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Zika virus (ZIKV) caused global concern due to Brazil's unexpected epidemic, and it was
associated with congenital microcephaly and other gestational intercurrences. The study
aimed to analyze the placenta morphometric changes of ZIKV-infected pregnant women
(ZIKV group; n = 23) compared to placentas of HIV-infected (HIV group; n = 24) and
healthy pregnant women (N-control group; n = 22). It also analyzed the relationship
between the morphometric results and pathological alterations on conventional
microscopy, gestational trimester of infection, and presence of the congenital Zika
syndrome (CZS). There was a significant increase in area (p = 0.0172), as well as a
higher number of knots (p = 0.0027), sprouts (p < 0.0001), and CD163 +Hofbauer cells
(HCs) (p < 0.0001) in the ZIKV group compared to the N-control group, suggesting that
villous dysmaturity and HCs hyperplasia could be associated with ZIKV infections. The HIV
group had a higher area (p < 0.0001), perimeter (p = 0.0001), sprouts (p < 0.0001), and
CD163 + HCs (p < 0.0001) compared to the N-control group, demonstrating that the
morphometric abnormalities found in the ZIKV and HIV group are probably similar.
However, when ZIKV and HIV groups are compared, it was observed a higher number
of sprouts (p = 0.0066) and CD163+ HCs (p < 0.0001) in the first one, suggesting that
placental ZIKV congenital changes could be more pronounced.

Keywords: Zika virus, HIV, vertical transmission, placenta, morphometric analysis
INTRODUCTION

During pregnancy, Zika virus (ZIKV) infection has been associated with fetal malformations, such
as microcephaly, lissencephaly, cerebellar hypoplasia, hydrocephalus, polymicrogyria, abnormal
development of the corpus callosum, and changes in neuronal migration and subcortical
calcifications that configure the Congenital Zika Syndrome (1–9).

Recently, ZIKV caused global concern due to the unexpected epidemic of infection in Brazil,
associated with congenital microcephaly and abortions, both of which have been more common
org June 2021 | Volume 12 | Article 6841941
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when ZIKV infection occurred during the first trimester of
gestation. Besides, severe cerebral malformations have not been
described when the infection occurred in the third trimester,
suggesting that the brain’s abnormal development associated
with ZIKV could become the organogenesis period (10, 11).

CZS has been associated with placental alterations like an
increase in the number of syncytial knots and sprouts, stromal
disorders, villous immaturity, Hofbauer cells (HCs) hyperplasia,
and vascular abnormalities (12, 13). The direct infection and
replication of ZIKV in placenta tissues can be triggered by the
infection of HCs (placental macrophage) in the chorionic villi
(10). HCs appear to be the most frequently observed ZIKV-
positive cells in the naturally infected human placentas and also
may remain persistently infected until delivery. Even in the
placenta samples with a short interval between the acute phase
of infection and delivery time, ZIKV appears to be detected
exclusively in HCs. Furthermore, villous immaturity may be
related to congenital disorders caused by ZIKV infection, and it
is also associated with an increase in HCs. The persistence of
ZIKV-positive HCs in full-term placentas may indicate that these
cells could provide a viral source for continued fetal infection and
may be responsible for the transplacental transmission mediated
by its migratory ability to reach the fetal vessels (12).

Human immunodeficiency virus (HIV) has also been
associated with abortion, stillborn, preterm delivery, and other
gestational intercurrences, but not with the congenital syndrome.
However, the effects of HIV on the placentas remain poorly
understood. The main target of HIV is CD4 T lymphocytes, but
other cells expressing CD4 are also infected, like monocytes,
macrophages, and dendritic cells, where HCs are included. Some
of the alterations described include chorioamnionitis and
deciduitis, and villitis, an increase in the number of syncytial
knots and sprouts, stromal disorders like fibrin deposition and
fibrosis, abnormalities of the villous maturation and infarction.
Other authors have described placentas of HIV-infected
pregnant with no pathological alterations on the conventional
microscopy. On the other hand, morphometric techniques have
usually shown alterations in villus diameter and perimeter,
suggesting changes in villous maturation (14–18).

Given that, despite having different vertical transmission
routes and outcomes, both HIV and ZIKV may produce
similar morphological changes in placental tissues, such as
villous immaturity and hyperplasia of HCs. Severe villitis, for
example, does not appear to be a common form of placental
injury in both cases. In addition, these two viruses can break
through the placental barrier causing only subtle morphological
alterations, resulting in placentas of the usual histological aspect
under conventional microscopy (14–18).

Because of this, the present study aimed to analyze the
placental morphometric changes in ZIKV-infected pregnant
women and compare these changes with that found in HIV-
infected pregnant women, considering gestational trimester of
infection, presence of CZS, and pathological alterations on
conventional microscopy as variables. In addition, this study
also compares both groups (ZIKV and HIV) to the placentas of
healthy (non-infected) pregnant women.
Frontiers in Immunology | www.frontiersin.org 2
MATERIALS AND METHODS

Ethical Approvals
The Brazilian National Ethics Committee approved the presented
study under the number CAAE: 42481115.7.0000.5248. The
authors confirm that all methods were carried out following
relevant guidelines and regulations. Furthermore, the sample
collection followed all relevant ethics and safety protocols. The
data that support the findings of this study are available from the
corresponding author upon reasonable request.

Samples
The ZIKV-infected placenta group (ZIKV group) comprises 23
placentas that were formalin-fixed paraffin-embedded (FFPE)
(12). The 23 patients gave birth to 15 term healthy and eight
malformed babies, between 34 and 40 gestational weeks
(average = 38; median = 38; SD = 2.17). All the 15 term
healthy babies (37–40 gestational weeks) are alive. Of the eight
malformed babies, five were preterm (34–36 gestational weeks).
Still, regarding this group of malformed babies, four of them are
alive, two had perinatal death and two were stillborn. The 23
mothers have at least two positive tests for ZIKV infection: anti-
ZIKV IgM positive in the maternal blood and/or colostrum,
positive RT-PCR in the maternal blood and/or urine, positive
RT-PCR in the frozen placenta samples, positive RT-PCR and/or
immunohistochemical test in the FFPE placenta samples. The
newborn/stillborn additional samples were also positive: brain
tissue RT-PCR and anti-ZIKV IgM in the blood (12).

The HIV-infected placenta group (HIV group) consisted of
24 FFPE placenta samples of HIV-positive pregnant women with
no comorbidities. Pregnant women gave birth to healthy
newborns between 33 and 40 weeks (average = 38.08;
median = 38; SD = 1.99) of gestation in 2004 to 2005, when
ZIKV was not circulating in Brazil. The placentas showed no
pathological changes on the conventional microscopy. We did
not observe villous maturation changes, and weights of the
newborns were normal for gestational age (average = 2789.29
g; median = 2730 g; SD = 497.19 g; min-max = 1780–3890 g).
Maternal age of this group ranged from 17 to 42 years (average =
26; median = 26; SD = 6.53). The placentas were from pregnant
women who had been diagnosed with HIV before or during their
pregnancy. The newborns were followed up until their HIV
infection condition was defined as negative. All the babies are
alive e HIV-seronegative. The viral loads and CD4/CD8 ratio
were measured three to six times for most patients. The viral
loads ranged from 13047.5 to 5760 (copies), and the CD4/CD8
ratio ranged from 0.65 to 0.35 during the 9 months of pregnancy.
Antiretroviral therapy was administered at least 1 month before
the birth in all patients (16).

The non-infected placenta group (N-control group)
comprises 22 pregnant women that had prenatal without
comorbidities. They gave birth to healthy newborns, between
34 and 40 gestational weeks (average = 38.19; median = 38; SD =
1.65), from 2004 to 2005, when ZIKV was not circulating in
Brazil. The placentas did not present anatomopathological
alterations. We did not observe villous maturation changes,
June 2021 | Volume 12 | Article 684194
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and weights of the newborns were normal for gestational age
(average = 2957.27 g; median = 2887.5 g; SD = 762.63 g; min–
max = 1770–4410 g). Maternal age of this group ranged from 15
to 40 years (average = 26.06; median = 24; SD = 7.14). The
pregnant woman and the newborn were followed up until
discharge from the hospital (16).

The samples of three groups were matched by gestational age,
which varied from 33 to 38 weeks. All the pregnant women were
submitted to laboratory tests for congenital intrauterine
infections (TORCH = toxoplasmosis, rubella, cytomegalovirus,
syphilis, and herpes) with negative results. Analysis of gestational
age showed no significant differences between the groups.

Morphometric Analysis
Histological sections of all placentas were stained with
hematoxylin & eosin (H&E) to evaluate the perimeter, diameter,
and area of villi, the number of sprouts, syncytial knots, and villi
numbers per medium power field (MPF). H&E sections were
photographed at a magnification of 200× (MPF) using the Scanner
Axion Scan.Z1, generating an average of 5,000 images. Unfocused,
with artifacts, non-villous tissue representative (membranes, cord,
decidua) images were excluded. The remaining images selected
(about 1,000) had 100% of the field occupied with placental villi
and were randomized to obtain about 100 images for each case of
the three groups.

For all placentas, the perimeter, diameter, area of the villi, and
basal membrane thickness were measured using Image-Pro Plus®

4 software, based on freehand drawing on 100 consecutive villi.
After freehand villus’ contour, the program provided perimeter,
diameters (major), area, and basal membrane thickness in
micrometers or square micrometers (µm/µm2) (16).

To evaluate the syncytial knots and sprouts per villi, the same
100 MPF/H&E images were used and submitted to simple
counting of these microscopic structures (12).

Immunohistochemical Analysis
Histological sections of the placentas were fixed on electrically
charged glass slides and subsequently dewaxed with heated xylol
(37°C), dehydrated with successive baths of absolute ethyl
alcohol, and rehydrated with water. Methyl alcohol and
hydrogen peroxide were used to block endogenous peroxidase
and distilled water and hydrogen peroxide for the second block.
They were incubated with anti-CD163 primary antibody (type:
polyclonal/rabbit; clone/code: 14215; dilution: 1:1000; source:
Thermo Fisher) for 1 h and with secondary antibody associated
with the dextran polymer (Spring Bioscience, Pleasanton, USA)
for 30 min. DAB/substrate complex (DAB, DakoCytomation)
was added onto the slides, followed by counterstaining with
Mayer’s hematoxylin, dehydration with ethyl alcohol baths,
clarification with xylol, and blending with Canada balsam (12).

The 30 HPF (high power field = 400×) were analyzed by
counting the number of villi and CD163+ HCs per villi in all
three study groups.

The images were obtained from random sample regions
without the interference of an observer. The morphometric
measurements and the score of CD163 positive cells were
performed blindly.
Frontiers in Immunology | www.frontiersin.org 3
Statistical Analyses
The results were described by means, standard deviations, medians,
minimum, and maximum values. The comparison of the groups
concerning quantitative variables was performed using the non-
parametric Kruskal-Wallis test or t-test. The Shapiro-Wilk test
evaluated the normality condition. Values of p < 0.05 indicated
statistical significance. The data were analyzed using the IBM SPSS
Statistics v.20.0 software. Armonk, NY, USA: IBM Corp.
RESULTS

Morphometric Alterations of the
HIV and ZIKV Groups
The analysis of the area (p = 0.0172) and the number of knots
(p = 0.0027), sprouts (p < 0.0001), and CD163+ HCs (p < 0.0001)
in the ZIKV group demonstrated larger immature chorionic villi
with a higher number of knots and sprouts and HCs hyperplasia
when compared with the N-control group (Figure 1 and
Supplementary Figure 1).

HIV group placentas with no pathological alterations on
conventional microscopy also showed changes in villous
maturation and HC hyperplasia by morphometry analysis
compared to the N-control group. The area (p < 0.0001),
perimeter (p = 0.0001), number sprouts (p < 0.0001), and
CD163+ HCs (p < 0.0001) of HIV group were higher than the
N-control group (Figure 1 and Supplementary Figure 1).

The ZIKV group placentas showed higher values of the number
of sprouts (p < 0.0066) and CD163+HCs (p < 0.0001) compared to
the HIV group (Figure 1 and Supplementary Figure 1).

Trimester of ZIKV Infection
Morphometric analyses were performed in placental samples
from mothers who were infected with ZIKV during the first (n =
4), second (n = 8), and third trimesters of pregnancy (n = 6). In
five placenta samples, the trimester of infection was unknown.
The perimeter (p = 0.0292), number of knots (p = 0.0062),
sprouts (p < 0.0001), and CD163+ HCs (p < 0.0001) showed
significant differences by the trimester of infection. The most
relevant differences were observed between the second trimester
and third trimester of infection versus the N-control group,
revealing second-/third-trimester ZIKV placentas with villous
dysmaturity and HCs hyperplasia compared to the control
placentas (Table 1).

Pathological Alterations
ZIKV group placentas with and without pathological alterations
by conventional microscopy were compared. It was observed that
placentas with pathological changes presented higher diameter
(p = 0.0226), perimeter (p = 0.0212), number of knots (p =
0.0101), number of sprouts (p < 0.0001), and CD163+ HCs (p <
0.0001) compared to placentas without pathological alterations
(Table 1). However, placentas considered within normal
standards also presented morphometric changes characterized
by higher area, perimeter, number of knots, sprouts, and
CD163+ HCs compared to the N-control group (p < 0.05).
June 2021 | Volume 12 | Article 684194
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Congenital Zika Syndrome
The status of the newborns (with or without CZS) was also
analyzed. The diameter (p = 0.0109), area (p = 0.0102), perimeter
(p = 0.0035), number of knot (p = 0.0054), number of sprouts
(p < 0.0001), and CD163+ HCs (p < 0.0001) were higher in
placentas of newborns with CZS compared with placentas of
newborns without this condition (Table 1).
DISCUSSION

Morphometric Alterations of HIV
and ZIKV Groups
The findings showed significant enlargement of the area of the
ZIKV group when compared with the N-control group. A higher
number of knots, sprouts, and CD163+ HCs were also noticed.

Syncytial knots are syncytiotrophoblasts’ specializations, and
their severe increase in late gestation indicates early maturation
(12). Syncytial sprouts are markers of trophoblast proliferation;
they are seen frequently during early pregnancy and are
increased in the villous dysmaturity (19, 20).

HCs, the most frequently ZIKV-positive cells, are placental
villous macrophages of fetal origin, and alterations in their
numbers (hyperplasia) and biological features are associated
with complications in pregnancy. HCs play a role in diverse
functions, such as placental vasculogenesis, immune regulation,
and the secretion of enzymes and cytokines across the maternal-
Frontiers in Immunology | www.frontiersin.org 4
fetal barrier. In addition, there is some evidence suggesting the
involvement of HCs in the development of placental villi (12).

This study’s findings corroborate with studies that showed a
delay in villous maturation and signs of the HCs hyperplasia in
ZIKV-infected placentas. These alterations could damage the
chorionic villi, such as calcification, necrosis, Wharton jelly
sclerosis, fibrin deposition, and a significant villi size increase (11,
21–23). We could conclude that all of the anatomopathological
parameters could be confirmed by themorphometric data andmay
be used to describe ZIKV-infected placentas.

Other findings showed that the HIV group had a larger area,
perimeter, number of sprouts, and CD163+ HCs compared to the
N-control group. Studies also revealed that placentas exposed to
HIV infection exhibited the following microscopic features: edema,
villous immaturity, focal necrosis of trophoblasts, numerous HCs,
intervillous fibrin deposition, and chorangiosis (17, 18, 24).
However, when those patterns are subtle or minimal, pathologists
cannot make the diagnosis. Given that, morphometric techniques
may be helpful to identify subtle abnormalities.

Rabelo et al. (22) showed ZIKV NS1 protein in the decidual and
endothelial cells of the maternal decidua and CTB, STB, and HCs in
the third trimester placental tissues associated with an HIV-exposed,
but uninfected, infant with severe congenital Zika syndrome.
Nonetheless, the maternal HIV infection could have contributed to
the permissiveness of other placental cell types to ZIKV infection.

Finally, when both groups (ZIKV and HIV) were compared, no
statistically significant results were found, except for the number of
FIGURE 1 | Morphometric analysis of placental specimens from women infected with ZIKV during the pregnancy compared to the HIV and N-control groups.
Perimeter, diameter, and basal membrane (BM) thickness in µm; area in µm2; number of knots, sprouts, and CD163+ HCs per villi (CD163/villi). Photomicrography of
a placental sample stained with H&E showing the perimeter of villi (red freehand drawing) in N-control group (A) and ZIKV group (B); the number of syncytial knots/
villi (arrows) in N-control group (C) and ZIKV-group (D); the number of sprouts/villi (double arrows) in N-control group (E) and ZIKV group (F). Original magnification:
200×. Scale bars: 100 mm. Photomicrography of immunostaining with CD163 highlighting Hofbauer cell (arrowhead) in the N-control group (G) and ZIKV group (H).
Original magnification: 400×. Scale bars: 50 mm.
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TABLE 1 | Median (max-min) and p-value of morphometric data in the gestational trimester of infection, presence of placenta pathological alterations, and CZS.

Pathological Alterations of Placenta on Conventional Microscopy§ Congenital Zika Syndrome*
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sprouts and CD163+ HCs higher in the ZIKV group. Thus, it seems
that HCs hyperplasia and sprouting/dysmaturity villi may be more
pronounced and characteristic in the ZIKV-infected placentas (12,
17). Even though placental changes, such as dysmaturity and
hyperplasia of HCs, can be seen in other maternal-fetal diseases,
such as congenital infections (TORCH) and diabetes, in the absence
of these comorbidities, this aspectmayhelp the pediatric pathologists
to suspect thediagnosisofZIKVvertical transmission.This studyalso
demonstrates that the morphometrical abnormalities finding in
ZIKV and HIV groups are very similar, despite having different
vertical transmissionroutes andoutcomes sinceZIKVisa teratogenic
virus andHIV is not. In addition, vertical HIV transmission is much
rarer than that of ZIKV, but it can increase perinatal and intrauterine
deaths (Supplementary Figure 1) (14, 17, 18).

Trimester of ZIKV Infection
When the gestational trimester of infection was analyzed, it was
observed that most of the differences between the ZIKV and N-
control groups appear to be when infection occurred in the second
or third trimester. Since all newborns of this study were in the third
trimester (term or preterm), the shorter time that elapsed between
themoment of ZIKV infection and the birthmay be an explanation
for more pronounced changes in these placentas.

The number of HCs also showed differences between groups,
suggesting that these cells may have early hyperplasia, and this
hyperplasia seems to be maintained throughout the gestational
period, although it decreases in intensity over the months. This
fact appears to agree with the hypothesis that these cells can work
as a reservoir of ZIKV (12, 25).

Regardless of the trimester in which the infection occurred, as
ZIKV is detected in placental cells until the end of pregnancy, it is
plausible to speculate that the infection of the fetus could happen
as a secondary event. In some cases, those abnormalities are only
detected months after the delivery (20, 26–29).

Pathological Alterations
Fifteen of 23 ZIKV group placentas were diagnosed without
pathological alterations for the pediatric pathologist. However,
eight of them had pathological alterations on conventional
microscopy, mainly villous immaturity. When placentas with and
without pathological alterations were compared, placentas
diagnosed with villous immaturity had a higher diameter,
perimeter, number of knots, and CD163+ cells. This means that
pathologists probably identified those alterations on conventional
microscopy and, altogether, termed villous immaturity, so they did
not need morphometry techniques to make these diagnoses.

On the other hand, ZIKV-group placentas with no pathological
alterations also showed higher diameter, perimeter, and number of
knots, sprouts, andCD163+ cells to theN-control group.Therefore,
conventional microscopy cannot identify subtle alterations that
morphometry could find.

Congenital Zika Syndrome
This study showed significant enlargement of the villi’s diameter,
area, and perimeter and the number of sprouts and CD163+ HCs
in the group that had CZS. In addition, eight infants had fetal
malformations related to ZIKV infection during pregnancy.
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However, 15 women had the onset of ZIKV symptoms during
pregnancy and gave birth to infants without CZS.

This study observed that ZIKV causes essential alterations in
the placenta’s villous, leading to congenital disorders, stillborn,
and neonatal death. We could also conclude that morphometric
parameters may be biomarkers for CZS since they are more
pronounced in malformed newborns. These data could help in
the clinical follow-up of newborns with subclinical congenital
disorders or even unapparent at birth.

In conclusion, there are placental dysmaturity alterations after
ZIKVinfectionduringpregnancy.Very similarplacental alterations
could be demonstrated on the HIV-infected pregnant women, but
sprouting and HCs hyperplasia may be less pronounced in this
group. Also, the morphometric analysis revealed villous
dysmaturity even in placentas diagnosed within the usual
standards by the routine exams. The second and third gestational
trimester infections generated more villous dysmaturity and HCs
hyperplasia than thosepregnantwomenwhobecame infected in the
first trimester. In addition, placentas whose babies hadCZS showed
more pronounced changes than those without CZS. These
alterations may help understand the aspect of ZIKV infection
related to placental damage and congenital disabilities and
possible deficiencies that might appear after birth.
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Immature Neurons to Zika Vıŕus: A Link to Congenital Zika Syndrome.
EBioMedicine (2016) 10):65–70. doi: 10.1016/j.ebiom.2016.06.026

6. Oehler E, Watrin L, Larre P, Leparc-Goffart I, Lastère S, Valour F, et al. ZIKV
Infection Complicated by Guillain-Barré Syndrome: Case Report, French
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