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Coronary heart disease (CHD†) remains the major cause of mortality among postmenopausal women 
living in industrialized countries. Several lines of evidence suggest that ovarian hormones (especially 
estrogen) protect the coronary arteries of premenopausal women. However, it is also known that 
women commonly experience disruptions in cyclic hormonal function during their reproductive 
years. In this perspective, we hypothesize that if regular, cyclic ovarian function affords protection 
against CHD, ovulatory abnormalities in young women may conversely promote the development of 
atherosclerosis (the pathobiological process underlying CHD) in the years prior to menopause and thus 
substantially increase the risk of subsequent heart disease. This hypothesis is supported by evidence from 
premenopausal nonhuman primates showing that relatively common, subclinical ovarian disruptions – as 
may be induced by psychosocial stress – are associated with the initiation and acceleration of coronary 
artery atherosclerosis. If extending to women, these findings would suggest that ovarian dysfunction is 
an early biomarker for CHD risk and, further, that primary prevention of CHD should begin during the 
premenopausal phase of life.
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INTRODUCTION

Coronary heart disease (CHD) remains the major 
cause of mortality among postmenopausal women living 
in industrialized countries [1]. Much evidence suggests 
that ovarian hormones – especially estrogen – protect the 

coronary arteries of premenopausal women from athero-
sclerosis (the pathobiological process underlying CHD), 
thereby delaying clinical manifestations of this disease 
until the postmenopausal years [2-8]. However, it is 
known that ovarian function varies in quality throughout 
the premenopausal years, with women often experiencing 
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disruptions in cyclic hormonal function. Because such 
disruptions can occur among individuals that continue 
to cycle spontaneously or who are not actively trying to 
become pregnant, they are frequently unnoticed and are 
thus possibly much more common than is generally rec-
ognized [9].

To the extent that regular, cyclic ovarian function af-
fords protection against CHD, ovulatory abnormalities in 
young women – even if relatively mild – might converse-
ly promote the development of atherosclerotic cardiovas-
cular disease during the reproductive years. This perspec-
tive reviews evidence from premenopausal nonhuman 
primates demonstrating that relatively common, subclini-
cal ovarian disruption, as induced by psychosocial stress, 
accelerates coronary artery atherogenesis. If seen also in 
women, these findings point to ovarian dysfunction as 
a possible early marker for CHD risk and suggest that 
primary prevention of CHD might best begin during the 
premenopausal phase of life.

The potential relationship between premenopausal 
ovarian disruption and heightened cardiovascular risk in 
women has gone largely unrecognized for at least two 
reasons: 1) young women are thought to be “protected” 
from atherosclerotic cardiovascular disease during their 
reproductive years; and 2) substantial logistical challeng-
es impede the assessment of reproductive function, espe-
cially subtle deficits, in appropriately large populations 
of young women. Thus, for example, functional hypotha-
lamic amenorrhea (FHA) comprises a major category of 
reproductive dysfunction that is well known to contribute 
to infertility and bone loss, but has not been systematical-
ly evaluated with respect to heart disease [9]. As suggest-
ed below, evidence from women and nonhuman primates 
suggests that such an evaluation is warranted and proba-
bly overdue.

SEX DIFFERENCES IN CHD AND CORONARY 
ARTERY ATHEROSCLEROSIS

Coronary heart disease is often thought to be a male 
malady. Nonetheless, more women than men have died 
from cardiovascular disease (CHD and stroke) in almost 
every year since 1984 [1]. Moreover, while it is some-
times suggested that women experience a “female protec-
tion” that ends with the menopause [10], incident CHD 
actually increases monotonically with age among both 
men and women; there is no upward inflection in women 
at the time of menopause [2,5,11]. Still, the sexes do dif-
fer in that the age-related increase in CHD incidence seen 
in women lags that observed in men by about ten years 
as reflected variously in age at first myocardial infarction, 
the yearly risk of new events, and overall coronary mor-
tality in each decade of life [1,2,11,12].

Atherosclerosis – the accumulation of fibro-fatty 
plaques (atheromas) within the inner lining of the artery 
wall – is the primary process underlying the development 
of CHD. Imaging and autopsy studies show that, as with 
clinical events and mortality, the progression of coronary 
artery atherosclerosis in women lags behind that ob-
served in men by about ten years. Despite this lag, there is 
nonetheless a steady, age-related increase in coronary ar-
tery atherosclerosis that begins during the premenopausal 
years and continues throughout the postmenopausal (> 50 
yrs.) phase of life [5,13-18]. The relatively prolonged pe-
riod of lesion development preceding clinical expressions 
of this disease suggests that for both women and men the 
coronary morbidity and mortality observed most appre-
ciably in the fifth decade of life and beyond must arise 
from arterial damage originating 20 or 30 years previous-
ly [13]. For women, this suggests that postmenopausal 
CHD has its genesis in the factors that promote progres-
sion of atherosclerosis during the premenopausal years. 
In fact, CHD is the second most frequent cause of death 
among women 45 to 54 years of age and is prominent 
among even younger women, accounting for 12 percent 
of mortality and comprising the third leading cause of 
death among 35 to 44-year-olds [1].

NORMAL OVARIAN FUNCTION INHIBITS 
THE PREMENOPAUSAL DEVELOPMENT 
OF CHD AND ATHEROSCLEROSIS IN 
WOMEN

Several lines of evidence indicate estrogen to be 
cardioprotective during the premenopausal years. First, 
numerous studies show that premenopausal removal of 
the ovaries (surgical menopause and resulting hypoestro-
genemia) occasions a substantial increase in risk of inci-
dent CHD and that this heightened risk may be mitigated 
by estrogen replacement [19-22]. Moreover, premature 
ovarian failure (defined as menopause occurring prior to 
the age of 40) likewise increases coronary disease risk, 
and estrogen therapy has the same mitigating effects [23-
25]. Subtle reproductive insults may also be atherogenic, 
as one large cohort study related an elevated incidence of 
anovulation among women 40 to 49 years of age to the 
clinical appearance of CHD several years later [26]. If 
premature ovarian failure, anovulation, or oophorectomy 
increase cardiovascular risk, it might be expected that ex-
tended exposure to endogenous hormones would prove 
cardioprotective. In fact, a number of studies suggest that 
a greater age at menopause or an increased period of ex-
posure to endogenous sex hormones diminish the risk of 
CHD in postmenopausal women [27-30].

Finally, and of particular relevance to the potential 
role of estrogen in modulating CHD risk, are two in-
vestigations involving the comparatively rare situation 
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involving premenopausal women undergoing invasive 
cardiologic assessment (cardiac catheterization and cin-
eangiography). Although relatively small, both studies 
associated estrogen deficiency with presence of angio-
graphically confirmed coronary artery disease [31,32]. 
Notably, the authors of the larger of the studies – con-
taining approximately 100 women – speculated that the 
relative estrogen deficiency seen in affected study par-
ticipants was mediated by hypothalamic responses to 
psychological stress (“hypothalamic hypoestrogenism”), 
thereby linking adversity in the psychosocial milieu to 
these individuals’ observed coronary disease [31].

ASSESSING OVARIAN DISRUPTION IN 
MONKEYS AND WOMEN

Evidence cited in the preceding paragraphs suggests 
that normal ovarian function and estrogen concentrations 
contribute to cardiovascular health during the premeno-
pausal years and, conversely, that disruptions of ovarian 
function confer cardiovascular risk. However, systematic 
evaluation of the relationship between ovarian function 
and coronary disease in women requires protracted as-
sessment of ovarian hormones to characterize individual 
differences in ovarian function and to relate these to inci-
dent disease or preclinical biomarkers of atherosclerotic 
risk. In addition to this substantial logistical constraint, 
ethical considerations limit the use of hormonal manipu-
lations in otherwise healthy individuals, thus precluding 
rigorous, prospective experiments assessing the effect of 
estrogen and other ovarian hormones on heart health.

An alternative strategy involves the use of suitable 
animal models. In this regard, cynomolgus macaques 
(Macaca fascicularis) have proven to be a particularly 
useful model for studying the role of ovarian hormones 
and sex differences in the development and expression of 
CHD [4,33]. When fed an atherogenic diet (containing a 
similar amount of fat and cholesterol as found typically 
in the U.S. diet), animals of this species develop athero-
sclerosis in a pattern similar to that of people and also 
resemble human beings in the pathologic characteristics 
of their lesions and in their susceptibility to myocardial 
infarction [34]. Importantly, females of this species also 
resemble women in their vulnerability to atherosclerot-
ic cardiovascular disease, including a relative “female 
protection” in premenopausal individuals [33,35-37]. 
Furthermore, female cynomolgus monkeys and other 
Old World anthropoid primates share with women many 
reproductive characteristics, including not only menstru-
ation and menopause, but as shown below, also a relative 
susceptibility to reproductive impairments of functional, 
often psychogenic, origin [4,33,37].

Thus, for example, episodic disruptions of repro-
ductive function are relatively common among women 

in industrialized societies, with evidence that roughly a 
quarter of this population experiences infertility at some 
point in their premenopausal lives [38]. As indicated 
above, FHA is a primary cause of reproductive disruption 
in young women. This syndrome is termed “functional” 
to indicate the absence of an organic cause. Rather, the 
condition is believed to be induced by psychogenic in-
sults – either alone or in combination with disordered 
eating and excessive exercise – in individuals otherwise 
capable of normal reproductive activity [9]. Furthermore, 
FHA occurs along a continuum from subclinical luteal 
phase hormonal deficits and anovulation to amenorrhea 
[39-41].

The hormonal profile of FHA includes estrogen de-
ficiency, gonadotropin levels that are normal or slightly 
below normal, and normal levels of androgens and pro-
lactin [42]. Moreover, FHA is frequently associated with 
global hormonal dysregulation, as reflected in part by 
altered hypothalamic pituitary adrenocortical (HPA) ac-
tivity and depressed thyroid function [38,42-45]. An ele-
vation in circulating cortisol – the adrenal hormone that 
orchestrates the metabolic response to stress – is the most 
prominent and easily assessed neuroendocrine correlate 
of FHA [46-49]. While psychological traits of individuals 
may modulate vulnerability to this syndrome, epidemio-
logical research shows a graded relationship between the 
degree of stress experienced and the extent of reproduc-
tive impairment [37,50]. It is perhaps significant that the 
condition can be ameliorated by behavioral or environ-
mental changes that reduce stress, further emphasizing 
the importance of the psychosocial environment [50-52].

Notably, assessment of reproductive function 
through frequent blood sampling and measures of men-
strual cyclicity indicates that the subclinical components 
of FHA – luteal phase hormonal deficits, cyclic irregular-
ity, and anovulation – are relatively common in socially 
housed monkeys [53]. As in women, these deficits have 
a stress component. Monkeys naturally align in hierar-
chies of relative social status and, owing to frequent en-
forcement of such stratified relationships by high ranking 
[dominant] animals, it is intrinsically more stressful to 
hold low [subordinate] rank in the social group. In fact, 
dominant animals often purposely constrain the behavior 
of subordinates [54]. Similar to women with FHA, sub-
ordinate monkeys tend to be both hypercortisolemic (one 
indicator of biological stress) and ovarian impaired (i.e., 
deficient in both estrogen and progesterone) relative to 
their dominant counterparts [53,55].

The often hesitant, constrained behavior of sub-
ordinate female monkeys living in small social groups 
is seemingly analogous to the “lack of control” said to 
characterize women diagnosed with FHA [4,37,51]. Also 
comparable to women, the ovarian dysfunction observed 
in psychosocially stressed monkeys reportedly increases 
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lustrate the potential impact of premenopausal conditions 
on postmenopausal disease. Lessons learned from this re-
search are first summarized and then briefly commented 
upon in the following paragraphs.

Female “Protection” from Coronary Artery 
Atherosclerosis Requires Normal Ovarian Function

An initial investigation evaluated reproductively 
intact, socially housed females fed an atherogenic diet 
for two years [33]. In addition to the females, there was 
a comparison group of socially housed adult males. As 
expected, the females developed only about one-third 
as much coronary artery atherosclerosis as did similar-
ly treated males, a significant effect. However, this was 
true only for those females that were dominant in their 
social groups; the atherosclerosis of subordinate females 
was indistinguishable from that of males (Figure 1a). As 
described above, subordinate monkeys were also charac-
terized by a relatively high incidence of luteal phase pro-
gesterone deficiency and anovulation and were relatively 
hypoestrogenic [53]. The data also indicate that plasma 

in severity when these animals are concomitantly subject-
ed to caloric restriction and treadmill exercise [56]. Fi-
nally, monkeys resemble women in that these functional 
reproductive deficits are reversible; subordinate animals 
that became dominant over the course of a study regain 
normal ovarian function, whereas dominant females los-
ing rank experience subsequent reproductive impairment 
[53,57]. The striking parallels between women and fe-
male monkeys with respect to functional reproductive 
deficits are discussed in detail elsewhere [4,37].

STUDIES OF ATHEROSCLEROSIS 
IN SOCIALLY HOUSED MONKEYS: 
PREMENOPAUSAL IMPLICATIONS

Research employing socially housed cynomolgus 
macaques fed an atherogenic (i.e., moderately high fat 
and cholesterol) diet provides unique insights into the 
relationship between reproductive function, psychosocial 
factors, and the initiation and progression of atheroscle-
rosis during the reproductive years. These studies also il-

Figure 1. Coronary artery atherosclerosis extent in socially housed monkeys consuming an atherogenic 
diet. a. Males and reproductively intact females above (dominant) or below (subordinate) the median in social status 
following two years of diet consumption (data from [33]); b. Dominant and subordinate females following ovariectomy 
and two years of diet consumption (data from [58]); c. Dominant and subordinate females that had either been treated 
or not with OCs for two years premenopausally, followed by ovariectomy and three more years of diet consumption 
(data from [69]). The three primary findings are that: 1) dominant females were protected relative to subordinate 
females and males; 2) ovariectomy eliminated the atheroprotection typical of dominant individuals; and 3) dominant 
social status or OC exposure lowered the premenopausal trajectory of atherosclerosis progression thereby reducing 
the extent of lesions observed following ovariectomy – an outcome that was independent of any post-ovariectomy 
estrogen treatment.
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cohort, dominant and subordinate animals had equiva-
lently extensive atherosclerosis but only the subordinates 
had elevated cortisols [66]. Similarly, atherosclerosis was 
equivalently inhibited among pregnant animals, regard-
less of status and cortisol. The significant association 
across all experimental treatments between ovarian hor-
mones – but not cortisol – and atherosclerosis suggests to 
us that reproductive hormones underlie the relationship 
between status and atherosclerosis in these female mon-
keys [4].

A reasonable, although parenthetic, question would 
be to ask why behaviorally induced ovarian dysfunction 
should be so robust in these small groups of monkeys and 
whether the biological relevance extends beyond the lab-
oratory. Although a full discussion of this topic is beyond 
the scope of this perspective, we and others have sug-
gested that stress-associated ovarian impairment is pos-
sibly adaptive, as it allows long-lived female mammals 
experiencing a stressful environment to delay an energet-
ically expensive pregnancy until safer, more propitious 
circumstances prevail. A more extensive and complete 
discussion of evolutionary considerations and the health 
implications of ovarian suppression in primates and oth-
er mammals may be found in a series of reviews [e.g., 
37,67].

Exogenous Estrogen Selectively Protects 
Reproductively Intact Monkeys that are 
Subordinate in their Social Groups

The precocious acceleration of atherosclerosis as-
sociated with ovarian impairment in the reproductively 
intact cohort of the prior study suggests that exogenous 
estrogen might prove protective, especially among mon-
keys predisposed by estrogen deficiency – namely social-
ly subordinate animals. In a test of this hypothesis, pre-
menopausal monkeys were randomized to consume a diet 
relatively high in fat and cholesterol, which for half of 
individuals also contained a triphasic oral contraceptive 
(OC) [68]. Following two years of diet and OC treatment, 
atherosclerosis was measured in an iliac artery biopsy, 
selected because we had previously demonstrated that 
atherosclerosis at this site correlates significantly with 
atherosclerosis measured at the same time in the coronary 
arteries [68].

The premenopausal biopsy data showed that OC 
treatment was protective, but selectively so for the at-
risk individuals – i.e., subordinate animals. Thus, domi-
nant individuals developed little atherosclerosis over the 
course of study, whether or not they were treated with 
contraceptive steroid. On the other hand, while untreated 
subordinates developed extensive atherosclerosis as ex-
pected from previous studies (i.e., Figure 1a and [62]), 
OC administration inhibited lesion development in oth-
erwise identically treated subordinates; in fact, lesion 

high density lipoprotein cholesterol concentrations – a 
protective factor in human atherosclerosis – were posi-
tively associated with estrogen status. That is, dominant, 
ovarian sufficient individuals had higher “good choles-
terol” concentrations than their subordinate, ovarian defi-
cient counterparts [58].

A companion study involving the same diet for the 
same duration used animals that had had their ovaries re-
moved as a means of modeling menopause. This surgical 
manipulation is necessary because natural menopause in 
monkeys typically occurs toward the end of life rather 
than at midlife as in women [59]. Thus, using a surgi-
cal approach provides the opportunity to study mid-life 
ovariectomized monkeys as a model for mid-life meno-
pausal women. Notably, the ovariectomized dominant 
and subordinate monkeys in this study did not differ from 
each other in atherosclerosis extent or plasma cholesterol 
concentrations. Rather, lesion development in both was 
approximately equivalent to that observed in reproduc-
tively intact subordinates and in males, suggesting that 
ovariectomy eliminates the “female protection” from 
atherosclerosis typically exhibited by dominant individ-
uals (Figure 1b) [60]. Finally, a third study in this series 
again used the same diet for the same duration, but here 
exposed the females to males, allowing the females to 
become serially pregnant. In this experiment, the exacer-
bation of coronary artery atherosclerosis previously ob-
served in reproductively intact subordinate females was 
eliminated by pregnancy, a hyperestrogenic state. That is, 
coronary artery atherosclerosis extent in this experiment 
was equivalently inhibited in the subordinate and domi-
nant monkeys (data not shown) [61].

Several additional studies offered the opportunity to 
confirm the observation that atherosclerosis is typically 
exacerbated among subordinate relative to dominant, 
non-pregnant premenopausal monkeys consuming an 
atherogenic diet [62]. In fact, a meta-analysis comprising 
five studies and 200 females indicated that subordinate 
animals reliably developed atherosclerosis that was more 
than twice as extensive as that observed in their dominant 
counterparts.

It is worth considering the potential mechanisms that 
could have mediated the observed pattern of atheroscle-
rosis in this series of investigations. Numerous investi-
gators have suggested that the stress hormone cortisol, 
which is elevated in FHA, may contribute to the devel-
opment of coronary artery disease [63,64]. In the studies 
described above, subordinate animals were hypercorti-
solemic relative to their dominant counterparts, irrespec-
tive of reproductive status, indicating that it was in fact 
stressful to occupy a subordinate position in these social 
groups [65]. However, only among the reproductively in-
tact females did elevated cortisol concentrations co-occur 
with exacerbated atherosclerosis. In the ovariectomized 
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CONCORDANT OBSERVATIONS: OCS AND 
CHD IN WOMEN AND MONKEYS

Two studies of CHD and premenopausal OC use in 
women are relevant to the observations reported here on 
the relationship between OC exposure and atherosclero-
sis in monkeys. In one, angiographically confirmed cor-
onary artery disease among over 900 postmenopausal 
women was less severe in those who reported prior use of 
OCs than in their counterparts who did not use OCs [70]. 
The second study assessed the impact of OC use among 
diabetic and healthy premenopausal women on coronary 
artery calcium (CAC), a constituent of advanced athero-
sclerotic plaque and prominent biomarker of risk for in-
cident CHD [71]. Here, diabetic women had substantially 
greater CAC than non-diabetic counterparts, a result that 
is perhaps not surprising given the relatively high inci-
dence of cardiovascular mortality observed in diabetic 
women relative to those without diabetes and in compar-
ison to diabetic men [72,73]. In this study, OC use was 
associated with retarded progression of CAC across all 
cohorts [diabetic and normal controls], but with the great-
est inhibition observed in diabetic women and those re-
porting taking OCs for the longest period of time. Hence, 
OCs may be cardioprotective in premenopausal women, 
and especially so in the most susceptible individuals, in 
this instance diabetics. In the current context, it is per-
haps relevant that diabetic women share with subordinate 
monkeys – which also receive the greatest benefit from 
OCs – evidence of more prevalent ovarian dysfunction, 
including hypoestrogenemia, anovulation, and menstrual 
irregularity [e.g., 71,74].

Admittedly, estrogenic compounds, including OCs, 
are well known to be promote blood clotting and their 
use has been associated with an increased risk for venous 
thromboembolism, thrombotic stroke, or myocardial 
infarction in numerous – though not all – studies [e.g., 
70,75]. Such risks are magnified in women over 35 years 
of age and in the presence of smoking and pre-existing 
cardiovascular risk factors such as hypertension and hy-
perlipidemia. For purposes of this perspective, the ob-
servations with respect to CAC and coronary occlusion 
are presented to establish the biological plausibility that 
estrogens may inhibit the premenopausal progression 
of atherosclerosis irrespective of any prothrombotic ef-
fects that may be observed in some women using estro-
gen-containing OCs [70].

A PROPOSAL FOR WOMEN’S HEALTH 
RESEARCH

Whether behaviorally induced reproductive deficits 
of protracted duration (akin to those seen in monkeys) 
also increase cardiovascular risk is women is not yet 

extent in the OC-treated subordinates was indistinguish-
able from that in dominant monkeys. As in earlier inves-
tigations, the untreated subordinates experienced more 
frequent anovulation and greater luteal phase deficiency 
than dominants, consistent with the hypothesis that the 
ovarian impairment accompanying social subordination 
accelerates atherogenesis.

Premenopausal Hormonal Conditions Predict 
Postmenopausal Atherosclerosis Extent

Following collection of the iliac artery biopsy, all 
monkeys in the prior experiment were ovariectomized 
and subsequently studied postmenopausally for three 
years. During this period, some monkeys received hor-
mone treatment in the form of conjugated equine estro-
gens (CEE). Data from the postmenopausal phase of 
this life course study provided a unique opportunity to 
estimate the extent to which premenopausal hormonal 
status influenced postmenopausal atherosclerosis [69]. 
Remarkably, the cardioprotective effects of treatment 
with OCs seen in iliac artery biopsies from subordinate 
monkeys at the end of the premenopausal phase of the 
experiment – as well as the absence of such protection 
in the untreated subordinates – persisted all the way to 
the postmenopausal evaluation of coronary artery athero-
sclerosis three years later in these same animals. That is, 
the postmenopausal pattern of coronary artery atheroscle-
rosis was essentially indistinguishable from the pattern 
observed in the iliac arteries of the same monkeys at the 
end of the premenopausal phase [68]; the significant in-
hibitory effect of premenopausal dominant social status 
and OC treatment determined the overall pattern of post-
menopausal atherosclerosis and did so irrespective of any 
intervening postmenopausal treatments (i.e., hormone re-
placement) (Figure 1c).

In summary, monkeys at high risk premenopausally 
[i.e., subordinate animals without estrogen supplemen-
tation] continued to be at high risk postmenopausally, 
whereas atherogenesis was inhibited in OC-treated sub-
ordinates and in dominants with or without administered 
OCs. That subordinates’ heightened atherosclerotic risk 
and its reversal by estrogen supplementation persisted 
postmenopausally and unmodified by postmenopaus-
al hormone replacement underscores the importance of 
early events in the development of coronary artery ath-
erosclerosis. These results also confirm the important 
contribution that longitudinal investigations using appro-
priate animal models can make to an understanding of the 
pathogenesis of diseases like CHD, which emerge over a 
period of decades and are affected by environmental fac-
tors such as diet and the social milieu.
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to diabetes.
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