
ORIGINAL RESEARCH ARTICLE
published: 12 December 2014

doi: 10.3389/fnhum.2014.01009

Detection of mental imagery and attempted movements in
patients with disorders of consciousness using EEG
Petar Horki1, Günther Bauernfeind1, Daniela S. Klobassa2, Christoph Pokorny3, Gerald Pichler4,

Walter Schippinger4 and Gernot R. Müller-Putz1*

1 Laboratory for Brain-Computer Interfaces, Institute for Knowledge Discovery, Graz University of Technology, Graz, Austria
2 Department of General Pediatrics, Medical University of Graz, Graz, Austria
3 Institute for Theoretical Computer Science, Graz University of Technology, Graz, Austria
4 Albert Schweitzer Clinic, Graz, Austria

Edited by:

Marta Olivetti, Sapienza University
of Rome, Italy

Reviewed by:

Sara L. Gonzalez Andino, Hôpitaux
Universitaires de Genève,
Switzerland
Juan Esteban Kamienkowski,
Universidad de Buenos Aires,
Argentina

*Correspondence:

Gernot R. Müller-Putz, Laboratory of
Brain-Computer Interfaces, Institute
for Knowledge Discovery, Graz
University of Technology,
Inffeldgasse 13/IV, Graz 8010, Austria
e-mail: gernot.mueller@tugraz.at

Further development of an EEG based communication device for patients with
disorders of consciousness (DoC) could benefit from addressing the following gaps
in knowledge—first, an evaluation of different types of motor imagery; second, an
evaluation of passive feet movement as a mean of an initial classifier setup; and third,
rapid delivery of biased feedback. To that end we investigated whether complex and/or
familiar mental imagery, passive, and attempted feet movement can be reliably detected
in patients with DoC using EEG recordings, aiming to provide them with a means of
communication. Six patients in a minimally conscious state (MCS) took part in this study.
The patients were verbally instructed to perform different mental imagery tasks (sport,
navigation), as well as attempted feet movements, to induce distinctive event-related
(de)synchronization (ERD/S) patterns in the EEG. Offline classification accuracies above
chance level were reached in all three tasks (i.e., attempted feet, sport, and navigation),
with motor tasks yielding significant (p < 0.05) results more often than navigation
(sport: 10 out of 18 sessions; attempted feet: 7 out of 14 sessions; navigation: 4
out of 12 sessions). The passive feet movements, evaluated in one patient, yielded
mixed results: whereas time-frequency analysis revealed task-related EEG changes over
neurophysiological plausible cortical areas, the classification results were not significant
enough (p < 0.05) to setup an initial classifier for the detection of attempted movements.
Concluding, the results presented in this study are consistent with the current state of
the art in similar studies, to which we contributed by comparing different types of mental
tasks, notably complex motor imagery and attempted feet movements, within patients.
Furthermore, we explored new venues, such as an evaluation of passive feet movement
as a mean of an initial classifier setup, and rapid delivery of biased feedback.
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INTRODUCTION
Functional magnetic resonance imaging (fMRI) studies by Owen
et al. (2006) and others Boly et al. (2007), Monti et al. (2010),
demonstrating detection of awareness in the unresponsive wake-
fulness syndrome (UWS, Laureys et al., 2010), paved the way for
the development of brain–computer interfaces (BCI) as a means
of communication in this patient group. In these studies, patients
were asked to imagine playing tennis, or to navigate through their
own apartment. Such imaginations led to very specific activations
which could then be used to establish a communication channel
with people in the minimally conscious state (MCS, Giacino et al.,
2002) by means of simple yes/no questions (Monti et al., 2010).

Recent efforts focused on translating these fMRI paradigms
to electroencephalography (EEG) technique, as it is widely avail-
able, cost effective, and applicable at bedside, even in persons with
metal implants. For example, Goldfine et al. (2011) instructed
the participants to imagine complex motor and familiar spatial

navigation tasks, and analyzed EEG power spectra over a wide
range of channels and frequencies. By analysing the EEG power
spectra, evidence for performance of mental imagery tasks was
found in healthy controls and patients with severe brain injury.
In another study, Cruse et al. (2011) asked the participants to
imagine movements of their right-hand and toes to command,
and analyzed the EEG responses to specific commands. Three
of 16 patients (19%) generated repeatedly and reliably suitable
EEG responses to two distinct commands, even though they were
behaviorally unresponsive. In a follow-up study, addressing some
of the methodological challenges, EEG evidence for attempted
movements to command was found in an UWS patient (Cruse
et al., 2012).

Notable in these efforts are the different approaches to motor
tasks—attempted hand/feet movements in Cruse et al. (2012),
and complex motor imagery in Goldfine et al. (2011). It is unclear
which approach is more suitable, as both have their merits. On
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one hand, attempted movements lead to well investigated fre-
quency band-specific oscillatory changes over appropriate areas
of the sensorimotor cortex (see Pfurtscheller and Da Silva, 1999).
On the other hand, imagery of complex movements has been
shown to elicit stronger activation than imagery of simple ones
with fMRI (Kuhtz-Buschbeck et al., 2003; Boly et al., 2007),
encouraging its study with EEG. Furthermore, a recent EEG study
performed by Gibson et al. (2014) found that complex and famil-
iar mental tasks can enhance single-trial detectability of imagined
movements.

One common challenge facing these EEG efforts is the ini-
tial classifier setup for detection of the brain responses. While
the delay and variability in brain responses can be addressed
with different methods, there is no way of telling whether and
when the MCS individuals performed the tasks. However, one
could address this challenge by exploiting similarities of the brain
responses during passive and attempted movements. In a recent
work our group exploited similarities of the sensorimotor EEG
changes of the motor cortex during active, passive and imag-
ined movements to setup an initial classifier for the detection of
motor imagery in healthy participants (Müller-Putz et al., 2010,
2013a). However, it is an open research question whether this
approach is feasible for detection of attempted movements in
MCS individuals.

While the current efforts could in theory establish a two-way
communication with some of the patients, a real-time feed-
back on classification of mental imagery with EEG is yet to be
evaluated in MCS patients. Such an evaluation is important, as
feedback might benefit patient’s performance. For example, it
is unclear whether rapid delivery of biased (i.e., positive) feed-
back would benefit patients performing close to chance level, as it
has benefited healthy participants (Barbero and Grosse-Wentrup,
2010). Addressing the above mentioned gaps in knowledge—
first, an evaluation of both simple and complex motor imagery
within patients; second, an evaluation of passive feet movement
as a mean of an initial classifier setup; and third, rapid delivery
of biased feedback—could provide valuable insights for further
development of an EEG based communication device. To that
end, the goal of the current work was to investigate whether com-
plex mental imagery, passive, and attempted feet movement can
be reliably detected in patients with disorders of consciousness
(DoC).

MATERIALS AND METHODS
PATIENTS
Six patients diagnosed with MCS took part in this study (one
women, five men; age range 21–66 years, mean and standard devi-
ation 41.7 ± 17.8 years). The patients, not in intensive care and
in an overall stable medical condition, were selected by the med-
ical staff of the Albert Schweitzer Clinic (Graz, Austria) where
all measurements were conducted. Exclusion criteria were gra-
vidity, infections, or participation in other studies. The patients
participated in two parts (command following part and online
feedback part) with a different number of sessions. The idea was
that each patient, if possible, would participate in two session on
different days to compensate for possible fluctuations in respon-
siveness. For patients who participated in more than one session,

the follow-up sessions were carried out between 1 and 2 weeks
later when possible.

The patients were behaviorally assessed using the Coma
Recovery Scale-Revised (CRS-r) within 24 h before or after each
EEG measurement in order to keep track of their fluctuations
in responsiveness. The CRS-r is composed of 23 items divided
into 6 subscales dealing with auditory, visual, motor, oromotor,
communication, and arousal functions (Giacino et al., 2004). The
standardized scoring has been shown to produce “... reasonably
stable scores over repeated assessments...” (Giacino et al., 2009)
and is capable of discriminating patients in MCS from those with
UWS.

Table 1 provides background and disease related data, as well
as the highest estimated CRS-r subscores, of all patients.

Informed consent was obtained from the patient’s legal repre-
sentatives. The study was approved by the local ethics committee
(Medical University of Graz) and is in accordance with the ethical
standards of the Declaration of Helsinki.

EXPERIMENTAL PARADIGMS
The study consisted of two parts. The first part (performed by
4 patients; age range 21–66, mean (μ) and standard deviation
(σ) 39.8 ± 20.3 years, all men) comprised a command follow-
ing paradigm. The second part was an online paradigm which
was performed by 4 patients (one women and 3 men; age range
27–66 years, μ and σ 46.0 ± 18.9 years), of which two already
participated in the first part.

Command following paradigm
Within an experimental session, up to four different tasks (i.e.,
sport, navigation, attempted/passive feet movement) were per-
formed in a block design. Each task was performed during three
consecutive runs, with each run having 15 cue-based trials (audi-
tory cue) of 12 s length, yielding 45 trials/task (see Figure 1). At
the beginning of a trial a beep tone was given. After 2 s, an audi-
tory cue, generated by a text-to-speech synthesizer, was delivered
via in-ear headphones. The cue was a verbal instruction to per-
form the current task (i.e., either “sport,” “navigation,” or “feet”)
lasting for 1 s. For the “passive feet” task, no cue was given to the
patients, as it was only audible to the caregiver performing the
passive feet movement. Between the trials a random pause (also
auditorily indicated) of 4–6 s length was given. Detailed verbal
instructions were given to the participant by the experimenter
before the measurement started. The purpose of these instruc-
tions, repeated before each run, was to inform the patient about
the tasks he/she has to perform. The order of the tasks was pseudo
randomized across the measurement sessions. Each measurement
session was conducted on a separate day.

In more detail, for the “sport” task the participants were
instructed to imagine performing one sport of their choice in the
first person perspective. For measurements with non-responsive
patients there is no way of knowing for sure which sport they
chose. However, they were instructed to keep their choice while
performing this task. For the “navigation” task the participants
were instructed to imagine navigating through their house, look-
ing around each room, without focusing on the movement. For
the “feet” task the participants were instructed to repeatedly
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Table 1 | Overview about participants for both the command following and the online feedback paradigm.

Participant Age Sex Onset

P1 45 M April 2010

Etiology Traumatic brain injury with craniotomy and evacuation of a traumatic right sighted subdural hematoma, plus a left-sided
temporo-parietal subarachnoid hemorrhage, bilateral temporopolar and right-sided temporo-occipital contusion hemorrhages

Auditory function Reproducible movement to command

Visual function Object recognition

Motor function Automatic motor response

Verbal function Vocalization/Oral movement

Communication Non-functional: intentional

Arousal Eye opening w/o stimulation

Additional diagnoses Epilepsy, spastic tetraparesis (left more than right), anarthria

P2 66 M March 2011

Etiology Traumatic brain injury with left sighted subdural hematoma and left sighted epidural hematoma

Auditory function Consistent movement to command

Visual function Object localization: reaching

Motor function Object manipulation

Verbal function Vocalization/Oral movement

Communication Non-functional: intentional

Arousal Attention

Additional diagnoses Epilepsy, tetraparesis (right more than left), dysphagia, anarthria

P3 21 M December 2008

Etiology Hypoxic brain injury after resuscitation after mixed drug intoxication

Auditory function Reproducible movement to command

Visual function Object localization: reaching

Motor function Localization to noxious stimulation

Verbal function Oral reflexive movement

Communication Non-functional: intentional

Arousal Eye opening w/o stimulation

Additional diagnoses Anarthria, severe spastic tetraparesis

P4 27 M December 2007

Etiology Traumatic brain injury with left sighted subdural hematoma and right sighted epidural hematoma, hydrocephalus with
ventriculo-peritoneal shunt, st. p. craniectomy left with reimplantation of an artificial bone

Auditory function Localization to sound

Visual function Visual pursuit

Motor function Flexion withdrawal

Verbal function Oral reflexive movement

Communication None

Arousal Attention

Additional diagnoses Epilepsy, severe spastic tetraparesis, anarthria

P5 58 F March 2002

Etiology Hypoxic brain injury

Auditory function Localization to sound

Visual function Visual pursuit

Motor function Localization to noxious stimulation

Verbal function Oral reflexive movement

(Continued)
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Table 1 | Continued

Participant Age Sex Onset

P5 58 F March 2002

Communication None
Arousal Eye opening w/o stimulation
Additional diagnoses Spastic tetraparesis, osteoporosis

P6 33 M January 2002

Etiology Traumatic brain injury after car accident
Auditory function Localization to sound
Visual function Visual pursuit
Motor function Flexion withdrawal
Verbal function Oral reflexive movement
Communication Non-functional: intentional
Arousal Eye opening w/o stimulation
Additional diagnoses

FIGURE 1 | Experimental paradigm for measurements in patients.

Timeline of a single trial is shown here.

attempt feet dorsiflexion (i.e., several consecutive attempts dur-
ing a single trial). In the “passive feet” task, a caregiver performed
a brisk (i.e., ∼1 s long) dorsiflexion of both feet. The cue was
the same as for the “feet” task, but it was only audible to the
caregiver.

Online feedback paradigm
The online feedback paradigm built upon the command follow-
ing paradigm by introducing feedback. In general the transition
from offline to online paradigm within a measurement ses-
sion was possible but contingent upon results (i.e., accuracy,
confusion matrix), statistical significance (i.e., number of trials,
leave-one-out or blockwise crossvalidation), plausibility of results
(i.e., neurophysiological plausible EEG channels), and patient’s
condition (i.e., fatigue, indicated by an obviously reduced vigi-
lance). To that end, it started with recording of a few minutes
resting state EEG, followed by a run of command following
paradigm without feedback, and afterwards an initial classi-
fier setup. The next step was contingent upon the estimated
accuracy and patient’s condition. In case of promising results,
the next run was for the online feedback paradigm, again fol-
lowed by a classifier setup in order to obtain a more reliable
estimate of the accuracy. This step (i.e., a run of online feed-
back paradigm, followed by a classifier setup) was repeated
depending on the estimated accuracy and patient’s condition.
Furthermore, the following changes were made compared to the
initial command following paradigm: (i) only motor tasks (i.e.,
sport, attempted feet) were employed, based on offline analy-
sis of shared common patient data recorded in the command

FIGURE 2 | EEG channel locations used for measurements in patients.

following paradigm (Müller-Putz et al., 2013b); (ii) a vary-
ing number of trials, separated in blocks of 15 trials by short
breaks, were recorded for each task; (iii) in case the initial com-
mand following led to online feedback, the second task was
discarded.

RECORDING
For all measurements the EEG was recorded from 32 active elec-
trodes (g.tec, Guger Technologies, Austria) located over frontal,
central and parietal areas (for details see Figure 2). The signals
were acquired with a g.UBSamp amplifier (Guger Technologies,
Austria) with 512 Hz sampling rate, 0.5 Hz high-pass, and 100 Hz
low-pass filter, and an additional 50 Hz notch filter.
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DATA ANALYSIS
Preprocessing
For the offline analysis, artifacts were removed from EEG with
an elaborate projection method which automatically detects neu-
ronal and artifactual source components derived from indepen-
dent component analysis (ICA). We used the binary Infomax
independent component analysis by Enghoff (1999), based on
the Matlab version of Scott Makeig and collaborators, to sepa-
rate EEG and EOG signals into independent components (Makeig
et al., 1996). We identified independent components (ICs) repre-
senting eye movements, eye blinks, and muscle activity by visual
inspection using methods described in McMenamin et al. (2010),
and removed them. We multiplied the remaining components by
the mixing matrix produced by the ICA algorithm to reconstruct
cleaned EEG.

For the online feedback delivery, due to time and resources
constraints (i.e., short breaks between consecutive runs and a
single laptop certified for clinical measurements, respectively)
artifacts were rejected. To that end, muscle and movement arti-
facts, as well as other transient non-stationarities in the ongoing
EEG signals, were detected by inverse filtering of orthogonal
Laplacian derivation (Scherer, 2008). Autoregressive (AR) param-
eters of the inverse filter were estimated from a 1 to 2 min
segment of resting state EEG, recorded at the beginning of
each session. The detection threshold was defined as five times
Root-Mean-Square from the resting-state EEG. Trials in which
the detection threshold was exceeded were discarded from the
analysis.

Time-frequency analysis (ERD/ERS calculation)
Event-related desynchronization (ERD) and event-related syn-
chronization (ERS) are defined as the percentage of power
decrease (ERD) or power increase (ERS) in a defined frequency
band in relation to a reference interval (Pfurtscheller and Da
Silva, 1999). To analyze the percentage of power decrease (ERD)
or power increase (ERS) relative to a reference interval (sec-
ond 1–2 in the paradigm), time-frequency map for frequency
bands between 6 and 40 Hz (35 overlapping bands using a
band width of 2 Hz with a step size of 1 Hz) was calculated
(Graimann, 2002). Logarithmic band power features, calcu-
lated by band-pass filtering, squaring and subsequently aver-
aging over the trials, were used to assess changes in the fre-
quency domain. To determine the statistical significance of the
ERD/ERS values a t-percentile bootstrap algorithm with a sig-
nificance level of α = 0.05 was applied (Davison and Hinkley,
1997). In the ERD/ERS maps statistically significant ERD val-
ues were plotted as red dots and significant ERS values as blue
dots.

Feature extraction and classification
Feature extraction. Logarithmic band power features were cal-
culated for multiple frequency bands (θ: 4–7 Hz; α: 7–13 Hz; βL:
13–19 Hz; βM: 19–25 Hz; βH: 25–30 Hz) by band-pass filtering,
squaring and averaging over 1 s in a sample by sample way.

For further analysis, a trial was divided into consecutive, non-
overlapping time periods of 1 s duration. One time period, from
t = 1 s to t = 2 s (i.e., 1 s before the cue onset), was designated as

the reference. Finally, a single value was sampled at the middle of
each time period, and was used in the subsequent classification.

Classification. We sought to identify one Laplacian chan-
nel/frequency band yielding the best results for the current task.
Thus, we estimated the accuracy over different time periods rel-
ative to the reference, for each of the frequency bands (i.e., θ, α,
βL, βM, βH), and at each of the Laplacian channels. To that end we
used a linear discriminant analysis (LDA) classifier.

To avoid overfitting cross-validation was applied to estimate
the accuracy. For the offline analysis, a nested block-wise cross-
validation (10 × 10 inner fold; leave-one-out-block outer fold)
was applied. For the online paradigm, both leave-one-trial-out
(initial runs), as well as nested blockwise (10 × 10 inner fold;
leave-one-out-block outer fold; micro-averaging of confusion
matrices) cross-validation were applied. Also, the classifier was
recalculated following each run, based on the EEG recording from
up to three previous runs.

To ensure comparable results, we performed a separate
cross-validation for each channel using comparable data (i.e.,
randomized trial indices in inner/outer folds were held con-
stant). Furthermore, in each cross-validation, classification was
performed separately for each frequency band and time segment.

Online feedback
Feedback was only given for correct classified trials. The feed-
back was either “Sport/feet correctly recognized” in the case of
correct classifier prediction for more than 50% of the dura-
tion of the imagery period in the trial (Daly et al., 2013a), or
“Pause” otherwise (also for the trials in which EEG artifacts were
detected).

RESULTS
Tables 2, 3 show post-hoc analysis results of the command follow-
ing paradigm and online paradigm, respectively. The Laplacian
channel derivation and the frequency band yielding the highest
accuracy, as estimated with the blockwise nested crossvalidation,
is reported. The reported results were obtained with respect to
a baseline reference period, and no differentiation between the
tasks was made.

In both the command following and the online feedback
paradigm, offline classification accuracies above chance were
reached in all three tasks (i.e., attempted feet, sport, and navi-
gation), with motor tasks yielding significant results more often
than navigation (sport: 10 out of 18 sessions; attempted feet: 7 out
of 14 sessions; navigation: 4 out of 12 sessions). In the online feed-
back paradigm, post-hoc classification accuracies above chance
(p = 5%) were reached by three out of four patients in either the
attempted feet (F) or sport (S) task. Online accuracies, as used
for the feedback delivery, were below the level of significance (i.e.,
random) and are not reported.

The passive feet movements, evaluated once in the third
session of patients P2, did not yield significant accura-
cies. However, time-frequency analysis revealed task-related
EEG changes over neurophysiological plausible cortical areas
(Figure 3).
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Table 2 | Summary of results for the offline detection of different tasks for the command following paradigm.

Participant/Session no. CRS-r score Sport Navigation Attempted feet

P1/1 18 71% (CP1, ϑ, 0.01) n.s. 73% (C2, α, 0.01)

2 18 n.s. n.s. n.s.

3 17 n.p. n.s. n.p.

4 19 65% (CPz, ϑ, 0.05) n.s. n.s.

P2/1 14 76% (Fz, ϑ, 0.01) n.s. 69% (FC1, α, 0.01)

2 15 n.s. 72% (P3, ϑ, 0.01) n.s.

3 14 65% (C2, ϑ, 0.05) n.p. 80% (FC1, ϑ, 0.01)

P3/1 14 n.s. n.s. n.s.

2 13 66% (CP1, ϑ, 0.05) n.s. 65% (CP1, βM, 0.05)

3 13 n.s. 72% (POz, βM, 0.01) 68% (Cz, ϑ, 0.05)

P4/1 9 66% (Fz, α, 0.05) n.s. n.p.

2 11 n.s. 72% (C4, βM, 0.01) n.s.

3 11 n.s. 72% (C2, βM, 0.01) 64% (Fz, βM, 0.05)

Discrimination between mental imagery task/attempted feet/passive feet movement, and the reference (1 s before the cue onset). Only significant (p = 0.01 and/or

p = 0.05, considering the number of trials, Müller-Putz et al., 2008) accuracy is reported. CRS-r, Coma Recovery Scale-Revised; acc (ch, band, p), accuracy (Laplacian

channel, band, significance level); n.s., not significant; n.p., not performed.

Table 3 | Summary of results for the post-hoc offline detection of

different tasks for the online feedback paradigm.

Participant/

Session no.

CRS-r score Sport Attempted feet

P2/1 18 n.s. n.p.

2 17 68% (CP2, α, 0.01) n.p.

P4/1 11 64% (Fz, ϑ, 0.05) n.p.

2 11 65% (FC2, βM, 0.05) n.p.

P5/1 11 n.p. n.s.

2 11 n.p. n.s.

P6/1 11 n.s. 64% (CP2, βM, 0.05)

2 12 71% (C3, βM, 0.01) n.p.

Discrimination between motor imagery task/attempted feet movement, and the

reference (1 s before the cue onset). Only significant (p = 0.01 and/or p = 0.05,

considering the number of trials, Müller-Putz et al., 2008) accuracy is reported.

CRS-r, Coma Recovery Scale-Revised; acc (ch, band, p), accuracy (Laplacian

channel, band, significance level); n.s., not significant; n.p., not performed.

DISCUSSION
In the current work involving patients with DoC our aim was
threefold: (i) to evaluate different types of motor imagery; (ii)
to evaluate passive feet movements as a mean of an initial clas-
sifier setup; and (iii) to evaluate rapid delivery of biased feedback.
To that end, we investigated whether complex mental imagery,
attempted, and passive feet movements can be reliably detected
in patients with disorders of consciousness (DoC).

The two motor tasks, the sport imagery and attempted feet
movement, accounted for almost two thirds (i.e., 62%) of sessions
yielding significant (p < 0.05) accuracies, with similar outcomes
within sessions. This is in line with previous findings indicat-
ing that, among other tasks, motor imagery rather than spatial
navigation most frequently results in better classification perfor-
mance (Friedrich et al., 2012). The sport imagery resulted in
activations in theta (centro-parietal, central, and frontal), alpha

FIGURE 3 | ERD/S map for the participant P2 and for the passive feet

condition of the 3rd session, calculated for Laplacian channel

derivations.

(centro-parietal, frontal), and middle beta band (fronto-central,
central). The attempted feet resulted in activations in theta
(fronto-central, central), alpha (central), and middle beta band
(centro-parietal, frontal). In Figure 4, ERDS patterns for the sport
and attempted feet tasks are exemplified for the participant P1
and the first session.

The passive feet movements were evaluated in only one out
of four patients (P2), as an evaluation in other patients was not
feasible due to their medical conditions (i.e., spasticity). The eval-
uation in P2 yielded mixed results: on one hand, time-frequency
analysis revealed task-related EEG changes over neurophysio-
logical plausible cortical areas (Figure 3); on the other hand,
classification results were not significant enough (p < 0.05) to
setup an initial classifier for the detection of attempted move-
ments. However, the attempted feet movements performed after
the passive feet movements yielded highly significant (p < 0.01)
accuracies, prompting the question whether this was more than a
mere coincidence.
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FIGURE 4 | ERD/S map for the participant P1 and for the sport, and the attempted feet task of the 1st session, calculated for Laplacian channel

derivations. Marked with the red circle is the Laplacian channel derivation yielding the highest accuracy, as estimated with the blockwise nested crossvalidation.

FIGURE 5 | (A) ERD/S map for the participant P1 and for the sport task of the 2nd session. (B) LDA accuracy over trial duration for this participant, sport task,
and α band during the 2nd session.

The online feedback paradigm led to ERDS patterns in MCS
patients that, when analyzed post-hoc, could be detected at around
70% accuracy with blockwise crossvalidation. However, online
detection of these ERDS patterns was at the random level only.
One possible explanation for this discrepancy is that, while a
longer mental imagery period may be beneficial for inducing the
desired ERDS patterns, a shorter detection period may be needed
in order to reliably detect these patterns. In the latter case, a
continuous auditory feedback may be more suitable than a dis-
crete auditory feedback. Further investigation is needed to assess
whether and to what extent the MCS patients could benefit from
an auditory feedback.

In Cruse et al. (2011) consistent and robust responses to com-
mand for attempted movements were observed in the EEG of 5
out of 23 of the MCS patients. Similarly, we estimated highly sig-
nificant (i.e., p = 0.01) accuracy for attempted feet movements
in two out of six of the MCS patients. Worth pointing out is
that we employed longer trials to accommodate for more com-
plex mental imagery tasks. In Goldfine et al. (2011) two out of
three patients (one patient in MCS and one in LIS) showed evi-
dence of motor imagery task performance, which is similar to

our findings with 62% (N = 21) of sessions yielding significant
(p < 0.05) accuracies for either sport or attempted feet task.

In our initial analysis (Müller-Putz et al., 2013b), we employed
manual artifact rejection instead of the ICA, and obtained par-
tially different results. Notably, for the participant P1 and for the
sport task of the second session we found activation over cen-
tral sensorimotor area (see Figure 5), yielding significant (p <

0.01) accuracies. However, following the ICA artifact rejection,
the significance of these patterns diminished. In only one addi-
tional, case namely for the participant P6 and for the sport
task of the first session, did we observe a similar discrepancy
in results. One explanation for these discrepancies is, that the
rejected electromyography (EMG) components also entailed the
signal of interest, i.e., discriminative periods of neural activ-
ity (McMenamin et al., 2010). In contrast, for the navigation
task significant accuracies were obtained only after the ICA
preprocessing, as this task was especially prone to artifacts.
Whereas in healthy participants these issues can be addressed by
rejecting the artifactual EEG, doing so in the patients is rarely an
option, as it is often ridden with artifacts. Therefore, we are aim-
ing to address these issues with an automated and online artifact
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removal method, combining wavelet decomposition, indepen-
dent component analysis, and thresholding (Daly et al., 2012,
2013b, 2014).

The above mentioned tasks were chosen due to previous
investigations: for example the passive and attempted movement
conditions were already investigated by our group in studies with
healthy subjects (Müller-Putz et al., 2007, 2013a; Solis Escalante
et al., 2012). In Müller-Putz et al. (2013a) 10 healthy sub-
jects performed brisk passive feet/hand movements and reached
mean offline classification accuracies of 81% (±14) and 76%
(±13) for passive hand and feet task, respectively. In Müller-
Putz et al. (2007) EEG-changes during passive and attempted foot
movements were investigated in 10 healthy subjects and seven
patients suffering from a complete sensor and motor paralysis.
In this study healthy subjects showed distinctive ERD/ERS pat-
terns similar to earlier studies focusing on active movements
(Neuper and Pfurtscheller, 1996, 2001; Stancak et al., 2000; Müller
et al., 2003) and passive movements (Cassim et al., 2001; Müller
et al., 2003). Furthermore, in in five out of seven patients dur-
ing attempted movement diffuse ERD/ERS patterns were found.
Finally, attempted movements were already used by Cruse et al.
(2012) to detect awareness in a patient who had been diagnosed
to be in UWS.

In the command following paradigm we opted for a block-
design instead of a pseudo randomized design mainly for the
following two reasons: first, we wanted to reduce the cognitive
demand by performing only one condition at a time, instead of
pseudo randomizing up to four different conditions (i.e., sport,
attempted feet, navigation, and passive feet); second, in case a
measurement session had to be ended prematurely (e.g., due to
patients obvious reduced vigilance) block design would increase
the probability that at least for some of the conditions (i.e., the
initial ones) enough data has been gathered. We reduced the
risk of the task-irrelevant intrablock correlations in the EEG sig-
nificantly accounting for the classification results through: (i)
rigorous removal of artifacts with ICA; (ii) use of a simple and
robust classifier with few features; (iii) control for physiological
plausibility of results by means of time-frequency analysis.

It is important to note, that even though the results pre-
sented in this study are consistent with the current state of the
art in similar studies (Cruse et al., 2011; Goldfine et al., 2011),
a functional and accurate communication with MCS patients, as
demonstrated with fMRI, is yet to be achieved with EEG and will
be the primary goal of our further investigations.

Concluding, we contributed to the state of the art by
comparing different types of mental tasks, notably complex
motor imagery and attempted feet movements, within patients.
Furthermore, we explored new venues, such as an evaluation of
passive feet movement as a mean of an initial classifier setup, and
rapid delivery of biased feedback. Further application of online
feedback, as well as of an auditory scanning method, as described
recently in Müller-Putz et al. (2013a), has to be investigated.
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