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Abstract

Background: The male genital tract is suspected to constitute a viral sanctuary as persistent HIV shedding is found in the
semen of a subset of HIV-infected men receiving effective antiretroviral therapy (HAART). The origin of this persistent
shedding is currently unknown. Phylogenetic studies indicated that HIV in semen from untreated men arises from local
sources and/or passive diffusion from the blood. We previously demonstrated in human and macaque low levels and
localized infection of several semen-producing organs by HIV/SIV. Using a macaque model, this study investigates the
impact of short term HAART (2–4 weeks) initiated either during the asymptomatic chronic stage or 4 h post-intravenous
inoculation of SIVmac251 on the infection of male genital organs.

Methodology/Principal Findings: Short term HAART during the chronic stage decreased blood viral load. No major impact
of HAART was observed on SIV DNA levels in male genital organs using a sensitive nested PCR assay. Using in situ
hybridization, SIV RNA+ cells were detected in all male genital tract organs from untreated and treated animals with
undetectable blood viral load following HAART. Infected CD68+ myeloid cells and CD3+ T lymphocytes were detected pre-
and post-HAART. In contrast, short term HAART initiated 4 h post-SIV exposure led to a drastic decrease of the male genital
tissues infection, although it failed to prevent systemic infection. In both cases, HAART tended to decrease the number of
CD3+ T cells in the male organs.

Conclusions: Our results indicate that the established infection of male genital organs is not greatly impacted by short term
HAART, whereas the same treatment during pre-acute phase of the infection efficiently impairs viral dissemination to the
male genital tract. Further investigations are now needed to determine whether infection of male genital organs is
responsible for long term persistent HIV shedding in semen despite HAART.
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Introduction

Highly active antiretroviral therapy (HAART) significantly

improved the clinical outcome among HIV-infected patients,

leading in most patients to undetectable viremia (i.e. ,50 copies/

ml). Nonetheless, viral eradication is not achieved as HIV

continues to replicate at low level in several tissues or remains

under a latent form in several cellular and anatomical sites, called

viral reservoirs. The male genital tract (MGT) is suspected to

constitute such a pharmacological sanctuary or reservoir. Indeed

persistent shedding of HIV RNA and infectious particles is

detected in the semen of a subset of chronically-infected men

under prolonged effective HAART [1,2,3,4,5,6] (other references

in [7]). In some of those men, the seminal viral load can reach

several log10 of magnitude, despite undetectable virus in blood for

years [1,3,4,5,7]. The origin of this persistent shedding is currently

unknown. It does not appear to correlate to suboptimal drug

concentrations in semen nor to any specific drug regimen, and

occurs in the absence of other detectable sexually transmitted

infections, known to increase the release of HIV in semen [7].

High seminal viral load before treatment initiation is to date the

only factor found to correlate with persistent release of HIV in

semen despite HAART [3]. Several phylogenetic studies demon-

strated that HIV in semen arises from local productive sources

within the MGT and/or, depending on the individuals, from

passive diffusion from the blood [8,9,10] (previous references in
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[7]). Compartmentalization of seminal strains was also recently

shown in macaques [11]. We and others have revealed that several

MGT organs are infected by HIV/SIV during the primary and

asymptomatic chronic stages of the infection

[12,13,14,15,16,17,18]. Productive infection was detected in the

prostate, seminal vesicle, epididymis, and to a lower level in the

testis [12,13,14,15,16,17,18]. The latter represents a well known

pharmacological sanctuary for many drugs, including antiretrovi-

rals against HIV [19,20]. All these elements strongly suggest that

one or several MGT organs constitute a viral sanctuary that can

keep producing virus despite HAART, and contribute to the

discordant blood/semen viral loads observed in some patients

under HAART.

Although the importance of tissue sanctuaries is being

increasingly recognized [21], the impact of HAART on semen-

producing organs has never been thoroughly investigated. The

lack of access to genital organ material from men receiving

HAART as well as the difficulties in detecting infection of the

MGT organs in vivo due to the low level and localized nature of this

infection [12,14], have impaired research in this domain. Using

the simian immunodeficiency virus (SIV)-infected cynomolgus

macaque model and as a first step in testing the impact of HAART

on MGT organs infection, this study examine the effect of short

term HAART administrated for 2 to 4 weeks during the

asymptomatic chronic stage on the infection of testis, epididymis,

prostate and seminal vesicle. In addition we investigated the

impact of HAART initiated very shortly post-infection, i.e. 4 h

post intravenous inoculation, an early time we previously

demonstrated does not prevent systemic infection [21,22].

Methods

Animals and Ethics Statement
20 adult male cynomolgus macaques (Macaca fascicularis) (3–4

years old, body weight .5 Kg, all mature as attested by the

presence of full spermatogenesis) were imported from Mauritius

Island and housed in the facilities of the Centre d’Energie

Atomique (CEA) (Fontenay-aux-Roses, France). Non-human

primates (NHP) are used at the CEA in accordance with French

national regulation and CEA facilities are fully authorized under

the number B-92-032-02 for animal use and under the number

2005-69 for NHP breeding. These facilities are regularly inspected

by national veterinary inspectors. The CEA is in compliance with

ETS123 recommandations, Directive 86/609/CEE guidelines

(Directive 2010/63/CE guidelines entering in force in 2013 are

also implemented) for animal breeding and with Standards for

Human Care and Use of Laboratory Animals (Animal Welfare

Assurance, OLAW number #A5826-01). NHP are daily fed and

inspected by animal caretakers who report directly to the

veterinarians in charge of the animal facilities and animal welfare.

The head of the veterinarian staff is empowered to interrupt the

protocol in case of animal pathology or suffering. It should be

stressed that none of the animal were specifically used for this

work, since the male genital organs were collected at necropsy

from animals that were euthanized in the course of other studies

[22] thus no suffering was specifically associated with the surgical

procedure to obtain the male genital organs. This approach is fully

in accordance with the 3R and reduces the number of animal used

as recommended by the Directive 2010/63/CE (article 18 sharing

tissues and organs). Animal suffering avoidance and refinement of

procedures are included in CEA aims. The use of NHP at CEA is

in accordance with recommendation of the Weatherall report as

follows: NHP are used at CEA only when no other models (in vitro

or in vivo) are suitable for the aims of the project (recommendation

nu1); the study is in the field of infectious diseases (recommenda-

tion nu2); NHP are breed following the recommendation of the

ETS123 and in accordance with the newly published European

Directive (2010/63) (recommendation nu9). The animals were

used under the supervision of the veterinarians in charge of the

animal facility and the protocols employed were reviewed by the

Ethical Animal Committee of the CEA (Ethical Animal Commit-

tee registered by French national under the number 44). The

protocols and the use of male genital organs for the purpose of the

work described herein were approved by the Ethical Animal

Committee of the CEA under the number 11-005. The animals

were sedated with ketamine chlorydrate (Rhone-Merieux, Lyon,

France), before virus injection, blood sample collection, and before

receiving treatment, as previously described [23]. Tissues from the

MGT were collected during animal necropsy after sedation of

animals (ketamine chlorhydrate 10 mk/kg) followed by euthanasia

(sodium pentobarbital 180 mg/kg).

Infection and treatment
The animals were intravenously inoculated with 50 AID50 of

pathogenic cell-free SIVmac251 as previously described [23]. Ten

macaques (16746, 20475, 20785, 20828, 20929, 20972, 9770,

10010, 10015, 10505) were given twice a day two nucleoside

inhibitors, zidovudine (AZT, 4.5 mg/kg) and lamivudine (3TC,

2.5 mg/kg) subcutaneously, and the protease inhibitor indinavir

(IDV, 60 mg/kg) orally, whilst ten macaques were untreated

(8141, 9345, OBCB5, OBCJ5, 20351, 30675, 9368, 9680, 10092,

10466). Treatment was initiated 4 h (for animals 9770, 10010,

10015, 10505) or 21 weeks post-inoculation (p.i.) (for animals

16746, 20475, 20785, 20828, 20929, 20972) and was continued

for 2 to 4 weeks. The 4 week time point was designed to allow

reducing systemic infection. Intermediate time point at 2 week of

treatment was also explored. Animals were euthanized at the end

of the treatment.

Specimen collections and blood viral load measurement
Plasma viral loads (PVLs) and PBMC-associated viral loads

were assessed at several time points as previously described

[24,25]. Tissues from the MGT (testis, epididymis, prostate and

seminal vesicle) were collected immediately after euthanasia and

exsanguination of the animals, extensively washed and cut into

fragments weighing about 300 mg each. The fragments were

either stored at 280uC or fixed in 4% formaldehyde.

Nucleic acids extraction
Total DNA and RNA were extracted from 2 distinct fragments

of each tissue using RNeasy isolation kit or the QIAamp DNA

Blood mini kit (both Qiagen, Courtaboeuf, France), respectively.

RNA samples were depleted of contaminating DNA by DNase

treatment (Promega, Charbonnières, France) and submitted to

reverse transcriptase reactions, using random hexamer primers

(Boehringer-Mannheim, Mannheim, Germany) and M-MLV-

Reverse Transcriptase (Invitrogen, Cergy-Pontoise, France) to

generate cDNA. Total DNA from PBMCs was isolated using a

commercial kit (Genomic DNA from tissue, Macherey-Nagel,

GmbH & KG, Germany).

Nested PCR for SIV DNA and RNA
A previously described sensitive nested PCR [14,26] was used to

detect SIV gag DNA. In order to increase the chances of detection

of focal infection of the genital tissues, 2 independent fragments of

each tissue were assayed in a minimum of 18 PCR reactions, each

performed on 500 ng of extracted DNA, as we previously
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described [14]. The sensitivity was 100% for the detection of 10

copies of SIVmac251 gag DNA in 500 ng of exogenous DNA, and

33% for a detection threshold of 1 copy. The lack of

contamination in PCR assays was systematically ensured by

concurrently running a minimum of 6 negative controls. Results

were expressed as percentages of SIV gag DNA positive PCR. The

presence of SIV tat-rev mRNA was analyzed using a nested RT-

PCR protocol adapted from Pasternak et al [27]. 40 cycles of first

round PCR amplification were performed using primers specific

for the tat-rev mRNA chosen based on [27] (TatrevF1

59:CCTCCTCCAGGACTTGCATA and TatrevR1 59:

CTGTTGATGACTGCCCGATA). A second nested PCR am-

plification (40 cycles) was performed with 3 mL amplimer and

inner primers TatrevF2 59:GCAGCAATCCATATCCACAG

and TatrevR259: GAGGGTCAGGCAGATGTTGT.

Immunohistochemistry
The following human mAbs and matching isotype controls were

used at the indicated concentrations: anti-HLA-DR (TAL.1B5,

0.6 mg/ml, a marker of activated immune cells), anti-CD68 (KP1,

1.2 mg/ml, a marker of myeloid cells), anti-CD3 (F7.2.38,

6.75 mg/ml, a marker of T lymphocytes) (all from Dako SA,

Trappes, France), anti-CD4 (1F6, Novocastra, 2.5 mg/ml), anti-

TIA-1 (2G9, Immunotech, 1 mg/ml, a marker of cytotoxic cells),

with mouse IgG1 isotype control (Dako); anti-CD20 (L26, Dako,

0.44 mg/ml, a marker of B lymphocytes), with mouse IgG2a

control (BD Biosciences). Immunohistochemistry was performed

as previously described [16]. No staining was ever observed with

isotype control antibodies. A minimum of three sections from

distinct areas were observed per animal. For quantitative and

semi-quantitative measurement, cell counts were performed using

the Cast software (Olympus) on a minimum of two sections per

animal. For CD3+T cell infiltrates semi-quantitative analyses,

whole sections were examined.

In situ hybridization (ISH)
Formalin-fixed, paraffin-embedded tissues were assayed for SIV

RNA expression by radioactive and non radioactive ISH, using

previously described 35S-UTP-labeled riboprobe for the gag

region of SIVmac251 [14] or digoxigenin-UTP-labeled riboprobe

spanning the whole genome of SIVmac239 [28]. Radioactive ISH

was performed as we previously described [14,16]. Non radioac-

tive ISH experiments were performed according to published

procedures [29,30], with the modifications indicated below. For

localization and semi-quantitative analysis of infected cells in the

tissues, nitroblue tetrazolium-5-bromo-4-chloro-3-indollylpho-

sphate toluidinium (NBT-BCIP) revelation was used [29]. Briefly,

the sections were deparaffinized, pretreated with proteinase K,

and hybridized overnight at 45uC with either sense or antisense

SIVmac239 digoxigenin-UTP-labeled riboprobe (Lofstrand Labs,

Gaithersburg, MD, USA). The hybridized sections were washed

with posthybridization buffers and RNase solutions and blocked

with Protein block serum-free (Dako), before incubation with

sheep anti-digoxigenin-alkaline phosphatase (Roche Molecular

Biochemicals) for 1 h at room temperature. The sections were

then reacted with NBT/BCIP for 12 h at room temperature,

rinsed with distilled water and counterstained with Fast red

(Sigma-Aldrich). The specificity of the hybridization signal was

systematically checked by hybridizing sense probes on parallel

sections and anti-sense probes on uninfected genital tissues. SIV

RNA positive cells were counted for two animals/group in a

minimum of 30 adjacent tissue sections/experiment, in two

independent experiments performed on distinct tissue blocks.

The total surface area counted was determined using the Cast

Grid software (Olympus, France). Characterization of infected

cells was performed using either radioactive or non radioactive

ISH combined with immunostaining for cell markers, as described

before [16,30]. Briefly, for radioactive ISH method, the sections

were incubated either with a mouse monoclonal antibody against

human myeloid cell antigen CD68 (clone KP1, Dako, 1.57 mg/ml)

before the ISH or with a mouse monoclonal antibody against

human CD3 antigen (F7.2.38, Dako, 6.75 mg/ml) after the ISH.

The staining was visualized using diaminobenzidine substrate

(Dako). For non radioactive ISH, sections were treated with

methanol-hydrogen peroxide, and the hybridized tissues incubated

with sheep anti-digoxigenin peroxydase (SAD-POD, Roche

Molecular Biochemicals) for 1 h at room temperature. SAD-

POD was detected by a fluorescent tyramide signal amplification

technique (TSA Plus FITC, NEL741; Perkin Elmer). Following

ISH assay, the sections were incubated either with a mouse

monoclonal antibody against human myeloid cell antigen CD68

(KP1, Dako, 3.6 mg/ml) and subsequently stained with a goat

Alexa-594 anti-mouse IgG antibody (4 mg/ml, Invitrogen BP,

Cergy-Pontoise, France), or with a polyclonal rabbit anti-human

CD3 antibody (A0452, Dako, 6.7 mg/ml) and revealed using goat

Alexa-594 anti-rabbit IgG antibody (4 mg/ml, Invitrogen BP,

Cergy-Pontoise, France). The double stained sections were

mounted in Vectashield mounting medium with Dapi (Vecta-

shield, Vector Laboratories, Ltd., Peterborough, England).

Statistical analyses
The significance of the differences between values was evaluated

using the appropriate non parametric test, as specified in the text

or the figure legends. P,0.05 was considered statistically

significant. Statistical analyses were performed using commercially

available software (SAS version 9.1.3; SAS Institute, Inc., Cary,

NC).

Results

Effect of short term HAART initiated during early chronic
stage

The pharmacokinetics of the three antiretroviral drugs used in

the present study were previously assessed in blood plasma and

PBMCs from cynomolgus macaques [24] and the virological

efficacy of the treatment demonstrated in the same animals than

the ones used in this study [22]. Before treatment, the median for

blood viral load for the 12 animals studied was 4 log10 (Figure 1A).

Six animals were treated with AZT/3TC/IDV twice a day after

viral set point (from day 150 pi). To determine the kinetics of viral

load decrease in tissues, three of these animals were euthanized 2

weeks, and the other three 4 weeks, after the onset of treatment.

Among the HAART treated macaques, one (20929) had

undetectable PVL at the initiation of therapy but was nevertheless

included in the analysis since its PBMC-associated viral load

evolved within the same range as the other treated macaques

(Figure 1B). HAART for 2 to 4 weeks induced a decreased PVL in

the 5 out of 5 animals with a detectable PVL before treatment

(Figure 1A). This decrease was significant after 2 weeks

(p = 0.0139, Wilcoxon). At the end of the treatment, three animals

(20475, 20972 and 20929) out of 6 had PVL below detection

threshold (60 vRNA copies/ml). The median PVL for the animals

sacrificed at 2 and 4 weeks post-HAART were respectively 3.11

log10 and below detection threshold. As previously observed in

HIV-infected patients, SIV DNA in PBMCs was only slightly

reduced by treatment, with a median reduction of 0.6 log10 after

HAART for 2 weeks and 1.1 log10 after HAART for 4 weeks, as

compared with animals without treatment (Figure 1B). We
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previously showed that SIV DNA in MGT organs of chronically

infected macaques can only be detected using a sensitive nested

PCR for SIV gag DNA, as infection levels are below the limit of

detection of quantitative SIV PCR assays [14]. In untreated

animals, the median frequency of viral DNA detection was lower

in the testis (6.2%) compared with the prostate, seminal vesicle and

epididymis (27, 17.4 and 12.4% respectively) (Figure 1C). The

frequency of viral DNA detection per tissue was relatively

heterogeneous among animals, and sometimes in between two

tissue fragments of the same animal, suggesting localized infection

of the tissue. No major impact of HAART was observed on SIV

DNA median frequency of detection in the MGT organs of the

treated animals for 2 or 4 weeks, as compared with the untreated

group (Figure 1C). In order to search for active viral replication

into MGT tissues, the presence of spliced tat/rev mRNA was

analyzed by nested RT-PCR. Tat/rev mRNA could be detected

in all tissues from treated animals, even those with undetectable

PVL following HAART (Figure 1D).

In situ hybridization for SIV gag RNA using either 35S or

digoxygenin labeled riboprobes revealed positive cells in all the

MGT tissues from both untreated and treated animals (Figure 2A).

The sensitivity of detection appeared similar between the two

techniques. Due to the low number and localized distribution of

infected cells, an extensive screening of large tissue areas (on

average 3315 mm2/tissue/animal, minimum of 1026 mm2) had to

be undertaken for all the male genital organs in order to measure

the number of SIV+ cells. In accordance with the findings on viral

DNA and with our previous findings on primary-infected

macaques [14], the testis of the 2 untreated animals tested

systematically displayed a lower number of infected cells compared

with the other MGT organs (Figure 2B). Overall, the number of

SIV RNA+ cells observed in MGT tissues from both treated

(n = 2) and untreated animals (n = 2) was low and heterogeneous

within the same organ of the same animal, hampering precise

quantification. This was particularly true for the epididymis and

seminal vesicle, which displayed very localized infection. Overall,

the analysis of the number of infected cells in the MGT organs of

treated macaques with undetectable PVL following HAART

compared with that of untreated animals with similar PVL before

HAART did not reveal any major impact of HAART in MGT

tissues (Figure 2B).

To determine the nature of the infected cells, co-localization of

SIV RNA+ cells with cell markers (CD3 for T lymphocytes and

CD68 for myeloid cells) was performed. A mix of CD3+ and

CD68+ infected cells was observed in MGT tissues from untreated

animals, as we previously described [14]. In treated animals, both

SIV+CD68+ and SIV+CD3+ cells were encountered in the male

genital tract using either radioactive or non radioactive ISH

(Figure 2C).

Impact of short term HAART on immune infiltrates in
MGT organs of chronically infected animals

In agreement with our published data [14], we evidenced the

presence of HLA-DR+ immune cell infiltrates (mainly composed

of CD3+ T lymphocytes) in all MGT organs apart from testis,

from all the untreated macaques included in this study. In treated

macaques, HLA-DR+ cell infiltrates were also encountered in the

epididymis, prostate and seminal vesicle (Figure 3A). Similarly to

untreated animals, these infiltrates were primarily composed of

CD3+ T lymphocytes, and to a lesser extent of CD20+ B

lymphocytes, whereas CD68+ myeloid cells were very rarely

encountered (as shown for epididymis, Figure 3A). A semi-

quantitative analysis revealed that in the seminal vesicle, the

number of medium size CD3+ infiltrates was significantly lower in

4 week treated animals compared with untreated animals

(Figure 3B). In the prostate, there was no significant difference

between the numbers of infiltrates in the three groups of animals,

but a trend for a lower number of medium/large sized infiltrates

was observed in treated animals. In the epididymis of 2 and 4 week

treated animals, medium size infiltrates were significantly lower

when compared with untreated animals (Figure 3B). In both

treated and untreated animals, the number of small, medium and

large infiltrates was not significantly different between the different

organs. In the accessory glands from untreated animals, all CD3+
T cell infiltrates were consistently composed of a mix of CD4+ T

helper and TIA1+ cytotoxic cells (data not shown). In treated

animals, most small/medium size T lymphocyte infiltrates in the

epididymis, prostate and seminal vesicle were also encompassing a

mix of CD4 and TIA1+ cells, although some infiltrates were

predominantly composed of CD4+ cells (Figure 3 C). For all MGT

organs, the number of CD68+ myeloid cells was in the same range

for both treated and untreated macaques (Figure 3 D).

Effect of short term HAART initiated 4 h post-inoculation
We previously showed that AZT/3TC/IDV combination

initiated 4 h post-intravenous inoculation of SIV and maintained

for 4 weeks does not prevent systemic infection, although in all

treated animals it prevents the peak blood viral load [21]. As

expected, although early treatment could not prevent infection, at

week 2, a time we selected for necropsy around expected viremia

peak, both PVL and PBMC viral load were either very low or at

the limit of detection in treated animals (Figure 4 A, B). In contrast

to our previous results on acutely infected animals without

treatment [14], the level of SIV DNA in MGT organs of treated

animals was too low to be measured by quantitative PCR. Nested

PCR revealed that the level of SIV DNA was drastically reduced

in all treated animals when compared with untreated animals

(Figure 4 C). When detectable, the frequency of viral DNA

detection was below 1% in all MGT organs of the treated animals,

whereas it was between 80% to 100% for untreated animals,

which was markedly higher than for chronically-infected animals

(Figure 4 C versus Figure 1 C). Non radioactive ISH on untreated

animals showed numerous SIV RNA+ cells in the prostate and

seminal vesicle, and to a lesser extent in the epididymis and testis

(Figure 5A), in agreement with our previous radioactive ISH

quantitative results [14]. As previously described using a different

technique [14], these infected cells were primarily CD3+T

lymphocytes, as determined by combined non radioactive ISH

for SIV RNA and immunostaining for cell markers (Figure 5B).

Infected CD68+ macrophages were only occasionally encountered

(Figure 5B). In treated animals, very scarce SIV RNA positive cells

were detected in the prostate, seminal vesicle and epididymis and

could not be evidenced in the testis (Figure 5A). We previously

showed in untreated animals the presence of small CD3+T cell

infiltrates in the prostate 2 weeks post-SIV inoculation [14].

Therefore, we assessed whether HAART affected the number of

CD3+T lymphocytes count in MGT tissues. The median number

of CD3+ T lymphocytes in the seminal vesicle of treated animals

was significantly lower than in SIV+ untreated macaques

(Figure 6). A similar trend was observed for the epididymis and

prostate, although it did not reach significance (Figure 6).

Discussion

This study is the first to investigate the effect of HAART on the

infection of semen-producing organs during chronic or acute

stage. A number of observations in HIV+ men (reviewed in [7,31])

suggest that the male genital tract constitutes an HIV compart-
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Figure 1. Viral dynamics in chronically-infected macaques receiving HAART and SIV nucleic acids detection in MGT organs. 6 animals
were untreated, 3 received a 2 weeks long AZT/3TC/IDV treatment and 3 received 4 weeks of the same treatment. (A) Plasma viral load and (B) total
viral DNA in PBMCs were measured before and after treatment. Median is represented by a line. The grey area indicates the quantitative threshold of
the qRT-PCR and qPCR assays. Star indicates statistical differences (p,0.05) using a Wilcoxon test. (C) Frequency of detection of SIV DNA in the
seminal vesicle, prostate, epididymis and testis of untreated, 2 or 4 week treated macaques, using nested SIV gag PCR. Two independent fragments of
each tissue were assayed. Median of frequency is represented by a line. (D) Tat/rev spliced RNA detection in MGT organs (SV: seminal vesicle; P:
prostate; E: epididymis, T: testis) by RT nested PCR. Results are shown for one representative treated animal (20475) with an undetectable PVL after
treatment. C2 and C+ represent negative and positive controls respectively.
doi:10.1371/journal.pone.0037348.g001
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ment distinct from blood, and a viral reservoir resistant to current

antiretroviral therapies. The difficulty of access to semen-

producing organs from healthy HIV+ men has prevented in

depth investigations of these issues. Infection of macaques by SIV

represents the best animal model of HIV infection. It is

particularly useful for studying HIV pathogenesis, the effect of

Figure 2. SIV RNA+ cells detection and identification within MGT of chronically infected macaques treated or not. (A) Detection of SIV
positive cells in the seminal vesicle (a, a9), prostate (b, b9), epididymis (c, c9) and testis (d, d9) of macaques, treated or not, using radioactive (a, b, c, d)
or non-radioactive (a9, b9, c9, d9) ISH for SIV gag RNA. Scale bars = 20 mm. (B) Due to the low and localized nature of the infection, an extensive
screening for SIV RNA+ cells was performed in a minimum of 30 tissues section/experiment in 2 independent radioactive ISH experiments on the
seminal vesicle, prostate, epididymis and testis of 2 untreated and 2 treated macaques with undetectable PVL following HAART. Median is
represented by a line. (C) Identification of SIV-expressing cells using either non-radioactive (a, b) or radioactive (c) ISH for SIV RNA combined with
immunostaining for cell markers in treated versus untreated animals. The pictures presented show the detection of CD3+ (a, red) or CD68 (b, red)
SIV+ (green) co-labeled cell in the prostate (a) and epididymis (b) of one treated animal. Nuclei labeled with DAPI are shown in blue. Side panels
represent individual channels. Large panel represents a merged image combining all channels. Arrows show co-labeled cells. (c) Detection of CD68+
(brown) SIV+ (black dots) co-labeled cell in the epididymis of one treated animal with undetectable PVL following HAART. Insert show enlargement of
co-labeled cell. Scale bars = 20 mm.
doi:10.1371/journal.pone.0037348.g002
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HAART in deep tissues, and acute stage of infection

[21,22,32,33]. We previously showed in this model that the

seminal vesicle, the prostate, the epididymis and the testis are

infected by SIV during the acute and chronic stage of the disease

[14]. We confirmed the infection of these organs by HIV in vitro

and in vivo [12,13,16,17].

Figure 3. Inflammatory infiltrates in the MGT organs of chronically infected macaques treated or not. (A) Immunohistochemical
staining of tissue sections from a treated animal with undetectable PVL after treatment. Detection of HLA-DR+ cells in the seminal vesicle (a), prostate
(b) and epididymis (c). Serial tissue sections were stained with anti-CD68 (d), anti-CD20 (e) and anti-CD3 antibodies (f) (photos shown for the
epididymis). Scale bar = 50 mm. (B) Semi-quantitative analysis of CD3+ cell foci in the MGT organs. The number of CD3+ cells in each focus was
determined using the Cast software. The number of foci in each category (,50 cells, 50–250 cells, .250 cells) was counted on whole sections of
seminal vesicle, prostate and epididymis from untreated macaques (n = 5) or treated for 2 (n = 3) or 4 weeks (n = 3). Stars indicate statistical
differences (p,0.05) using a Mann-Whitney test. (C) Serial tissue sections were stained with anti-CD3 (a, a9), anti-TIA-1 (b, b9) and anti-CD4 (c, c9)
antibodies. Photos are shown for the prostate (a, b, c) and seminal vesicle (a9, b9, c9) of one treated animal with undetectable PVL. Scale bar = 50 mm.
(D) Quantitative analysis of CD68+ cells in seminal vesicle, prostate, epididymis and testis of untreated (n = 5) and treated macaques (n = 4).
doi:10.1371/journal.pone.0037348.g003
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Persistent HIV shedding in semen has been shown to occur for a

wide range of HAART regimens, including those based on the

latest molecules, irrespective of the seminal concentrations

achieved by the drugs [1,3,4,5,7,31,34,35]. The AZT/3TC/IDV

regimen has been associated in men with persistence of HIV RNA

and DNA in semen despite prolonged undetectable blood viral

load [4,36,37,38,39,40] and good seminal concentrations of all

three drugs [41].

Figure 4. Viral dynamics in acutely-infected macaques receiving HAART and SIV nucleic acids detection in MGT organs. 4 macaques
received a AZT/3TC/IDV combination (HAART 4 h-2 weeks) while 4 others were untreated. (A) Plasma viral load and (B) total viral DNA in PBMCs were
measured during the 2 week protocol. Median is represented by a line. The grey area indicates the quantitative threshold of the qRT-PCR and qPCR
assays. (C) Frequency of detection of SIV DNA in the seminal vesicle, prostate, epididymis and testis of untreated and 2 week treated macaques, using
nested SIV gag PCR. Two independent fragments of each tissue were assayed. Median of frequency is represented by a line.
doi:10.1371/journal.pone.0037348.g004
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Our results reveal that following 2 to 4 weeks administration of

AZT/3TC/IDV during chronic stage, viral DNA and SIV RNA+
cells are still detected in the testis, epididymis, prostate and seminal

vesicle of treated macaques with decreased systemic infection.

Although precise quantification was hampered by the low level

and focal nature of the infection, we did not observe any major

impact of HAART on MGT organs infection. This contrast with

our previous findings of a strong decrease of both viral DNA and

RNA in the colon following the same HAART regimen and

duration [22], which demonstrates the efficiency of this treatment

in other body compartments. Similarly, 4 weeks of HAART has

been shown to induce a rapid decline in RNA burden in blood,

lymphoid tissues and brain of chronically infected macaques [42]

and a 7 day treatment significantly decreased viral RNA in both

blood and rectal mucosa in men [43]. In an analysis of potential

body viral reservoirs following 26 weeks of HAART initiated 6

weeks post-infection, testis, prostate and seminal vesicle of RT-

SHIV-infected juvenile macaques were also found to harbor viral

DNA [44]. In contrast to our results, viral RNA was only detected

in the prostate of one macaque out of five [44]. Limited sampling

of the tissues and different detection techniques could have

impaired detection of viral RNA in the MGT tissues in this study.

Indeed we demonstrated the very focal nature of the infection and

the need for testing multiple fragments. In addition, differences

between this study and ours, including treatment duration and

regimen, stage of infection, sexual maturity and virus used, could

explain this discrepancy. Importantly, the presence of HIV p24

protein has been detected in the seminal vesicle of men receiving

HAART [12].

The persistent detection of SIV nucleic acids in the genital

organs of the treated macaques observed in our study could be due

to either the existence of infected cells that would keep producing

virus in the face of optimal drug concentrations during the 2–4

week period, or to low drug penetration in the organs. Unlike

productively-infected CD4+T lymphocytes which are short-lived

and usually rapidly eliminated following HAART [45], chronically

infected tissue macrophages are generally regarded as long-lived

reservoirs, in which RT inhibitors are ineffective and protease

inhibitors display lower antiviral activity than in T lymphocytes

[46,47]. SIV/HIV infected macrophages have been previously

Figure 5. SIV RNA+ cells detection and identification within MGT of acutely infected macaques treated or not. (A) Non radioactive ISH
for SIV viral RNA in the MGT organs of untreated versus treated animals. Arrows indicate SIV RNA+ cells. Scale bar = 50 mm. (B) Identification of SIV-
expressing cells using non radioactive ISH for SIV (green) combined with immunofluorescence for cell marker CD3 (a, red) or CD68 (b, red). Nuclei
labeled with DAPI are shown in blue. Side panels represent individual channels. Large panel represents a merged image combining all channels.
Arrows show co-labeled cells. Scale bars = 20 mm.
doi:10.1371/journal.pone.0037348.g005

Figure 6. Quantitative analysis of CD3+ T lymphocytes in MGT
organs of untreated and treated animals. Stars indicate statistical
differences (p,0.05) using a Mann-Whitney test.
doi:10.1371/journal.pone.0037348.g006
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detected in the testis, epididymis, prostate and seminal vesicle of

macaques and men, along with infected CD4+ T lymphocytes

[12,13,14,15,16,48,49,50] and could thus contribute to the

production of virus despite good drug concentrations in the

organs. Using combined in situ hybridization for SIV and

immunohistochemistry for cell markers, we confirmed the

presence of infected macrophages and T lymphocytes in the

MGT organs of untreated animals. In treated animals, both

infected macrophages and lymphocytes were also detected.

Despite our extensive screening of a large number of tissue

sections, the relative proportion of infected macrophages and T

lymphocytes could not be assessed, as accurate quantification was

impaired by the low number of infected cells detected. However,

the fact that productively infected CD3+ T cells were still detected

at the end of the 4 week treatment period, and that the SIV DNA

levels and SIV RNA+ cell number did not appear to be affected by

the treatment, suggest that poor penetration of the antiretroviral

drugs may also be a factor. Whether a longer and intensified

treatment has more impact on male genital organs infection in our

model will be tested in forthcoming experiments.

In men receiving HAART, drastic decreases in both blood and

seminal viral loads are usually observed within one month post

treatment initiation [51,52,53], and have been shown to occur as

early as 14 days post HAART [3]. Even in persistent shedders, an

initial decrease in semen viral load can be observed [3]. Our

results suggest that this rapid decrease is unlikely to be due to a

decrease in the infection of semen producing organs and most

probably reflects the decrease of passive diffusion of HIV from

blood into semen. Unfortunately, semen samples were not

available at the time of our study to test this hypothesis. An

ongoing study in our laboratory is currently exploring the impact

of longer HAART on both semen and MGT organs infection.

Migration of T cells to non lymphoid tissues following virus-

driven T lymphocytes expansion is a feature of chronic viral

infection [54,55]. In chronically-infected macaques with PVL.3

log10, we previously demonstrated in all MGT organs but the

testis, the presence of HLA-DR+ immune cell infiltrates, mainly

composed of cytotoxic and CD4+ T lymphocytes [14]. Here a

lower number of CD3+ T cell infiltrates was observed in several

MGT organs of treated versus untreated animals. This reduction

did not appear to be linked to the organ infection levels, as the

latter were not significantly different before/after treatment and

between the organs. Therefore, we hypothesize that the reduced

number of inflammatory infiltrates in MGT tissues may represent

reduced systemic immune activation and T cell migration, in

association with the lower blood viral loads in the treated animals

[54,56,57,58]. Alternatively, we cannot exclude that the treated

macaques had lower level of inflammatory infiltrates before

treatment compared with the untreated group. However, this

seems unlikely as, apart from animal 20929, the viral load of

treated animals before treatment was above 3 log10 and in the

same range as the untreated animals.

We previously reported that 2 weeks post intravenous inocu-

lation, SIV infected all MGT organs of cynomolgus macaques and

that the viral load in MGT organs during the acute stage was

much higher than during the chronic stage [14]. In this study we

show that short term HAART initiated 4 h post-inoculation

drastically decreased this infection to almost nothing, although

some rare HIV-infected cells were still occasionally encountered.

In treated animals, a significantly lower number of T lymphocytes

were observed in the seminal vesicle as compared with untreated

animals. A trend for a lower number of T lymphocytes was also

observed for the epididymis and prostate of treated versus

untreated animals. Intravenous inoculation of SIV has previously

been reported to increase the number of T lymphocytes in several

lymphoid and non lymphoid tissues 1 to 2 weeks post-infection

[59,60] and increased trafficking of T lymphocytes was evidenced

in the gut as early as 48 h post-infection [61]. It is thus most likely

that the post-exposure treatment reduced the number of

infiltrating T lymphocytes in the MGT organs.

In humans and macaques infected through sexual routes,

productive systemic infection begins around 10 days following

amplification at transmission site and in local lymphoid tissues

[62,63]. Unlike our model in which viral dissemination occurs very

quickly post inoculation [21,64], this delay leaves a window of

opportunity for preventing HIV systemic infection. Recommen-

dations for post-exposure prophylaxis are to initiate HAART

within 4 h (French guidelines) [65] to 3 days (US guidelines) [66].

Our results suggest that early HAART in men could significantly

reduce MGT organs infection, even when systemic infection is not

prevented. This could prevent the occurrence of persistent

shedding in semen despite HAART, observed in some chronically

infected individuals. However, the route of infection, i.e.

intravenous, intrarectal or through foreskin/urethra, is likely to

modify the outcome of early treatment aiming at preventing HIV

dissemination. For instance, entry through the foreskin/urethra

may result in HIV replication in the local lymph nodes draining

MGT organs, and result in rapid infection of the latter. Further

investigations will be needed to investigate this issue.

In conclusion, we showed for the first time that short term

HAART has no major effect on the infection of MGT organs

when initiated during the chronic stage, whereas post-exposure

treatment drastically decreases their infection. These results

indicate that persistent HIV shedding in men receiving HAART

with undetectable blood viral load may arise from viral production

in several semen producing organs. Our work opens several

perspectives. Studies on longer treatment duration, intensification

and measurement of antiretroviral drugs in male genital organs are

now needed to assess whether the MGT constitutes a long term

reservoir. In addition the comparison of viral load and strains in

semen with that in male genital organs during HAART will be

crucial to decipher further the origin of HIV persistence in semen.

These issues are currently under investigation in our laboratory.
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