelet derived growth factor

(PDGF), angiopoietin-1 (Ang-1), interleukin-6 (IL-6), and

monocyte chemotactic protein-1 (MCP-1), which can

stimulate the inducing multiple signaling axes to promote

therapeutic angiogenesis in wound tissue (19, 20).
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FIGURE 1

Cutaneous burn classification.
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Multi-directional differentiation of MSCs
Apart from the paracrine pathway, human MSCs are largely

thought to differentiate directly into skin cells and participate in

wound healing. MSCs are pluripotent stem cells capable of self-

renewal and multi-directional differentiation. When it is

implanted in the wound, it undergoes spontaneous differentiation

under the influence of the wound microenvironment (12).

Under suitable conditions, MSCs can differentiate into various

types of cells such as nerve cells, vascular endothelial cells,

sweat gland cells, and epidermal cells (21–23).

Immunomodulatory and anti-inflammatory
functions of MSCs

MSCs transplantation can alleviate the inflammatory

response in the early stage of burns. After MSCs

transplantation in burn wounds, the number of neutrophils

infiltrating into the zone of stasis decreased and the activity of

myeloperoxidase, which represents tissue neutrophil

accumulation, decreased, and pro-inflammatory cytokines

such as TNF-α, IL-6, IL-1β and IL-10 expression levels were

significantly reduced (14, 24). In addition, MSCs can alleviate

burn-induced oxidative stress in the stasis area, which may

also be associated with the reduction of inflammatory

response (3).

MSCs need to be expanded in vitro to perform their

regenerative and immunosuppressive functions for various
Frontiers in Surgery 03
clinical applications. Rombounts (25) found that there was a

problem of reduced activity of stem cells after passage: the

homing rate of fresh uncultured MSCs after transplantation

was 55%–65%, while that of cultured MSCs was 55%–65%.

When transplanted after 24 h, the homing rate dropped to

10%. The conventional stem cell transplantation method is to

increase the number of stem cells by in vitro expansion after

the isolated stem cells are obtained. So in stem cell therapy,

there is also a trade-off between transplant time and cell viability.
Measures to reduce local inflammatory
response

NLRP3 inhibitor
Burn wound infection is one of the important factors

leading to early burn wound deepening. The activity of

NLRP3 inflammasome is significantly enhanced in

macrophages in burn stasis area after scald (26, 27), and

inhibiting its activity can improve early burn wound

progression and promote wound healing. For example, the

NLRP3 inflammasome-specific inhibitor MNS (3,4-

Methylenedioxy-β-N) can significantly inhibit the activation of

NLRP3 inflammasome and the production of inflammatory

factors in burn wounds, and improve the progress of burn

wounds. At the same time, increasing the level of autophagy

in the wound also inhibited the NLRP3 inflammasome
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activity in the stasis area. Far-infrared (FIR) irradiation can

increase the level of autophagy in the wound, improve the

inflammatory infiltration of the wound, and reduce the

deepening of the trauma (28).

Hyperbaric oxygen therapy (HBO)
HBO improves tissue hypoxia, ischemia-reperfusion injury

and reduces pathological inflammation in various clinical

settings. It can also shorten the healing time and improve

outcomes of patients (29). The skin near II° and III° burns is

more hypoxic than normal skin, and the hypoxic tissue

around the burn site can be restored to normal oxygen levels

by giving oxygen under pressure. HBO can help

vasoconstriction to reduce edema, and maintain

microcirculation through direct infiltration, enhancing oxygen

delivery. HBO also helps inactivate leukocyte adhesion (2)

and has a potential broad-spectrum antimicrobial effect (30),

so the use of hyperbaric oxygen therapy in the treatment of

burns can lead to faster wound healing and reduced

morbidity and mortality from complications (31).
Measures to protect the wound
microenvironment

Negative pressure wound therapy (NPWT)
NPWT consists of two key techniques: vacuum sealing

drainage (VSD) and vacuum assisted closure (VAC). In the

early stage of burns, the systemic inflammatory response of

patients is not yet obvious. Timely debridement and

escharectomy when patients are in good physical condition

can effectively reduce the incidence of visceral complications

and systemic infections after burns, and improve long-term

prognosis (32). Studies have shown that the treatment with

VSD after scab grinding in the early stage can increase wound

perfusion, shorten wound healing time, reduce redness and

swelling of the wound edges, promote drainage of wound

secretions, and reduce the incidence of wound infection,

effectively prevent the progressive necrosis of the stasis area

(33–35). The traditional mode of continuous negative pressure

suction mode has shown good results in clinical work, but the

continuous negative pressure state can cause the local tissue

to adapt to the wound, and the blood perfusion will be

insufficient. Under the treatment mode of intermittent

negative pressure, the blood flow in the hypoperfusion area

near the wound edge is guaranteed, which is conducive to the

transport of nutrients and the discharge of metabolites (36),

thereby shortening the wound healing time. At present,

clinicians are constantly improving the VSD technique in

order to achieve better clinical results.

Topical dressings
When we treating burn wounds, blister skin should be

retained as a biofilm to protect the wound surface, create a
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moist wound microenvironment, and at the same time reduce

the probability of infection, thereby limiting the progressive

deepening of the wound surface and promoting wound

recovery. For those who cannot retain the blister skin, we also

have many artificial dressings to choose from. A variety of

wound dressings have been developed, including biosynthetic

(skin substitute) dressings, silver-containing dressings, and

silicon-coated dressingsgauze, hydrocolloids, and hydrogels

(37). The hydrogels are wildly used because of their similarity

in structure and composition with natural extracellular matrix.

Appropriate pore size helps the hydrogels to retain a moist

healing enviroment for wound cell proliferation and angiogen

(38). In recent years, researchers have also used xenograft

tilapia. The skin covers the burn wound. Tilapia skin has a

higher adhesion to wound skin, which can reduce the

frequency of dressing changes and the use of analgesics,

shorten the time of wound re-epithelialization, and may be a

low-cost alternative to accelerate the healing of burn patients

and reduce patient pain (39, 40).
Measures to improve the microcirculation
of burn wounds

Moistened exposure burn therapy (MEBT)
Moistened exposure burn therapy (MEBT) is a local

treatment method that treats burn wounds with moist

exposed burn ointment(MEBO) and exposes burn tissue to

repair and regeneration in a physiologically moist

environment. MEBO applied to the wound surface can

effectively improve the microcirculation in the zone of stasis

and prevent the progressive necrosis of the tissue nearby (41).

The advantages of MEBT are as follows: First, MEBT can

effectively improve the microcirculation of the wound,

avoiding the formation of a large number of microthrombosis

and reducing the degree of ischemia and hypoxia in the zone

of stasis. Secondly, MEBT can effectively reduce the capillary

permeability and prevent the wound surface from massive

extravasation. It relieves wound edema and reduce the

possibility of exudative shock in patients after injury (42).

Finally, MEBT can effectively reduce the generation of free

radicals, inhibit the progressive deepening of the wound

caused by lipid peroxidation damage, and play a role in the

tissue protection in the stasis area.

Cold therapy
Appropriate cold therapy can reduce local thermal damage,

decrease edema, inhibit the release of oxygen free radicals,

reduce inflammation, and effectively improve local wound

microcirculation. Treatment with moderate hypothermia at

31°C–33°C for 4 h, starting from 2 h after the burn resulted

in a 23% reduction in burn depth compared to the control

group at 24 h postburn. Simultaneous hypothermia-induced
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upregulation of skin protective genes such as CCL4, CCL6, and

CXCL13 and downregulation of deleterious tissue remodeling

genes such as MMP-9 may contribute to improved burn

depth progression (43). However, perfusion in the zone of

stasis may be further affected by vasoconstriction caused by

supercooling, leading to further wound deterioration. The

perfusion of the zone of stasis was somewhat improved under

warm water (37°C), and the tissue viability was enhanced (44).

Early anticoagulation therapy
The blood in the early stage of burn is hypercoagulable,

leading to stasis of microcirculation and microthrombosis,

which is one of the important mechanisms for the

development of stasis zone into coagulation zone (45). In

recent years, anticoagulant and thrombolytic drugs have

emerged to improve microcirculation thrombosis and vascular

occlusion. For example, the well-known human erythropoietin

(EPO) is a multifunctional cytoprotective cytokine in addition

to promoting erythropoiesis, with anti-apoptotic, anti-

inflammatory and immunomodulatory properties. Bohr et al.

(46, 47) showed that systemic administration of the EPO

derivative helical β-surface peptide (ARA290) within 24 h

postburn prevents secondary microvascular thrombosis and

inflammatory response in skin burns, and improves local

microcirculation, while reducing the cellular stress response

mediated by inflammatory factors such as TNF-α, thereby

reducing the further deepening of the depth and area of burn

wounds. Secondly, increased plasma endothelin levels

following burns lead to thrombosis and occlusion of vessels in

the dermis and vascular responses in the adjacent uninjured

dermis. Previous studies have demonstrated that non-selective

endothelin receptor antagonists [TAK-044 (48), PD145065

(49), etc.] can improve local microcirculation.
Conclusion and prospect

Burns are one of the most common and devastating forms

of trauma. In the clinical environment, early debridement,

early wound coverage, and the application of various therapies

to promote healing can improve the progressive deepening

and aggravation of early burn wounds, avoid the pain caused

by large-scale surgical operations to a certain extent, and

improve long-term outcomes. Given the complexity and
Frontiers in Surgery 05
diversity of the principles of each treatment, the categories

mentioned above do not encompass the full range of

functions of the measures mentioned. Combining multiple

therapies may lead to better clinical benefits. We can also see

that many therapies have their shortcomings, such as the

issue of stem cell homing rates, and many drugs are still in

clinical trials. At the same time, there are few studies on

exosomes derived from mesenchymal stem cells. Their

mechanisms of action overlap and need further research study.
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