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Abstract

Cellulose fibers (C40 and C80) were extracted from khat (Catha edulis) waste (KW) with chlo-

rine-free process using 40% formic acid/40% acetic acid (C40), and 80% formic acid/80%

acetic acid (C80) at the pretreatment stage, followed by further delignification and bleaching

stages. Cellulose nanocrystals (CNCs40 and CNCs80) were then isolated from C40 and C80

with sulfuric acid hydrolysis, respectively. Thus, the current study aims to isolate cellulose

fibers and CNCs from KW as alternative source. The KW, cellulose fibers, and CNCs were

investigated for yield, chemical composition, functionality, crystallinity, morphology, and

thermal stability. CNCs were also evaluated for colloidal stability, particle size, and their

influence on in vitro diclofenac sodium release from gel formulations preliminarily. The FTIR

spectra analysis showed the removal of most hemicellulose and lignin from the cellulose

fibers. The XRD results indicated that chemical pretreatments and acid hydrolysis signifi-

cantly increased the crystallinity of cellulose fibers and CNCs. The cellulose fibers and

CNCs exhibited Cellulose Iβ crystalline lattice. TEM analysis revealed formation of needle-

shaped nanoscale rods (length: 101.55–162.96 nm; aspect ratio: 12.84–22.73). The hydro-

dynamic size, polydispersity index, and zeta potential of the CNCS ranged from 222.8–

362.8 nm; 0.297–0.461, and -45.7 to -75.3 mV, respectively. CNCs40 exhibited superior

properties to CNCs80 in terms of aspect ratio, and colloidal and thermal stability. Gel formu-

lations containing high proportion of CNCs sustained diclofenac sodium release (< 50%/

cm2) over 12 h. This study suggests that cellulose fibers and nanocrystals can be success-

fully obtained from abundant and unexploited source, KW for value-added industrial

applications.

Introduction

Khat or chat (Catha edulis Forsk) is an evergreen shrub native to the Horn of Africa and the

Middle East. Its fresh leaves are chewed by millions worldwide as a recreational drug on daily

bases for its euphoric and psychostimulant effect [1]. Ethiopia is the world’s largest producer

of khat which has recently become the fastest growing export commodity [2, 3]. Khat has been
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used for generations by all walks of life, including children, pregnant, breastfeeding women

and patients on medication [4]. Due to economic attractiveness, khat cultivation by local farm-

ers is expanding with rapid reduction of annual crops production though the Ethiopian law on

the issue of khat is in limbo neither supporting nor denouncing its use [5]. Over two million

farmers produce khat on more than 250,000 ha of land [6].

When the young leaves of khat are collected for chewing locally and export, most parts of

the plant such as older leaves and twigs are dumped as a solid waste. The large quantities of

khat solid waste in the cities and towns have reduced the beauty of the cities/towns and became

a breeding place of some rodents and vectors. Moreover, the waste encourages some people to

dispose more and therefore exacerbates the poor sanitation in the cities and towns. As the

waste production is so enormous, it needs proper disposal mechanism [3]. The conversion of

such a waste material into useful products such as cellulose and its derivatives would alleviate a

variety of socioeconomic problems, providing a greener approach to utilizing the waste

through addressing the ecological and economic issues: preventing deforestation and environ-

mental pollution, and generating foreign currency.

Recently, renewable natural resources for the development of recyclable and/or biodegradable

products have received much attention to protect the environment from pollution. Lignocellulosic

materials are among the most important natural sources for the production of value-added mate-

rials or biopolymers [7]. Cellulose is the most abundant polymer in nature which can be obtained

from plants, animals, or bacteria. Cellulose is preferred to other polymers because of its biodegrad-

ability, abundance, light weight, cost effectiveness, high tensile strength and stiffness [8]. Cellulose

and its derivatives are commonly obtained from woody plants and cotton for different industrial

applications. The overuse of such sources for years by various industries such as energy and con-

struction, has increased the need for alternative cellulose sources [9].

Nanocelluloses, also known as cellulose nanomaterials, have attracted rapidly growing sci-

entific and technological interest from both academic and industrial researchers [10]. The two

main classes of nanocelluloses are a) cellulose nanocrystals (CNCs), also referred to as nano-

crystalline cellulose and cellulose nanowhiskers, and b) cellulose nanofibrils, also referred to as

nano-fibrillated cellulose [11–13]. Due to higher surface area, reactive OH group in the sur-

face, and biocompatibility among other properties, CNCs are suitable for many advanced

functional applications such as tissue engineering, drug delivery, reinforcement of composite

materials, etc [11, 14].

Recently, various studies have reported work of waste valorization for the production of

nanocellulose from different lignocellulosic sources such as pineapple peel waste [15], Posido-
nia oceanica waste [16–18], garlic straw residues [19], industrial kelp waste [20], grass waste

[21], spent coffee grounds [22], paper mill sludge [23], paper waste [24], etc.

To the best of the author’s knowledge, there is no report on isolation and characterization

of cellulose fibers and CNCs from an unexploited and abundant source, khat waste (KW) for

potential value-added applications. The raw KW, as-extracted cellulose fibers and as-isolated

CNCs were characterized with Fourier transform infrared spectroscopy (FTIR), X-ray diffrac-

tion (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy

(TEM), Dynamic Light Scattering (DLS), and Thermogravimetric Analysis (TGA). The CNCs

were also evaluated preliminarily as a reinforcing material in carboxymethyl cellulose gel for

controlled delivery of diclofenac sodium topically. CNCs offer several potential advantages in

the drug delivery system. Large amounts of drugs might be bound to the surface of CNCs with

the potential for high payloads and optimal control of dosing due to large surface area and neg-

ative charge [25]. Recently, CNCs-chitosan based hydrogel was fabricated for controlled deliv-

ery of theophylline, and the interaction between CNCs and chitosan is due to H-bond, van der

Waals forces, and ionic and/or covalent bonds [26]. It was also reported that drugs (such as
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doxorubicin hydrochloride and tetracycline hydrochloride) carrying a positive charge under

physiological pH conditions, probably form strong ionic bonds with the negatively charged

sulfate groups resident on the CNC surface as a result of the sulfuric acid hydrolysis process

[27]. Diclofenac sodium is a non-steroidal anti-inflammatory drug widely used in the manage-

ment of different inflammatory conditions, but it has short half-life around 2 h [28]. Topical/

transdermal drug delivery is an attractive alternative to conventional methods because of

advantages such as non-invasive delivery, constant and steady levels of drug with short biologi-

cal half-life, no first-pass effect, prolonged duration of action, reduced dosing frequency,

reduced drug toxicity/adverse effects, and improved patient compliance among others [29].

Thus, the aim of this study was to valorize the KW as a new and alternative source for produc-

tion of cellulose and CNCs using eco-friendly method for controlled drug delivery.

Materials and methods

Materials

Khat waste was collected from Obsa Special Khat Shop, Addis Ababa, Ethiopia and cut into

small pieces. Formic acid (98%) (Central Drug House (P) Ltd. New Delhi, India), acetone and

sodium hydroxide 97% (HiMedia, Mumbai, India), acetic acid 99.8% (Riedel-de Haën), sulfu-

ric acid 97% (BDH, England), copper sulfate pentahydrate 98.5%, n-hexane 99% and zinc chlo-

ride (LOBA CHEMIE-Laboratory, India), toluene (Fisher Scientific, UK), potassium iodide

(Reagent chemical services Ltd Runcorn, Cheshire), ammonium oxalate 99.5% (UNI-Chem,

Chemical Reagents), iodine 99%, methanol 99.9%, and ammonia solution 28% (CARLO

ERBA reagents, France), ethanol absolute (Fisher Scientific, UK), hydrogen peroxide 50%

(Awash Melkasa, Ethiopia), diclofenac sodium (Healthcare Limited PLC, India), triethanola-

mine (Fischer Chem Alert Guide, USA), potassium dihydrogen phosphate (Sörensen, Leuren,

Denmark), disodium hydrogen phosphate (Fizmerk chemicals, India), sodium chloride

(Oxford Laboratory, Mumbai, India), sodium carboxymethylcellulose (FMC Corporation,

USA), and propylene glycol (Research-lab fine Chem. Industries, India) were used as received.

Cellulose extraction

Cellulose fibers were extracted from KW following chlorine-free conditions according to our

previous method [9] with some modifications. Briefly, KW (100 g) was treated with formic

acid/acetic acid (40%/40% or 80%/80% w/v) at a ratio of 70:30 of the two acids, and a waste to

liquor ratio of 1:10 at the pretreatment stage on a water bath at 90˚C for 1.5 h. After repeated

washing and filtration, the pulps were then treated with 2.5% NaOH for 1 h, followed with a

mixture of 20% formic acid/20% acetic acid/7.5% hydrogen peroxide (2:1:2) solution on a

water bath at 90˚C for 1.5 h, at a waste to liquor ratio of 1:10 with continuous washing with

hot water. Lastly, bleaching was performed using 10% hydrogen peroxide in alkaline media

(adding 40 g of sodium hydroxide) at 1:10 fiber ratio, first at room temperature, followed by

heating on water bath at 70˚C, for 30 min each. The pulps were then washed continually with

hot distilled water, and finally dried in an oven (Kottermann1 2711, Germany) for 1 day at

60˚C. The as-obtained cellulose fibers were named as C40 and C80, respectively.

Isolation of CNCs

CNCs were isolated from KW following the method described elsewhere with few modifica-

tions [7, 30–33]. The cellulose fibers (C40 and C80) extracted from KW were first hydrolyzed

with 64% (w/w) sulfuric acid (1:20 g/mL) at 45˚C for 60 min under magnetic stirrer (the result-

ing NCs designated as CNCs40 and CNCs80). The mixture was then diluted 10-fold with ice
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cubes to stop the reaction, and washed by successive centrifugations at 4˚C (Beckman Coulter

Allegra 64R Refrigerated Centrifuge, USA) for 10 min each at 10,000 rpm. The mixture was

also dialyzed against distilled water using dialysis sacks (Avg. flat width 35 mm, MWCO

12,000 Da, Sigma-Aldrich, USA) until neutral pH was reached (5 days). Subsequently, the

resulting suspension was homogenized using a disperser type UltraTurrax (Janke and Kunkel

IKA-Labortechnik, Ultra-Turrax T50) for 5 min at 10,000 rpm twice and sonicated (Sonics

and Materials Inc. Vibracell, VCX 750, Newtown CT, USA) in an ice bath for 5 min. The aque-

ous suspension was freeze-dried in a lyophilizer (Operon Co., Ltd.—Bio-Equip, Korea) and

dried for 72 h to obtain CNCs powder. The yields of CNCs were estimated gravimetrically con-

sidering the initial weight of the extracted cellulose fibers (C40 and C80).

Composition of the untreated KW and cellulose, and identification tests

The constituents of the untreated KW as well as as-obtained cellulose fibers such as lignin,

hemicellulose and others were determined according to the methods stated elsewhere [9, 34–

37], as described in the S1 Appendix. Solubility, appearance, color test, pH, ash values and

moisture content of the as-obtained cellulose fibers from KW were determined according to

the methods described in pharmacopeia [38].

Characterization of the materials

Fourier-transform infrared (FTIR) spectroscopy. FTIR tests were performed on a Per-

kin Elmer FTIR spectrometer (L1600400 Spectrum TWO DTGS, SN: 108152, LIantrisant, UK)

in the infrared range from 4000 to 450 cm-1, with no further sample preparation.

X-ray diffraction (XRD). XRD was performed to investigate the crystallinity of as-iso-

lated CNCs and cellulose precursors using an XRD-7000 X-ray Diffractometer MAXima (SHI-

MADZU Corporation, Japan) at 40 kV, 30 mA with monochromatic Cu-Kα radiation. XRD

data were collected over an angular range of 10 to 40˚ in a sampling pitch of 0.0200˚ and scan

speed of 3.0000˚/min at room temperature.

The crystalline index (CrI) was determined using the equation proposed by Segal et al.

(1959) (Empirical method):

CrI ¼
ðI200 � IamÞ

I200

x100%

Where, I200 is the maximum intensity (in arbitrary units) of the diffraction from the 200 plane,

and Iam is the intensity of the background scatter.

X-ray diffraction of the cellulose fibers and as-isolated CNCs were deconvoluted following

Gaussian profile, and parameters such as d-spacings (d), apparent crystallite size or thickness

for the 200 plane (τ200), fractional variation in the plane spacing for the 200 plane (Δd/d)200,

the proportion of crystallite interior chains for the 200 plane (X200), and Z-values were deter-

mined using equations described elsewhere [8, 9, 39, 40], and provided in the S2 Appendix.

Environmental Scanning Electron Microscopy (ESEM). ESEM observations were evalu-

ated using ESEM FEI/Philips XL-30 ESEM (Leuven, Belgium) at accelerating voltage of 2.00

KV. The samples were coated with chromium using vacuum sputter prior to SEM analysis.

Transmission Electron Microscopy (TEM). Droplets of CNCs suspension (0.05% w/v)

were deposited on a formvar-coated copper grid. The specimen was negatively stained with a

1% (w/v) phosphotungstic acid solution and dried at room temperature. The TEM observa-

tions were conducted using an EM 900 TEM (Carl Zeiss Microscopy, Jena, Germany; accelera-

tion voltage 80 kV), and the micrographs were taken with a slow scan camera (Variospeed

SSCCD camera SM-1k-120, TRS, Moorenweis, Germany).
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Particle size analysis. Particle size and PDI analysis of the CNCs were determined by

photon correlation spectroscopy (PCS) using a 90Plus Particle Size Analyzer 28 (Brookhaven

Instruments Corporation, New York, USA). Prior to the measurements, the CNCs suspensions

were diluted using distilled water to yield an appropriate scattering intensity. All experiments

were done at least in triplicate at 25˚C.

Zeta Potential (ZP). The ZP of aqueous suspension of CNCs (0.05% w/v) in 0.1N PBS

was measured using Malvern Instruments Zetasizer Nano ZS working on electrophoretic

mobility at 25˚C after 120 s equilibration time and a wavelength of 659 nm.

Thermal analysis. The thermogravimetric analysis (TGA) and its derivative (DTG) of the

as-obtained CNCs and cellulose precursors were studied TGA/DTG-60H (SHIMADZU Cor-

poration, Japan). The samples were heated from room temperature to 700˚C at a heating rate

of 10˚C/min under a nitrogen gas flow rate of 60 mL/min.

Preparation of diclofenac sodium gel formulations

CNCs colloidal dispersions (0.25 to 2%) and CMC at a concentration of 2% (w/w) were pre-

pared as gelling agent. Five of the medicated formulations (F1-F5) were prepared varying the

concentrations of CNCs according to the formulae given in Table 1, and the other formulation

containing no CNC. The medicated hydroalcoholic gel formulations were prepared by dissolv-

ing diclofenac sodium and sodium benzoate (SB) in a co-solvent of ethanol and propylene gly-

col (PG). Subsequently, the solution containing the drug was added to the gelling agent

prepared in a known portion of distilled water under continuous stirring to yield a homoge-

nous dispersion, which was in turn neutralized with triethanolamine to obtain a colorless gel.

The final weight of the formulations was finally adjusted with distilled water [41–43].

UV calibration curve of diclofenac sodium

Eight different concentrations (2, 4, 6, 8, 10, 12, 14, and 16 μg/ml) were prepared from stock

solution containing 100 μg/ml of diclofenac sodium in PBS (pH 7.4). The UV absorbance

readings of these solutions were measured at 276 nm using UV/Visible spectrophotometer

(PG Instruments Limited, T92+, Leicestershire, UK). PBS (pH 7.4) was used as a blank. The

absorbance versus concentration of solutions was plotted and a calibration curve with a linear

regression equation of: Y = 0.0454X + 0.0512 (where, Y is the absorbance and X is the concen-

tration in μg/ml) and correlation coefficient of 0.9987 was obtained (Fig 1).

Physicochemical evaluation of diclofenac sodium gel formulations

The prepared diclofenac sodium gel formulations were evaluated for clarity/transparency,

color, scent, texture, consistency, homogeneity, drug content, rheology, clarity, spreadability,

extrudability, pH, and kinetics and mechanism of drug release [41, 43–45]. The detailed proce-

dure is put in the S3 Appendix.

Table 1. Composition % (w/w) of different diclofenac sodium gel formulations.

Formulation Diclofenac sodium (g) CMC (g) CNCs (g) Ethanol (g) PG (g) Triethanolamine (g) SB (g) Distilled water qs (g)

F0 3 2 0 10 10 3 0.135 100

F1 3 2 0.25 10 10 3 0.135 100

F2 3 2 0.5 10 10 3 0.135 100

F3 3 2 0.75 10 10 3 0.135 100

F4 3 2 1 10 10 3 0.135 100

F5 3 2 2 10 10 3 0.135 100

https://doi.org/10.1371/journal.pone.0246794.t001
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In vitro release study of diclofenac sodium from gel preparations

One-gram gel formulation each containing 30 mg of diclofenac sodium was placed on cellulose

acetate membrane (pore size 0.45 μm, Sartorius, Goettingen, Germany) and fixed to one end

and made water-tight with aid of a rubber band in an apparatus consisting of cylindrical tube

with both ends open, with 12.1 mm inner diameter (release area = 115 mm2) as a diffusion

cell. The tubes were submerged in 1000-ml vessels containing 400 ml PBS (pH 7.4) as receptor

medium. The whole assembly was fixed in such a way that the lower end of the cell containing

the gel just touched (1–2 mm deep) the diffusion medium. The release test was carried out at a

controlled stirring rate of 100 rpm to ensure sink condition and a temperature of 37 ± 1˚C by

means of water jacket surrounding each cell, based on the facts that the receptor phase is in

contact with the deepest skin layers and that the deep body temperature of humans is main-

tained between 36.2˚C and 37.2˚C in order to maintain the skin surface at 32˚C. An aliquot of

5 mL was withdrawn at specific time intervals up to 720 min, and estimated spectrophotomet-

rically at 276 nm. After each withdrawal, the diffusion medium was replaced with an equal vol-

ume of fresh diffusion medium. The cumulative percent release was calculated for each time

(in min) interval [41, 43, 45].

Statistical analysis

All data were analyzed using OriginPro 8.5.1 (OriginLab Corporation, MA, USA) and Excel

2016. The experiments were done in triplicates and the data were presented as the

mean ± standard deviation (SD). All data reported in this study were the averages of triplicate

determinations. P value of less than 0.05 was considered to be evidence for a significant differ-

ence, and a Tukey’s test for one-way analysis of variance (ANOVA) was applied when

necessary.

Results and discussion

Cellulose extraction conditions

In this study, cellulose fibers were extracted with two conditions using 40% formic acid/40%

acetic acid, and 80% formic acid/80% acetic acid at the pretreatment stage. It was reported that

acetic acid and formic acid can effectively remove lignin and hemicelluloses by cleaving ether

bonds between lignin and hemicellulose from different lignocellulosic materials at atmo-

spheric pressure [46, 47].

Hydrogen peroxide in formic acid/acetic acid solution enhanced the delignification process

due to the combined effect of the organic acids as solvent and peroxyacid as an oxidizing agent

to dissolve the lignin by the action of hydroxonium ion OH+ [9, 48]. Bleaching the mass with a

solution of hydrogen peroxide in an alkali medium, a chlorine-free bleaching agent, is carried

out for the elimination of chromophore compounds to raise the brightness of cellulose, reduce

chlorinated organic matter and the effluent odor, which is an important characteristic to pro-

duce cellulose derivatives.

Furthermore, a chlorine-free bleaching technique was followed, where oxidation of lignin

through cleavage of side chains occurs due to the formation of the perhydroxyl anion (OOH-),

a nucleophile intermediate. The action of radicals formed during the bleaching process is

responsible to a large extent for the delignification. The bleaching with peroxide causes degra-

dation of the molecule into smaller and water soluble parts [48]. Basically, the chromophore

compounds constitute fragments of lignin. Therefore, it is expected that in this process mainly

lignin is removed most, preserving the polysaccharides [49].
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Identification and composition of the plant materials

The cellulose fibers extracted from KW were white, and fluffy and fibrous in nature, and solu-

ble in cuprammonium hydroxide ‘Cuam’ solution, but insoluble in water, acetone, anhydrous

ethanol and toluene. A violet-blue color was formed when the extracted cellulose fibers were

dispersed in iodinated zinc chloride solution, fulfilling the parameters specified in pharmaco-

peia [50]. The macroscopic images of the untreated KW, and as-extracted cellulose fibers (C40

and C80) are shown in Fig 2.

The composition of untreated KW and as-obtained cellulose fibers such as cellulose con-

tent, hemicellulose, and lignin is presented in Table 2. Cellulose content increased in the

extracted cellulose fibers due to removal of non-cellulosic components [9, 49]. Other studies

also reported the increment of cellulose content after chemical treatments of the raw

Fig 1. The UV absorption calibration curve of diclofenac sodium in PBS (pH 7.4) at 276 nm with 95% confidence

bands for mean, (r2 = 0.9987).

https://doi.org/10.1371/journal.pone.0246794.g001

Fig 2. Photographs of untreated khat waste (KW-0), and as-extracted cellulose fibers (C40 and C80) from left to right.

https://doi.org/10.1371/journal.pone.0246794.g002
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lignocellulosic materials such as coffee silverskin [51] and sugarcane bagasse [52] (Table 2).

The brightness, digestibility, and weight of KW cellulose fibers were considerably improved

when 80% formic acid and 80% acetic acid (70:30) were used instead of 5% or 10% wt sodium

hydroxide at the pretreatment stage. It has been reported that alkaline treatment is very effec-

tive in increasing the digestibility of hardwood and agricultural residues with low lignin con-

tent [53]. The cellulose content in the untreated khat waste (39%) was comparable with

sugarcane bagasse (40–42%) [34, 52], and garlic straw residues (41%) [19], but higher than

banana pseudo-stem (24%) [54] and coffee silverskin (31%) [51], and lower than corn husk

(45%) [35] (Table 2).

Reduction of non-cellulosic materials is observed in the as-extracted cellulose, and increase

in the cellulose content, which is in agreement with studies reported elsewhere [19, 49, 55].

The CNCs suspensions were white and turbid in appearance. The yields of CNCs40 and

CNCs80 obtained from C40 and C80 were 55% and 49%, respectively.

As the lignin content (29%) reported in this study (Table 2) is much higher than that

reported in most studies: 14% (sisal fibers) [56], 9% (municipal grass waste) [21], and 9%

(lemon seeds) [57], the use of acetic acid and formic acid in the pretreatment step was needed

to increase the purity of cellulose and facilitate the removal of lignin as well as digestibility, and

thereby enhance the whiteness of the pulps. However, in a preliminary work during extraction

of cellulose from other lignocellulosic materials with low lignin content, the whiteness, cellu-

lose content as well as the degree of crystallinity increased significantly without such additional

step. Different studies which employ sodium hydroxide in the pretreatment stage use chlorine

containing bleaching agents mainly sodium chlorite solution [21, 57–60] during isolation of

CNCs, however, a chlorine-free bleaching solvent (alkaline hydrogen peroxide) was employed

in our study.

Chemical functionality studies

Fig 3 illustrates the FTIR spectra of untreated KW, as-obtained cellulose fibers, and CNCs.

FTIR spectroscopy revealed the similarities of all spectra of cellulose fibers and CNCs, showing

similar chemical composition among the samples [61]. The broad absorption band around

3340 cm-1 is due to the stretching vibrations of the OH groups, indicating the hydrophilic

Table 2. Chemical composition of untreated KW, and as-obtained cellulose fibers, and other sources.

Plant materials (References) Composition (%w/w) on dry basis

Cellulose Hemicellulose Klason lignin Pectic matters Fatty and waxy matters Aqueous extractives Ash Others

KW� 0 39.4 ± 0.38 12.75 ± 0.52 28.67 ± 2.46 5.24 ± 0.66 7.87 ± 0.18 3.47 ± 0.35 3.40 ± 0.12 ---

C40 82.7 ± 1.43 5.83 ± 0.52 10.89 ± 0.21 0.98 ± 0.07 0.73 ± 0.06 0.66 ± 0.13 1.34 ± 0.18 ---

C80 88.4 ± 1.43 3.44 ± 0.48 6.93 ± 0.18 0.88 ± 0.06 0.67 ± 0.11 0.64 ± 0.04 0.97 ± 0.09 ---

Banana pseudo-stem [54] 23.82 25.69 8.56 5.03 4.25 32.64 7.06 ---

Corn husk [35] 45.13 (α) 31.15 ± 0.55 14.32 ± 0.23 3.65 ± 0.17 2.20 ± 0.11 2.50 ± 0.07 --- 1.05

Coffee silverskin [51] 0 31 ± 2% --- --- --- --- --- 2.7 ± 0.8 ---

C 73.60–85.50 --- --- --- --- --- ---

Sugarcane bagasse [52] 0 42.10 26.10 24.40 --- --- --- 1.3 6.1

C 93.20 3.40 2.30 --- --- --- 0.45 0.65

Sugarcane bagasse [34] 40.21 25.00 23.90 --- --- --- 1.72 ---

Garlic straw residues [19] 0 41 18 6.3 3.2 10

C 86 --- --- --- --- --- 9.4 ---

�Current study, 0-Raw materials; C-Extracted cellulose; Data were presented as the mean ± SD (n = 3).

https://doi.org/10.1371/journal.pone.0246794.t002
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tendency of the materials. The weak band around 2900 cm-1 is due to the asymmetric stretch-

ing vibration of the CH2 bond [62]. Furthermore, the appearance of a peak at ~1645 cm-1 in all

the spectra shows absorption of water by the materials [40].

The untreated KW indicated typical peaks around 1736 cm-1, 1516 cm-1, and 1235 cm-1.

The disappearance of the peak around 1736 cm-1 showed the cleavage of the linkages between

ferulic acid or p-coumaric acid or (p-) hydroxycinnamic acids and lignin during chemical

treatment. The absence of the bands around 1516 cm-1 and 1235 cm-1 in the cellulose fibers

and CNCs indicated that lignin functional groups such as aromatic rings were dissociated and

dissolved. Similar findings were also reported by different research groups indicating removal

of non-cellulosic materials using different treatment conditions [9, 51, 63, 64].

The absorption band at around 1428 cm-1 is associated with intermolecular hydrogenat-

traction at the C6 group. The peak around 1323 cm-1 region of the spectra is attributed to the

bending vibration of the CH and CO groups of aromatic ring in the materials [61]. The peak

around 896 cm-1 is due to C1H rocking vibration of cellulose (β-glycosidic linkages). The

bands around 3340, 2900, 1428, 1323, and 896 cm-1 in all cellulose and CNCs spectra are asso-

ciated with the characteristics of cellulose I, showing that the acid hydrolysis did not affect the

chemical structure of the cellulosic fragments [65, 66].

Crystallinity analysis

The as-isolated CNCs40 and CNCs80 like their cellulose precursors and untreated KW (KW-0)

displayed a typical crystal lattice of Cellulose I, with the main diffraction signals around 2θ val-

ues of 15˚, 16˚, 22˚ and 34˚ with assigned crystallographic plane of 1-10, 110, 200 and 040,

respectively after deconvolution using Gaussian profile as reported elsewhere [61, 64, 67]. The

XRD patterns of the untreated KW, as-obtained cellulose and CNCs are shown in Fig 4.

Fig 3. FTIR spectra of untreated KW, as-obtained cellulose fibers (C40 and C80) and CNCs (CNCs40 and CNCs80).

(Key: KW-0: untreated khat waste; C40 and C80: cellulose fibers obtained from khat waste with 40% formic acid and

40% acetic acid, and 80% formic acid and 80% acetic acid, respectively at the pretreatment stage; CNCs40 and CNCs80:

cellulose nanocrystals isolated from C40 and C80, respectively).

https://doi.org/10.1371/journal.pone.0246794.g003

PLOS ONE cellulose fibers and nanocrystals from Khat waste

PLOS ONE | https://doi.org/10.1371/journal.pone.0246794 February 9, 2021 9 / 20

https://doi.org/10.1371/journal.pone.0246794.g003
https://doi.org/10.1371/journal.pone.0246794


CNCs80 (82.84%) exhibited almost comparable CrI with CNCs40 (81.60%), but much higher

than that of untreated KW (56.89%). Removal of non-cellulosic was also confirmed by the

increment of CrI of cellulose fibers when compared to the untreated KW (Fig 4 and S1 Table).

Generally, the CrIs increased in both isolated CNCs when compared to their cellulose precur-

sors. Such an increment of crystallinity was due to the removal of hemicellulose and lignin

existing in amorphous regions, and during the hydrolysis process [68]. The CrIs of CNCs

reported in this study were higher when compared to CrIs of CNCs isolated from others

sources such as passion fruit peels waste (77.96%) [14], pineapple crown waste (73%) [69], sea-

weed (60%) [68], and pueraria root residue (60%) [70].

The τ values of the CNCs40 and CNCs80 were 5.466 nm and 5.633 nm, and X values were

0.630 and 0.672, respectively. S1 Table shows different parameters obtained from the (decon-

voluted) XRD of untreated KW, as-extracted cellulose, and CNCs40 and CNCs80. The d-spac-

ings of the all the samples ranged from 0.589-0.608, 0.523-0.565, 0.385-0.401, and 0.258-0.262

for the planes of 1-10, 110, 200, and 040, respectively as shown in S1 Table. All the samples

including CNCs40 and CNCs80 are all Iβ-type cellulose, as confirmed by XRD patterns, d-spac-

ing values, and the negative numbers of the Z-Values [71, 72] (S1 Table).

Morphological, dimensional and zeta potential investigation

Pretreatment using formic acid and acetic acid, followed with delignification/bleaching stages

resulted in changes of chemical composition of the as-obtained cellulose fibers and the struc-

ture of the fibers surfaces. The surface morphology of untreated KW and as-extracted cellulose

is investigated with SEM as shown in Fig 5. SEM images indicated that untreated KW existed

as rough and compact fibrillar packing displaying lot of non-cellulosic components such as lig-

nin scattered over the cellulosic fiber surface, acting as cementing materials, consistent with

other finding [73]. The cellulose bundles are composed of individual fibers linked together by

the massive cementing material. Most of the lignin and hemicellulose were hydrolyzed during

Fig 4. XRD of untreated KW, as-obtained cellulose fibers (C40 and C80) and CNCs (CNCs40 and CNCs80). (Key:

KW-0: untreated khat waste; C40 and C80: cellulose fibers obtained from khat waste with 40% formic acid and 40%

acetic acid, and 80% formic acid and 80% acetic acid, respectively at the pretreatment stage; CNCs40 and CNCs80:

cellulose nanocrystals isolated from C40 and C80, respectively).

https://doi.org/10.1371/journal.pone.0246794.g004
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chemical treatments. The average diameters of the as-extracted cellulose fibers (16 and 28 μm)

are much smaller than that of untreated KW (263 μm) (Table 3), indicating the removal of

non-cellulosic components during the treatment conditions. In a study reported elsewhere,

the diameter of untreated sisal fibers ranged from 100–500 μm and the diameter of the

extracted cellulose fiber was reduced to 7–31 μm [74].

TEM images show appearance of needle-shaped CNCs on the acid hydrolysis and sonica-

tion with a scale bar of 200 nm (Fig 6). From the TEM analysis, the length and diameter of the

CNCs isolated from the byproducts ranged from 106.78-193.06 nm and 5.16-11.79 nm, respec-

tively. Furthermore, the average aspect ratio of the CNCs ranged from 17.32-36.68 (Table 3).

The DLS results also supported the TEM results that the isolated CNCs were in nanoscale

range, and their hydrodynamic size were 362.8 nm and 222.8 nm for CNCs40 and CNCs80,

respectively (Table 3). The DLS and TEM results suggested that increasing the concentration

of weak acids at the pretreatment stage contributed for reduced particle size and aspect ratios

of the isolated CNCs. The ZP of the CNCs suspensions ranged from -45.7 and -75.3 mV in

Fig 5. Scanning electron micrographs of (a) untreated khat waste (KW-0, with scale bar of 300 μm), and as-obtained cellulose fibers: (b) C40, and

(c) C80 (with scale bar of 200 μm).

https://doi.org/10.1371/journal.pone.0246794.g005
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neutral water and 0.1 N PBS (S1 Fig and Table 3), and resulted in stable colloidal suspensions

as the absolute values obtained are higher than -15 mV which is the minimum value to repre-

sent the onset of agglomeration [33, 75, 76]. ZP of CNCs at the values near or lower than -20

mV at low concentrations remain stable [77].

Thermal properties

Fig 7 demonstrates the thermogravimetric (TG) and derivative thermogravimetric (DTG)

curves of the untreated KW, as-extracted cellulose fibers and CNCs. The thermal degradation

data (ΔT), (T10%), (T50%), weight loss (rate) at each region (%), the residual weight at 500 and

700˚C as well as the peak degradation temperatures (Tmax) are listed in S2 Table. The small

weight loss (3.85-6.38%) in the region 30-120˚C is mainly due to loss of water adsorbed to the

materials [12, 15, 60, 70, 78]. The as-obtained cellulose fibers and CNCs contained relatively

lower moisture than respective untreated KW as shown in S2 Table, which might be due to the

removal of hydrophilic components such as hemicellulose and lignin in cellulose fibers and

CNCs [73].

Table 3. Average diameters (SEM) of the untreated KW, and as-extracted cellulose fibers (C40 and C80), and TEM dimensional analysis, DLS and Zeta potential val-

ues of the CNCs.

CNCs Length (L) range; Laverage (nm) Diameter (D) range; Daverage Aspect ratio Hydrodynamic size (nm); PDI (from DLS) ZP (mV)

KW-0 -- 263.04 ± 45.37 μm -- -- --

C40 -- 27.97 ± 12.20 μm -- -- --

C80 -- 16.08 ± 3.02 μm -- -- --

CNCs40 162.96 ± 26.04 7.17 ± 1.86 nm 22.73 362.8; 0.461 -75.3

CNCs80 101.55 ± 20.53 7.91 ± 2.56 nm 12.84 222.8; 0.297 -45.7

(Key:- KW-0: untreated khat waste; C40 and C80: cellulose fibers obtained from khat waste with 40% formic acid and 40% acetic acid, and 80% formic acid and 80%

acetic acid, respectively at the pretreatment stage; CNCs40 and CNCs80: cellulose nanocrystals isolated from C40 and C80, respectively; Daverage-average diameter of

untreated KW, cellulose fibers, and CNCs estimated using ImageJ Software; Laverage-average length of CNCs; PDI: Polydispersity index; ZP: Zeta potential). Data were

presented as the mean ± SD (n > 15).

https://doi.org/10.1371/journal.pone.0246794.t003

Fig 6. Transmission electron micrographs of CNCs isolated from KW: CNCs40 (a) and CNCs80 (b) (Bar scale: 100 nm).

https://doi.org/10.1371/journal.pone.0246794.g006
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The DTG thermograms of untreated KW and as-extracted cellulose fibers showed a sudden

reduction in weight loss around 189 oC, mainly due to the loss of hemicellulose. The acetyl

groups of hemicellulose contributed for the low thermal stability. A major weight loss was

observed at Tmax 320–400 oC due to depolymerisation, dehydration and decomposition of the

glycosidic units of cellulose [33]. There was poor/no identifiable peak of lignin in the TGA/

DTG thermograms of the samples including untreated KW due to its slow and resistant

decomposition ranging from ambient temperature to 700 oC [65].

The CNCs exhibited a weight loss of 34-38% in the region at Tmax 213 and 232˚C due to

degradation of surface sulfate groups lowering the activation energy and large specific surface

area, when compared to the cellulose precursors (weight loss of 67-69% at Tmax of 340˚C.

Another decomposition step with a weight loss of 22% exhibited at Tmax ranging from ~360˚C

(the major cellulose degradation temperature), due to breakdown of the interior non-sulfated

cellulose crystals [60]. The CNCs also exhibited lower maximum weight loss rates (0.6726-

0.7744%/˚C) in the sulfated cellulose groups than the cellulose counterparts (1.9019–2.2346%/

˚C). The char residues at 550˚C and 700˚C of the isolated CNCs showed higher values than

cellulose counterparts because of a dehydration effect of the sulfate group as flame retardants

[20, 60, 78, 79].

Evaluation of diclofenac sodium gel formulations

Five different topical diclofenac sodium gel formulations containing CNCs were prepared as a

reinforcing material in CMC gel base, however, the sixth one did not contain CNCs40. CNCs40

was selected as it had better aspect ratio and colloidal stability when compared to CNCs80. All

diclofenac sodium gel formulations were smoothly spreadable without any solid or gritty parti-

cles, homogeneous, and transparent in physical appearance. The presence of triethanolamine

in the medicated gel formulations improved the clarity when compared with the polymer gel

bases, suggesting the solubility of the drug in the gel matrix. Triethanolamine was incorporated

to adjust the pH and to increase the solubility of the drug in the gel formulations [45, 80].

Fig 7. Thermal degradation behaviors: TGA (a) and DTG (b) of untreated KW (KW-0), as-obtained cellulose fibers (C40 and

C80) and CNCs (CNCs40 and CNCs80). (Key:- KW-0: untreated khat waste; C40 and C80: cellulose fibers obtained from khat

waste with 40% formic acid and 40% acetic acid, and 80% formic acid and 80% acetic acid, respectively at the pretreatment

stage; CNCs40 and CNCs80: cellulose nanocrystals isolated from C40 and C80, respectively).

https://doi.org/10.1371/journal.pone.0246794.g007
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The pH values of diclofenac sodium gel formulations varied from 6.81 ± 0.042–

7.43 ± 0.033, which is physiologically acceptable pH range and free from any skin irritation.

The content uniformity of diclofenac sodium in all gel formulations ranged from

98.76 ± 0.41–101.2 ± 0.52% which are within the acceptable limits [50]. In the spreadability

test, the diameters of diclofenac sodium gel formulations ranged from 54 ± 3.4–72 ± 2.5 mm.

Viscosity is an important physical parameter for characterizing the gel formulations as it

affects the extrudability, spreadability, and release of drug and other physicochemical proper-

ties of gel preparations. The viscosity of the gel formulations declined proving shear-thinning

flow when the shear rate varied from 0.5 to 200 rpm (67 to 6667 sec-1) (S2 Fig).

In vitro release and kinetics of diclofenac sodium

From the release profiles of diclofenac sodium from the six gel formulations as depicted in Fig

8, it is observed that, initially (~1 h), the drug was released rapidly (burst effect) followed by a

slow release for the rest of the 12 h study period. The initial burst effect could be due to the

release of the drug to the surface of the immediate barrier membrane. The results show that

when the concentration of CNCs in the gel formulations increased from 0.25 to 2% (w/w), the

percent of diclofenac sodium released into the buffered medium gradually decreased to 47%/

cm2.

The drug release pattern best followed Higuchi kinetic models when the data were analyzed

and compared with zero order, and first order kinetics, as confirmed by the good correlation

coefficients (S3 Table). This finding indicates that the rate-controlling stage in the release pro-

cess is the diffusion of the dissolved drug through the vehicle network to the external medium.

As the viscosity of gels increase, the release the drug becomes slower by extending dissolution

time and prolonging drug diffusion through the gel matrix. The viscosity of vehicles may play

an important role in controlling the drug release when the drug diffusion through the vehicle

is a rate limiting step.

Conclusions

The present research includes successful extraction of cellulose fibers and CNCs from abun-

dantly available KW using two chlorine-free isolation conditions. Removal of non-cellulosic

Fig 8. In vitro diclofenac sodium release profiles from gel formulations (F0-F5).

https://doi.org/10.1371/journal.pone.0246794.g008
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materials such as hemicellulose and lignin were confirmed by the FTIR, XRD and SEM studies.

The untreated KW, as-obtained cellulose fibers, and CNCs exhibited the typical peaks of Cellu-

lose Iβ around 15, 16, 22 and 34˚ 2θ, as confirmed by XRD pattern, d-spacings, and Z-values.

The increment of formic acid/acetic acid concentration from 40% to 80% did not significantly

increase CrI of the CNCs after acid hydrolysis. Additionally, higher/comparable yield, aspect

ratio, colloidal and thermal stability were observed in CNCs40. The CNCs can be used as a

reinforcing material to increase the gel strength, and enhance sustained delivery of drugs. The

findings suggest that cellulose fibers and CNCs can be obtained from KW as alternative source

using ecofriendly method.
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