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B cell reconstitution after hematopoietic stem cell transplantation (HSCT) is variable

and influenced by different patient, donor, and treatment related factors. In this review

we describe B cell reconstitution after pediatric allogeneic HST, including the kinetics

of reconstitution of the different B cell subsets and the development of the B cell

repertoire, and discuss the influencing factors. Observational studies show important

roles for stem cell source, conditioning regimen, and graft vs. host disease in B cell

reconstitution. In addition, B cell recovery can play an important role in post-transplant

infections and vaccine responses to encapsulated bacteria, such as pneumococcus. A

substantial number of patients experience impaired B cell function and/or dependency on

Ig substitution after allogeneic HSCT. The underlying mechanisms are largely unresolved.

The integrated aspects of B cell recovery after HSCT, especially BCR repertoire

reconstitution, are awaiting further investigation using modern techniques in order to

gain more insight into B cell reconstitution and to develop strategies to improve humoral

immunity after allogeneic HSCT.

Keywords: hematopoietic stem cell transplantation, allogeneic, immune reconstitution, B lymphocyte, subsets,

pediatric

INTRODUCTION

Hematopoietic stem cell transplantation (HSCT) is a treatment modality in which hematopoietic
stem cells are used as curative therapy for congenital and acquired disorders of the hematopoietic
system and metabolic diseases (1). During HSCT, the hematopoietic system is replaced using
donor-derived hematopoietic stem cells as allograft. Stem cells can give progeny to functioning
erythrocytes, thrombocytes, myeloid lineages and/or lymphocytes, achieving recovery of normal
hematopoiesis and immunity.

Restoration of the individual components of the immune system occurs with different dynamics
in which innate immunity (neutrophils, monocytes and natural killer cells) typically precedes
adaptive immunity (T- and B-lymphocytes). Complete immune reconstitution can take several
months up to 2 years after HSCT. Immune reconstitution after allogeneic HSCT has been studied
extensively with a main focus on T cell reconstitution. Only limited information is available about
B cell reconstitution. In this review we summarize the existing knowledge on B cell reconstitution
after pediatric allogeneic HSCT and point out the need and challenges for further investigations.
We included studies via systematic literature search in Embase, Medline Epub (Ovid), Cochrane
Central and Web of Science including the terms “hematopoietic stem cell transplantation,” “B
lymphocyte,” “immune reconstitution,” “child” and synonyms between 01-01-1980 and 31-12-2018.
Additional relevant studies were included through references within the identified studies. Lastly,
top results of Google Scholar were screened.
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B CELL RECONSTITUTION AFTER HSCT

Compared to other hematopoietic cell types, B cell reconstitution
occurs relatively late after HSCT. The first emerging B cells
can be detected in peripheral blood after 1.5–2 months. These
are mainly CD24high CD38high transitional B cells (2) (See
Figure 1A for all peripheral B-cell subsets). A subdivision of
these transitional B cells can be made in the early appearing
CD21low B cells, called the T1 cells, and the CD21high B (or T2)
cells which develop later (3). Additionally, expansion of CD5+
B cells is reported early after HSCT (4, 5). CD5 is a known
marker of human immature B cells, but its expression covers
a broader range of B cell developmental/differentiation stages.

More mature CD5+ B cell subpopulations are characterized
by their regulatory properties such as IL-10 production upon
activation by bacterial or parasitic antigens, and their constitutive
death-inducing ligand expression (6–10). The CD5+ B cell

expansion early after HSCT is likely to be a reflection of B
cell immaturity, but may also point to a role for regulatory
B cells in controlling immune reactions and autoimmunity
after HSCT. Several months after HSCT, the transitional B

cells decrease in number and gradually naive mature (CD24int
CD38int) B cells emerge to become the predominant population.
In the course of the first year following HSCT, naive mature
B cells represent more than 80% of the peripheral blood B
lymphocytes. (2). To obtain more insight in the mechanism
and dynamics of B cell regeneration, κ-deleting recombination
excision circles (KRECs) might serve as a useful biomarker for
replication history and to evaluate the onset of de novo B-cells,
as KRECs have been reported to be positively correlated with
B cell numbers after transplantation (11–15). At one year after
HSCT, the B cell reconstitution stabilizes reaching age-corrected
normal total B cell counts in peripheral blood in most patients
(Figure 1B) (16–20). Looking further into the B cell populations,
non-switched (CD27+IgM+IgD+/-) and switched (CD27+IgD-
IgM-) memory B-cells appear slowly, taking up to two years or
longer after HSCT to reach normal age matched levels (16, 17, 20,
21). Especially non-switched B cells seem to remain below normal
values, suggesting defects in this maturation stage. During the
process of B cell maturation in general, mature B lymphocytes
further differentiate into memory B cells, and may undergo
isotype switching and affinity maturation in a T cell dependent
germinal center reaction (Figure 1A). In this process, cognate
interaction between T follicular helper (Tfh) cells and specialized
follicular dendritic cells is pivotal. As a consequence, the quality
and dynamics of CD4T cell, and thus also Tfh, reconstitution
after HSCTwill also impact on B cell differentiation andmay thus
contribute to an impaired or arrested maturation of B cells. (22–
24). However, even in the presence of donor CD4+ T cells that
are capable of supporting the process of somatic hyper mutation,
the incidence of somatic hypermutation is decreased in recipient
B cells in cell culture (25). It could be that treatment given prior
to transplantation disrupts secondary lymphoid organs, which
are necessary for the introduction of somatic hypermutations
in the variable domains of the immunoglobulin molecules
and affinity maturation in the germinal centers (26). Immune
responses against polysaccharides seem frequently impaired in

FIGURE 1 | (A) Schematic representation of peripheral B-cell development.

(B) Hypothetical scheme of B cell subset reconstitution after HSCT based on

literature. The first cells emerging in the peripheral blood are the transitional B

cells. In the course of the first year, the transitional B cells decrease in number

and are replaced by mature naïve B cells. These mature B lymphocytes further

differentiate into memory B cells and plasma cells.

HSCT patients (27, 28). Polysaccharide antibody responses are
important for the T cell independent defense to encapsulated
bacteria, in which marginal zone B cells play an important
role (29, 30). The impaired reconstitution of this subset might
indicate why certain patients encounter specific problems with
susceptibility to encapsulated bacteria such as pneumococcus.
The counterpart of marginal zone B cells, IgM memory B cells,
seems also to be reduced in long term transplanted patients
(16, 17, 20, 21).

Immunoglobulin (Ig) levels seem to recover in parallel to B cell
reconstitution, in which recovery of Ig subclasses usually occurs
in a distinctive order (16, 31–33). After HSCT, Ig levels drop,
reflecting the absence of Ig producing B cells. Some Ig production
may persist, probably due to surviving long-lived plasma cells
of host origin (34). As a reflection of normal ontogeny, IgM
production will reconstitute relatively early and, on average,
reaches normal levels within the first 6 months after HSCT.
Similar to IgM, IgG generally reaches normal levels in the second
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half of the first year, whereas normalization of IgA levels may
take up to 5 years after HSCT. IgG subclasses, on average, reach
normal serum levels within 5 months (IgG1), 9 months (IgG3),
or up to 2 years (IgG2 and IgG4). However, the time frame is
highly variable and can be influenced by several factors such
as the underlying disease, stem cell source, and type of donor
(16, 31–33).

For complete humoral immune reconstitution after HSCT,
generation of a diverse BCR repertoire is necessary. Literature
on the diversification of the BCR after HSCT is limited. In the
last 10 years, investigation of BCR diversification after HSCT has
stagnated and studies performed are limited by older techniques
or are difficult to generalize because of the small sample size.
Analysis of the pattern of VH3- and VH4-gene usage based on
700 rearrangements in four patients suggested that the B-cell
receptor repertoire shows the same (limited) repertoire of VH
genes at 90 days and 1 year after HSCT (35). Other studies
showed evidence that generation of the new repertoire occurs
gradually and suggest that the CDR3 regions post HSCT are
similar to CDR3 regions in adults and do not follow fetal
ontogeny (36–38). The CDR3 length in the memory B cell
compartment has a specific restriction compared to healthy
controls, resulting in an oligoclonal repertoire early after HSCT
(39). These methods only provide rough information about the
BCR repertoire post HSCT. In adults, one study investigated
the IGH repertoire before and after HSCT in acute myeloid
leukemia patients using next generation sequencing. In general,
they observed lower repertoire diversity after HSCT than before
(40). Furthermore, each individual appeared to have highly
unique and characteristic IGH repertoire of switched memory
B-cells, which allowed the investigators to separate donor and
recipient derived B cell clones. Interestingly, this showed in some
cases persistence of recipient B cells which indicates that recipient
B cells may still contribute to protective immunity after HSCT.
The study analyzed the VH1 Ig repertoire, which represents only
about 10% of all Ig sequences in humans. All of these studies
exclusively investigated Ig heavy chain diversity. To the best of
our knowledge, there are no studies investigating Ig light chain.

Based on available literature, HSCT-treated patients are
frequently affected by an unbalanced, incomplete and, therefore,
abnormal BCR repertoire, leading to impaired humoral
immunity with associated risks of infectious and/or auto-
immune complications. So far, studies have been limited
by small cohorts and low-throughput or low resolution
techniques. More in-depth analyses are needed to understand
the integrated evolution of cellular and repertoire reconstitution
and the influence of different HSCT-related factors on
immune repertoire formation and B cell function require
after transplantation.

FACTORS INFLUENCING B CELL
RECONSTITUTION

Stem Cell Source
Although all different stem cell sources have curative potential,
they differ in qualitative and quantitative characteristics

TABLE 1 | Factors influencing B cell reconstitution.

Factor Influence on B cell reconstitution References

Stem cell source CB: better B cell recovery (numbers)

and B cell differentiation as compared

to BM and PBSC.

PBSC as compared to BM: higher B

cell numbers in the early phase after

HSCT (comparable numbers after

6 months)

(16, 33, 41–44)

Serotherapy Ambiguous, some studies report

delayed B cell reconstitution while

others have indicated the opposite.

Requires further study.

(16, 19, 31, 45–48)

MAC Good humoral function, adequate B

cell reconstitution and chimerism.

BUT not always feasible.

(20, 39, 49–51)

RIC Better survival in patients with

pre-existing comorbidities or certain

diseases, but not always optimal B

cell reconstitution and IVIG

dependence.

(52, 53)

TBI Delayed B cell reconstitution. (16, 19)

aGVHD Significantly poorer B cell

reconstitution, in both function and

numbers. Higher grades of aGHVD

seem to be associated with more

extensively impaired humoral

immunity.

(16, 54–57)

cGVHD Poor B cell reconstitution mainly due

to reduced numbers of B cell

progenitors and unswitched memory

B cells. Regulatory B cells (Bregs) are

found to be reduced. Severity of

cGVHD seems to correlate with the

number of Bregs. cGVHD increases

the frequency of activated B cells.

(16, 21, 33, 55,

58–61)

of immune recovery and risk of specific HSCT-related
complications such as graft vs. host disease (GVHD) (Table 1).
Several studies suggest that umbilical cord blood (CB) is
superior over bone marrow (BM) or peripheral blood stem
cells (PBSC) with regard to time to B cell recovery and B
cell differentiation (16, 41, 42). Total B cell counts, non-
switched memory and switched memory B cells are higher
in CB compared to BM and PBSC. In a mismatched donor
setting, CB recipients show no significant better outcome for
B cell reconstitution (62). The rapid reconstitution and better
differentiation of B cells when using CB could be explained
by the higher number of B lymphocyte progenitors in CB
compared to BM (63). However, as precursor composition
in matched and unmatched CB are the same, differences in
CD19+ counts cannot be explained by higher progenitor
numbers alone.

Between BM and PBSCs, differences in B cell reconstitution
mainly exist in the early stage after HSCT. B cell numbers
seem to recover faster when using PBSCs compared to BM
(33, 43, 44). Still, with both stem cell sources, naïve, non-switched
memory and switched memory B cells will remain below the
normal values on the long term (16, 43). After 6 months, no
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differences are shown in B cell recovery using BM compared to
PBSC (33, 43, 44).

Stromal cells and T cells are important for optimal B cell
development and functionality in CB, BM and PBSC grafts (64–
67). In CB more primitive and higher numbers of the stromal
progenitors and primitive HSCs are reported compared to BM
and PBSC (67). Cotransfer of stromal cells and T cells in the
graft, as well as ex vivo modification of the grafts, such as CD34
selection, CD3/CD19 depletion and TCRα/β depletion could
indirectly cause differences in functional and quantitative B cell
reconstitution after HSCT.

Serotherapy and Chemotherapeutic
Conditioning
Serotherapy makes use of antilymphocyte antibodies which
target T cells and other leukocyte populations, with the aim
to reduce the risk of graft rejection and acute graft vs.
host disease (aGVHD) (68, 69). The most prominent agents
used are anti-thymocyte globulin (ATG) and alemtuzumab.
Whereas ATG is a polyclonal immunoglobulin, alemtuzumab
is a monoclonal antibody against CD52 (70). Both agents
induce elimination of B cell populations (71, 72). A number
of studies have reported on the impact of ATG on B cell
reconstitution. Although some studies have reported a delay
on immune reconstitution others have indicated the opposite
(19, 31, 45–47). Whether these differences are explained by
disease-specific characteristics, donor type, ATG exposure or
the type of ATG is currently unresolved and requires further
study. Similar to ATG, alemtuzumab has been reported to
result in delayed B cell reconstitution. The kinetics of B
cell reconstitution after alemtuzumab are variable and may
as well be dependent on the same parameters as in case
of ATG (16, 48).

Both in malignant and non-malignant diseases, achievement
of full donor chimerism is often preferred to cure the
primary disease and obtain stable graft function. In those cases
myeloablative conditioning (MAC) is usually required. MAC
often results in donor chimerism of all lineages and thereby
in robust B cell reconstitution and function (20, 39, 49–51).
However, in an increasing proportion of children a reduced
intensity regimen is preferred either because the underlying
disease or the pre-existing co-morbidities preclude a MAC
approach. In these patients reduced intensity conditioning (RIC)
is used, causing incomplete and reversible myelosuppression.
Conditioning with RIC is associated with better survival,
due to favorable toxicity profile and thus lower transplant-
related mortality (52). However, RIC is associated with an
increased incidence of partial/mixed chimerism and graft
rejection which may result in suboptimal B cell function
and the need for immunoglobulin supplementation (52,
53). Furthermore, the use of total body irradiation (TBI)
is associated with delayed B cell immune reconstitution
(16, 19). The mechanism behind TBI and the impaired
reconstitution is not fully understood, but lower naïve B
cells and switched memory B cells have been observed for
up to 2 years.

Graft vs. Host Disease
GVHD is a frequent complication of allogeneic HSCT which
is responsible for significant transplant-related morbidity and
mortality. aGVHD is mediated primarily by alloreactive donor
T cells. The donor T cells are activated by host antigen presenting
cells, which could be B cells. In general, GVHD is associated
with significantly poorer B cell reconstitution, in both function
and numbers (16, 54, 55). Higher grades of aGHVD seem to be
associated with more extensively impaired humoral immunity,
to which probably both GVHD itself as well as the associated
immunosuppressive therapies contribute (56, 57). In chronic
GVHD (cGVHD), poor B cell reconstitution seemsmainly due to
reduced numbers of B cell progenitors and unswitched memory
B cells (16, 21, 33, 55, 58). In adults, regulatory B cells (Bregs)
are found to be reduced in patients with cGVHD compared
to no cGVHD and healthy controls. Severity of cGVHD seems
to correlate with the number of Bregs, indicating a role for
these B cell subset in cGVHD (59, 60). Using mass cytometry, it
appeared that specific B cell subpopulations can be distinguished
in patients suffering from different grades of cGVHD (61).
Patients with severe cGVHD had an increased frequency of
activated B cells, defined as CD38+ CD39+ CXCR5+ HLA-
DR+ B-cells, compared to patients with moderate cGVHD.
Furthermore, activated B cells were found at a reduced frequency
in patients with mild cGVHD compared to patients without
cGVHD (61). Regarding pathophysiology, whereas aGVHD is
considered to be primarily mediated by T cells, an important role
for donor B cells is assumed in the complex immune pathology
of cGVHD (73–77). However, through antigen presentation,
cytokine production and other immunoregulatory functions, it
is hypothesized that B cells take part in the pathophysiology
of all types of GHVD (78–82). Therefore, B cells have been
targeted with several therapies such as Rituximab, Bortezomib,
and Ibrutinib in both murine models and patients with GVHD,
with promising clinical results (83–85).

INFECTIONS AND VACCINATION

In a significant proportion of HSCT recipients, antibody titers
of vaccine-preventable diseases decline over the years, if these
recipients are not revaccinated (86–89). Vaccination responses
after HSCT are dependent on both T- and B cell reconstitution.
An exception is the polysaccharide antibody response, which
is completely B cell dependent (90). The polysaccharide
antibody response plays a role in the immunization against
encapsulated bacteria, such as pneumococcus. HSCT recipients
are more susceptible to infections during the post transplantation
period (91–93). The risk of pneumococcal invasive disease is
increased both early and late after HSCT, reaching 30-fold
higher risks compared to the general population after 10 years,
suggesting long lasting defects in B cell reconstitution even
after revaccination (94–97). The risk of pneumococcal disease
correlates with presence/occurrence of GVHD, suggesting a link
between the functional dysregulation of B cells and GVHD (21,
94, 96). Whereas, an association with hypogammaglobulinemia
has been reported, increased susceptibility to pneumococcal
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disease is most often due to a more selectively impaired immune
response against polysaccharides (27, 28, 95). A poor response
to polysaccharide vaccines, is hypothesized to be caused by the
lack of unswitched memory B cells, which are reduced after
transplantation (98). A poor response to polysaccharide vaccines
is hypothesized to be caused by reduced MZ B cells or IgM
memory B cells, which are reduced after transplantation (16,
17, 20, 21, 98). Reduced numbers of IgM memory B cells and
increased risk of encapsulated bacterial infection has also been
observed in young children, patients with common variable
immune deficiency (CVID) and splenectomized patients (29, 99–
101). Revaccination usually occurs with inactivated vaccines,
as live attenuated vaccines have the potential to induce active
disease in immunosuppressed patients. However below normal
values, class switched memory B cells are observed as early as
3 months after HSCT (17). It is largely unknown if these cells
are already capable of an immune response, taking into account
the slow reconstitution of CD4+ T cells. In current guidelines,
revaccination starts 3-6 months after HSCT, but looking at
thresholds of the CD4+ T cells and ability for class switch
recombination might be a useful biomarker to guide the timing
of vaccination compared to fixed time point after HSCT. Live
attenuated vaccines could be considered two years after HSCT,
in patients without cGVHD or immunosuppression (102).

FUTURE PROSPECTS

B cell reconstitution after HSCT including BCR repertoire
formation and diversification, is awaiting new insights in order
to develop better treatment strategies for prevention of clinical
complications due to defects in B cell mediated immunity. For
example, clinical outcome is still suboptimal in a proportion
of HSCT-treated severe combined immunodeficiency (SCID)
patients, due to humoral immune dysfunction. Some of these
patients still suffer from persistent (humoral) immunodeficiency,
auto-immunity and/or immune dysregulation leading to
impaired quality of life (103). Although SCID represents
the prototype of inherited immune disorders, an increasing

spectrum of patients with inherited immune disorders is being
genetically identified (>250 monogenetic diseases) (104). This
steadily growing group of transplanted patients with non-SCID
inherited immune disorders faces similar challenges regarding
the long term quality of their (sometimes partially) corrected
immune system. To evaluate the long term quality of immune
reconstitution, B cell immunity recovery can serve as an indicator
of immune fitness after HSCT.

We have limited information on the diversity of the BCR
repertoire in the various B cell subsets in both peripheral blood
and BM of HSCT-treated patients. Important insights have
been obtained through flow cytometric analysis of peripheral
B-cells after HSCT. However, to gain better understanding
of numerical and functional B-cell reconstitution more in
depth-analysis of cellular dynamics (using flow cytometry and
KREC analysis), molecular aspects (BCR repertoire analysis)
and antigen specificity is needed. Extensive analysis of B cell
reconstitution can be done through modern flow cytometry
and sequence techniques or even simultaneously with mass
cytometry (105, 106). With modern sequencing techniques,
it is possible to look at both the BCR heavy and light chain.
Combined with single cell RNA sequencing, the integrated
gene expression per cell within individual patients can be
investigated (107). These modern techniques/methodology will
make it possible to investigate the influence of aforementioned
parameters on B cell repertoire development after HSCT
in an innovative and more accurate way. This could
revolutionize the knowledge about the B cell reconstitution
and pinpoint the individual B cell maturation problems of
transplanted patients.
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