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Abstract: Background: The correct understanding of the epidemiological dynamics of COVID-
19, caused by the SARS-CoV-2, is essential for formulating public policies of disease containment.
Methods: In this study, we constructed a picture of the epidemiological dynamics of COVID-19 in a
Brazilian population of almost 17000 patients in 15 months. We specifically studied the fluctuations
of COVID-19 cases and deaths due to COVID-19 over time according to host gender, age, viral load,
and genetic variants. Results: As the main results, we observed that the numbers of COVID-19 cases
and deaths due to COVID-19 fluctuated over time and that men were the most affected by deaths, as
well as those of 60 or more years old. We also observed that individuals between 30- and 44-years old
were the most affected by COVID-19 cases. In addition, the viral loads in the patients’ nasopharynx
were higher in the early symptomatic period. We found that early pandemic SARS-CoV-2 lineages
were replaced by the variant of concern (VOC) P.1 (Gamma) in the second half of the study period,
which led to a significant increase in the number of deaths. Conclusions: The results presented in this
study are helpful for future formulations of efficient public policies of COVID-19 containment.

Keywords: COVID-19; impact; variant of concern

1. Introduction

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) belongs to the
Betacoronavirus genus in the Coronaviridae family [1]. It is the causative agent of the
coronavirus disease 2019 (COVID-19) [2,3], the world’s major public health problem in
the last three years, which affected hundreds of million people and caused more than
6 million deaths [4]. Due to the high epidemiological impact of the disease, a great effort
was carried out by the scientific community around the world to rapidly study the virus
and the disease. Relevant scientific progress was rapidly achieved regarding the knowledge
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of pathophysiology, transmission, diagnosis, and treatment [5–10]. In addition, several
vaccine formulations were developed and are being shown as essential in the control
of severe forms of COVID-19 worldwide [11,12]. However, the consecutive emergence
of new genetic variants of SARS-CoV-2 have brought new questions and challenges to
pathophysiology, transmission, diagnosis, treatment, and the use of vaccines [13].

The correct understanding of the epidemiological dynamics of COVID-19 is essential
for formulating public policies of disease containment. For example, knowing when and
why a new wave of COVID-19 is expected to happen can be used for preparedness in terms
of the use of non-pharmacological measures, vaccination, reinforcement in the number of
health professionals, reinforcements in laboratory tests availability, reinforcements in the
numbers of hospital beds, and the cancellation of events, etc. [14–16]. Understanding the
dynamics of COVID-19 cases and deaths over time, and according to gender and age, is
also essential to predict situations of epidemiological risk and for preparedness regarding
specific groups [17,18]. In addition, the knowledge about viral genetic variants circulating in
a given area [19], their epidemiological impact and their probable origins, are also essential
for successful public health policies of containment of importing or exporting viruses.

In this study, we aimed to have a picture of the epidemiological behavior of COVID-19
in a population study of almost 17,000 patients in 15 months. We specifically aimed to: (i) see
the fluctuations of COVID-19 cases and deaths during the period of study; (ii) describe
and understand the epidemiological behavior of COVID-19 according to patients gender,
age, viral load, and viral genetic variants; (iii) to test possible associations between these
variables; and (iv) to phylogenetically reconstruct the evolutionary relationships of SARS-
CoV-2 circulating lineages sampled from the study. The results presented in this study are
helpful for the future formulation of public policies of COVID-19 containment.

2. Materials and Methods
2.1. Data Collection

This is a retrospective study of the cases of COVID-19 registered in the cities of Western
Bahia (west region of Bahia state, Brazil) from May 2020 to July 2021. All patient data
and samples were provided by the Laboratory of Infectious Agents and Vectors from
Western Bahia Federal University, located in Barreiras city, Bahia, Brazil. Information such
as the patient’s name, age, gender, sample identification number, collection date, RT-qPCR
result for SARS-CoV-2 detection with the value of the cycle threshold (Ct), the date of
onset of symptoms, the municipality of residence, and the patient’s care unit, were used
in this study. These data were tabulated and used in statistical analyses. All the research
complied with all relevant ethical and biosafety guidelines. Ethics approval was obtained
from the institutional ethics committee of the Federal University of Western Bahia (CAAE
40779420.6.0000.8060). All procedures and possible risks were explained to volunteers.
Informed consent was obtained from all participants. The research was performed in
accordance with relevant guidelines/regulations. The sample is composed of data from
16,908 laboratory tests, including positive and negative results of SARS-CoV-2 detection.

2.2. RNA Extraction and RT-qPCR

The nucleic acid extractions of nasopharyngeal samples were carried out using the To-
tal RNA Purification Kit (Cellco Biotec, Sao Carlos, SP, Brazil), following the manufacturer’s
protocol. We also carried out viral RNA extraction using the Extracta Kit—RNA e DNA
Viral (MVXA-P016FAST) (Loccus, Sao Paulo, SP, Brazil), using an Extracta32 instrument
(Loccus, Sao Paulo, SP, Brazil), following the manufacturer’s instructions.

Reverse transcription, followed by quantitative polymerase chain reaction (RT-qPCR)
assays, were carried out as previously described by us [20]. Thermocycling was carried
out in a QuantStudio 5 instrument (Applied Biosystems, Waltham, MA, USA) with a hold
stage composed of a first step of 5 min at 50 ◦C, followed by a second step of 20 s at 95 ◦C.
The PCR stage was composed of a first step of 15 s at 95 ◦C followed by a second step of
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1 min at 55 ◦C, repeated 45 times. We also used Allplex 2019-nCOV RT-qPCR kit (Seegene,
Song-pa-gu, Seoul, Republic of Korea), following the manufacturer’s instructions.

2.3. Viral Genotyping by RT-qPCR

Viral variants were characterized using RhAmp technology (Integrated DNA Tech-
nologies IDT, Coralville, IA, USA) and TaqMan SARS-CoV-2 Mutation Panel (Thermo
Fisher, Waltham, MA, USA) with specific primers and probes targeting the VOCs defin-
ing mutations: K417T (A22812C), E484K (G23012A), and N501Y (A23063T). RhAmp and
TaqMan detailed protocols were previously reported [21,22].

2.4. SARS-CoV-2 Genome SEQUENCING

One hundred and twenty positive samples collected from May 2020 to July 2021 were
sequenced using Next Generation Sequencing (NGS) on the Oxford Nanopore’s MinIon
platform. Viral RNA was extracted as described above. The RNA samples were submitted
to reverse transcription with random primers using LunaScript®(New England Biolabs,
Inc., Ipswich, MA, USA) or SuperScript®IV First-Strand Synthesis System (ThermoFisher
Scientific, Waltham, MA, USA), as previously described (nCoV-2019 sequencing protocol v3
(LoCost) (protocols.io) [23]. The cDNA obtained was used as a template for the amplification
of the entire genome of SARS-CoV-2 with the following primer scheme: a 400bp amplicon
scheme from ARTIC nCoV-2019 sequencing protocol (v3) (nCoV-2019 sequencing protocol v3
(LoCost) (protocols.io) was used, as previously described [23]. End-prep reactions were per-
formed with NEBNext®Ultra™ II End Repair/dA-Tailing Module, and amplicons were bar-
coded using the ONT Native Barcoding Expansion kit (EXP-NBD104). The barcoded samples
were then combined, purified with AMPure XP Beads, and loaded onto Oxford Nanopore
MinION SpotON Flow Cells R9.4.1 (Oxford Nanopore Technologies), following the manufac-
turer’s instructions. The sequencing was carried out using the fast accuracy base-calling in
the MinKNOW software. ARTIC Network’s RAMPART (https://artic.network/ncov-2019,
accessed on 2 December 2021) was used to monitor the sequencing run in real-time to
estimate the depth of coverage (20×) across the entire genome for each barcode (https:
//artic.network/rampart, accessed on 2 December 2021). The analysis and consensus gen-
eration were performed according to the pipeline proposed by ARTIC Network using the
Medaka protocol (https://artic.network/ncov-2019/ncov2019-bioinformatics-sop.html, ac-
cessed on 2 December 2021). All consensus genomes were deposited in the Global Initiative
on Sharing Avian Influenza Data-EpiCoV (GISAID-EpiCoV) database (see Supplementary
Material S1, for details).

2.5. Phylogenetic Analysis

New SARS-CoV-2 whole-genome sequences obtained here were submitted to lin-
eages assigner Pangolin web application, available online: https://pangolin.cog-uk.io/,
accessed on 1 September 2022. Initially, phylogenetic reconstructions were performed
using datasets containing sequences from the study (n = 112) and 1004 representative
Nextstrain’s subsampling SARS-CoV-2 genomic sequences from South America countries
and their territories (n = 16). Such sequences were retrieved from the beginning of the
pandemic until August 2022 (https://nextstrain.org/, accessed on 1 September 2022),
representing multiple SARS-CoV-2 circulating strains. In addition, high-coverage com-
plete SARS-CoV-2 Gamma genome sequences (n = 14846) from all Brazilian States and the
Federal District (n = 27), deposited up to 31 July 2022 in the GISAID-EpiCoV, were also
downloaded. Data sets were filtered out by the Sequence Cleaner, a biopython-based script
(https://biopython.org/wiki/Sequence_Cleaner, accessed on 1 September 2022), which
comprised a set of unambiguous sequences ≥ 29,000 bp with 0% of Ns and degenerated
nucleotides. Sequences that did not fit these criteria were automatically excluded. The
outcomes were aligned with the SARS-CoV-2 reference coding-sequence (NC_045512.2) by
MAFFT v.7 [24] and edited by the UGENE v.44.0 [25].

https://artic.network/ncov-2019
https://artic.network/rampart
https://artic.network/rampart
https://artic.network/ncov-2019/ncov2019-bioinformatics-sop.html
https://pangolin.cog-uk.io/
https://nextstrain.org/
https://biopython.org/wiki/Sequence_Cleaner
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Aiming to investigate the relative amount of unresolved to fully resolved trees, the phy-
logenetic signal approach was explored through likelihood mapping analysis of 10,000 ran-
dom quartets using TREE-PUZZLE v.5.2 [26]. Then, the maximum likelihood (ML) method
was implemented by using two different command line algorithms: FastTree v.2.1.7 [27]
and IQ-TREE v.2 [26]. FastTree was executed by using the GTR substitution model + CAT
with 20 gamma (G) distribution parameters and a mix of Nearest-Neighbor Interchanges
(NNI) and Sub-Tree-Prune-Regraft (SPR). ML from IQ-TREE was inferred using the sub-
stitution model GTR + F + I + G4, executed and optimized by the Maximum Parsimony
and Neighbor-Joining trees, and hill-climbing algorithms, respectively [28]. The reliabil-
ity of the nodes was analyzed by the Shimodaira–Hasegawa (SH-like) test, which uses
bootstrap resampling and corrects critical values for multiple comparisons [29], and SH-
aLTR/aBayes/ultrafast bootstrap support values, both with 1000 replicates. Phylogenetic
trees were generated by Interactive Tree of Life [30].

2.6. Statistical Analyses

To compare the means of two groups we used t-student test. To compare more
than two groups we used analysis of variance (ANOVA) followed by Bonferroni multiple
comparison test. In addition, to verify relations between variables we carried out linear
regression analyses. In all cases, statistical significance was set as p ≤ 0.05. In some cases,
we carried out descriptive statistics.

3. Results
3.1. Fluctuations of Numbers of COVID-19 Cases and Deaths from May 2020 to July 2021

The number of COVID-19 cases per day fluctuated from May 2020 to July 2021, with
statistically significant peaks in August 2020, and in April and May 2021 (Figure 1A and
Supplementary Table S1). The numbers of deaths per day due to COVID-19 also fluctuated
in the study period (Figure 1B and Supplementary Table S2). First, relevant increases in
the numbers of deaths per day were observed on July and October 2020. Then, significant
increases were observed in April–June 2021. Collectively, these results indicate that the
study population was relevantly affected by COVID-19, with different waves of cases and
deaths over the time of study.

Figure 1. Fluctuations of COVID-19 cases and deaths due to COVID-19 during the period of study.
(A) numbers of cases of COVID-19 per day during the period of study. (B) numbers of deaths
due to COVID-19 per day during the period of study. Dots represent means. Horizontal bars
represent medians.
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3.2. Impact of COVID-19 According to Gender or Age

The numbers and rates of COVID-19 cases and deaths due to COVID-19 per day were
also computed. As shown in Figure 2A, there was not a significant difference in the rates of
cases according to gender. However, as shown in Figure 2B, the numbers of men dying of
COVID-19 per day were significantly higher than those for women (p = 0.0042) during the
study period. In addition, the proportions of cases and deaths in age groups 0–11, 12–18,
19–29, 30–44, 45–59, and 60 and above years old were observed. As shown in Figure 2C,
the 30–44 years old age group was the most affected by COVID-19 cases during the study
period (see Supplementary Table S3 for absolute numbers and descriptive statistics). This
group was followed by those 45–59 and 60 and above years old in the proportions of
COVID-19 cases.

In contrast, the group 60 and above years old, was the most affected by deaths due
to COVID-19 in most of the period of study (Figure 2D and Supplementary Table S4 for
absolute numbers and descriptive statistics). Such a leadership in the numbers of deaths
was not observed only in the first month of the study and in May–July 2021, when the sum
of numbers of deaths in the groups of 30–44 and 45–59 years old was higher than in the
oldest group. It is essential to highlight that even in the three last months of the study,
the oldest group was the most affected by deaths when compared pair-to-pair with the
other age groups. Collectively, these results indicate that: (i) men were the most affected
by deaths due to COVID-19; (ii) the age group of 30–44 years old was the most affected by
COVID-19 cases; and (iii) the age group of 60 and above years old was the most affected by
deaths due to COVID-19.

Figure 2. Impact of COVID-19 according to gender or age. Comparisons of numbers of cases per
day (A) and numbers of deaths per day (B) considering the whole period of study were carried
out based on Student’s t-test. Significance was set as p ≤ 0.05. In addition, proportions of cases (C)
and deaths (D) according to age groups were computed. Dots represent means. Horizontal bars
represent medians.

3.3. Viral Loads According to Cycle Threshold Values

The SARS-CoV-2 viral loads were inferred according to cycle thresholds (CT) found
after RT-qPCR of the patient’s nasopharynx swabs. As shown in Figure 3A and Supplemen-
tary Table S5, we observed the fluctuation of CT values of SARS-CoV-2-positive samples
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during the study period. It was possible to observe increases and decreases in the mean CT
values along the months. Interestingly, a tendency to decrease was observed in the last three
months. The CT values were not significantly different according to gender, as shown in
Figure 3B (p > 0.05). In addition, when CT values were compared along months according
to age groups (Figure 3C), it was possible to observe that the age group of 60 and above
years old presented lower CT values in June and July 2020 (p < 0.05) (see Supplementary
Material S2 for statistical details). However, such a decrease was not seen in the other
months of the study period. Moreover, patients with ages ranging from 0 to 18 years old
presented significantly diminished or increased CT values in one or two months. However,
we did not find a general tendency regarding viral loads according to age group. In contrast,
the CT values were shown to be significantly lower in the beginning of the symptom period
(p < 0.05), as shown in Figure 3D (see Supplementary Material S3, for statistical details).
Collectively, these results indicate that the study population presented different viral loads
in nasopharynx over time, as shown by CT values. However, the CT values did not differ
relevantly according to age groups. In contrast, they were shown to be significantly reduced
in samples collected at the early stage of COVID-19 symptoms, which indicates higher viral
loads in this period.

Figure 3. Viral loads according to cycle threshold (CT) values. (A) fluctuation of viral loads found in
samples collected from the study population along the period of study. (B) comparison of viral loads
according to gender. (C) viral loads according to age group for each month of the study. (D) viral
loads according to time (days) with symptoms, from November 2020 to July 2021. Dots represent
means. Horizontal bars represent medians.

3.4. Substitution of SARS-CoV-2 Lineages and Its Impact on Local Health

As shown in Figure 4A, from May to November 2020, only early pandemic lineages
(EPLs) of SARS-CoV-2 such as B1.1, B1.1.28, B1.1.33, and N9 were found. In December 2020,
the P.2 (Zeta) variant of interest (VOI) lineage was found together with EPLs. In January
and February 2021, the P.2 VOI was still detected in predominance over EPLs. However,
the P.1 (Gamma) variant of concern (VOC) lineage was detected in low proportions in
these months. In March 2021, the Gamma VOC dominated the scenario over Zeta and
prevented the B.1.1.7 (Alpha) VOC lineage fixation. These results show that the Gamma
VOC was introduced in the study area/population and dominated the scene. Moreover,
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from April to July 2021 the Gamma VOC completely dominated the scenario and was the
only SARS-CoV-2 lineage detected in nasopharynx samples of the study population.

As shown in Figure 4B, the increase in the numbers of cases caused an increase
in the numbers of deaths due to COVID-19. It is important to note that the peaks of
COVID-19 cases coincided with those of deaths in this study. Thus, we carried out a
linear regression analysis to see if the increase in the numbers of cases determined the
numbers of deaths. To see if the increase in the numbers of cases was determined by the
increase in the proportions of the Gamma VOC detection, we also conducted a regression
analysis (Figure 4C), which revealed no association between these variables. However,
when we analyzed the association of proportions of Gamma VOC detection and numbers of
deaths, we saw that the increase in the proportions of Gamma VOC detection determined
the increase in numbers of deaths (Figure 4D). These results collectively indicate that
the substitution of early pandemic SARS-CoV-2 lineages by the Gamma VOC caused a
significant impact on the health of the population studied, with a significant increase in the
numbers of deaths due to COVID-19.

Figure 4. Substitution of SARS-CoV-2 lineages and its impact on local health. (A) Proportions of
SARS-CoV-2 lineages found during the period of study. Viruses were classified based on genome
sequencing and a specific RT-qPCR strategy capable of detecting specific mutations, as described in
Section 2. EPLs, early pandemic lineages of SARS-CoV-2. (B) association between proportions of
numbers of cases per month and numbers of deaths per month, as confirmed by linear regression
analysis. (C) lack of association between proportions of viruses of the Gamma lineage found per
month and proportions of cases per month (confirmed by linear regression analysis). (D) association
between proportions of viruses of the Gamma lineage found per month and numbers of death per
month (confirmed by linear regression analysis). Statistical significance was set as p ≤ 0.05.

3.5. Viral Phylogeny

To phylogenetically describe circulating viruses in Western Bahia during the study
period we carried out maximum-likelihood analyses. As shown in Figure 5A, SARS-CoV-2
genomes of viruses that circulated in our study area during the study period were grouped
separately from those found in other countries of South America. On the other hand, they
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grouped with viruses found in Brazil (Figure 5B). In addition, EPLs of SARS-CoV-2 were
shown to have preceded VOC in the study as also shown in Figure 5B. This result confirms
that EPLs of SARS-CoV-2 were replaced by VOCs, mainly the Gamma lineage, as shown in
Figure 4A. Collectively, these results show that viruses found in the study area during the
study period are phylogenetically related to Brazilian isolates and that EPLs of SARS-CoV-2
were replaced by the Gamma lineage.

Figure 5. Maximum-likelihood midpoint rooted phylogenetic tree based on 1117 (A) and 603 (B)
representative genome sequences of SARS-CoV-2. Nextstrain’s subsampled SARS-CoV-2 genomic
data from South America (including Brazil) since pandemic started up to August 2022 containing
unfiltered (A) and filtered (B) sequences from the study. The SARS-CoV-2 genomes from this study
are identified by the red circles. Tips are colored according to sampling locations. Yellow stars assume
Shimodaira–Hasegawa (SH-like) test (A) and SH-aLTR/aBayes/ultrafast bootstrap support (B) based
on 1000 replicates. Only values equal or greater than 75% are shown. Likelihood mapping of the final
sequences alignment showing low phylogenetic noise, as required for reliable phylogeny inference
(B). Abbreviations: VOC and VOI, Variant(s) of Concern and Variant(s) of Interest, respectively. EPLs,
Early Pandemic Lineages. In letter B, “Brazil” represents whole-genome of SARS-CoV-2 Gamma
variant from all Brazilian States and the Federal District. Branch lengths are drawn in scale of
nucleotide substitutions per site according to the bar scale. Colors and symbols used in the panels are
defined according to the legend to the left and right of the figure.

4. Discussion

In this study, we aimed to have a picture of the epidemiological dynamics of COVID-19
in a population of almost 17,000 patients in a period of 15 months. We studied: (i) the fluctu-
ations of COVID-19 cases and deaths due to COVID-19 during the period of study; (ii) the
epidemiological behavior of COVID-19 according to patient gender, age, viral load and
viral genetic variants; (iii) associations between these variables; and (iv) viral phylogeny.

We observed that the numbers of COVID-19 cases and deaths due to COVID-19
fluctuated over time. This was an expected result, once that fluctuations in the numbers
of cases and deaths were also observed worldwide, as indicated by data from the World
Health Organization [31]. So far, during the pandemic, several factors have had an impact
on whether the numbers of COVID-19 cases and deaths are increasing or declining in
specific locations. These factors include human behavior, infection prevention policies,
viral genetic mutations, the number of people who are vulnerable because they have not
developed some immunity, whether from natural infection or through vaccination, and the
effectiveness of vaccines over time.
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In our case, the national, state, and city government authorities adopted different
policies over time. The first case of COVID-19 in Bahia was reported by the state health
authority on 6 March 2020, nine days after the first case in Brazil [32]. This first case involved
a history of travel to Europe. In addition, the first case in Western Bahia was reported
on 21 March 2020, involving a history of travel to São Paulo city [32]. It is important to
highlight that the Brazilian carnival took place in February 2020, just before the first cases
in our study area. The carnival is a very popular festival, which promotes intense traveling
movements and direct contact with people [33]. In addition, international travelers are very
frequent during the festival. Surprisingly, none or negligible infection prevention policies
regarding COVID-19 were adopted by all levels of government authorities at that time,
even with the WHO declaring that COVID-19 constitutes a Public Health Emergency of
International Concern (PHEIC) on 30 January 2020 [31]. Thus, the carnival seems to have
contributed to bringing SARS-CoV-2 to Brazil, to the Bahia state, and to Western Bahia.

Following the introduction of COVID-19 in our study area, we observed a sharpened
increase in the numbers of cases and deaths from June to August 2020. Although govern-
ment and health authorities had launched prevention policies [34], the June celebrations,
which are very popular in Northeast Brazilian states such as Bahia, seem to have impacted
human behavior. Despite decrees imposing social and physical distancing, the lack of
experience with the pandemic at that time seems to have impelled people to commemorate
at private celebrations. After this event, the numbers of cases per day remained elevated in
comparison with the first month of study, a probable result of the spread and multiplication
of SARS-CoV-2 in the population. Such a situation was dramatically changed with the
replacement of the early pandemic lineages (EPLs) of SARS-CoV-2 found in 2020 with the
Gamma variant of concern (VOC) in 2021.

Although the vaccination has been initiated on January 2021 at the study area, the
specific groups of elderly and health professionals were vaccinated first. This was imposed
by the low availability of vaccines. The introduction of the Gamma lineage in the study
area in early 2021 resulted in a total domination of the scenario by the new virus lineage.
In addition to the replacement of the early pandemic lineages (EPLs) of SARS-CoV-2 in
the study area, an increased mortality took place, most probably related to the increased
pathogenicity of the Gamma lineage in comparison to the EPLs. In this context, it is
important to highlight that the proportions of adults with ages ranging from 30 to 59 dying
due to COVID-19 were increased at this period. This group was vaccinated with a delay in
comparison to the elderly.

In fact, all lineages of SARS-CoV-2 detected during the study produced more deaths
in men than in women. It is well known that women have a better immune response than
men. Generally, adult females mount stronger innate and adaptive immune responses
than males. This results in the faster clearance of pathogens and greater vaccine efficacy in
females than in males [35]. In addition, men tend to expose themselves more to risk [36].
These two factors seem to explain the results. On the other hand, the higher incidence of
COVID-19 in people with age ranging from 30 to 44 does not have an easy explanation. We
suppose that people with this age range are more economically and professionally active.
They may have moved and contacted more people, exposing themselves more to infection.

Another interesting observation in our study was related to higher viral loads found
in samples collected from patients in the early symptomatic period. This result by itself is
in accordance with previous studies [37,38]. However, differences in viral loads were not
observed according to the replacement of viral lineages. Interestingly, diminished viral
loads are related to a worst outcome [38], but the more pathogenic Gamma lineage, which
dominated the scenario in the five last months of study, was not detected with higher CT
values (diminished viral load). It is important to highlight that a possible explanation
for these results can be related not only to viral clearance, but also to the descending of
infection from the nasopharynx to the lower respiratory tract, especially in severe cases.

Collectively, results presented in this study indicate that the numbers of COVID-19
cases and deaths due to COVID-19 fluctuated over time and that men were the most affected
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by deaths, as well as those of 60 or more years old. We also observed that individuals
between 30 and 44 years old were the most affected by COVID-19 cases. In addition, the
viral loads in the patient’s nasopharynx were higher in the early symptomatic period.
Relevantly, we found that early pandemic SARS-CoV-2 lineages were replaced by the
variant of concern (VOC) P.1 (Gamma) in the second half of the study period, which led to a
significant increase in the number of deaths. Although the low number of samples subjected
to genomic sequencing may generate limitations regarding the time of detection of viral
lineages replacements, the main conclusions are supported by robust statistical analyses.
In addition, genomic surveillance was complemented by genotyping using RT-qPCR. Thus,
the results presented in this study are helpful for future formulations of efficient public
policies of COVID-19 containment.
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shown in rows and columns. First, the number of the year is given and is followed by the number of
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