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Abstract
The spatial structure of genomic and phenotypic variation across populations re-
flects historical and demographic processes as well as evolution via natural selection. 
Characterizing such variation can provide an important perspective for understanding 
the evolutionary consequences of changing climate and for guiding ecological res-
toration. While evidence for local adaptation has been traditionally evaluated using 
phenotypic data, modern methods for generating and analyzing landscape genomic 
data can directly quantify local adaptation by associating allelic variation with envi-
ronmental variation. Here, we analyze both genomic and phenotypic variation of rub-
ber rabbitbrush (Ericameria nauseosa), a foundational shrub species of western North 
America. To quantify landscape genomic structure and provide perspective on pat-
terns of local adaptation, we generated reduced representation sequencing data for 
17 wild populations (222 individuals; 38,615 loci) spanning a range of environmental 
conditions. Population genetic analyses illustrated pronounced landscape genomic 
structure jointly shaped by geography and environment. Genetic-environment asso-
ciation (GEA) analyses using both redundancy analysis (RDA) and a machine-learning 
approach (Gradient Forest) indicated environmental variables (precipitation seasonal-
ity, slope, aspect, elevation, and annual precipitation) influenced spatial genomic struc-
ture and were correlated with allele frequency shifts indicative of local adaptation at 
a consistent set of genomic regions. We compared our GEA-based inference of local 
adaptation with phenotypic data collected by growing seeds from each population in 
a greenhouse common garden. Population differentiation in seed weight, emergence, 
and seedling traits was associated with environmental variables (e.g., precipitation 
seasonality) that were also implicated in GEA analyses, suggesting complementary 
conclusions about the drivers of local adaptation across different methods and data 
sources. Our results provide a baseline understanding of spatial genomic structure for 
E. nauseosa across the western Great Basin and illustrate the utility of GEA analyses 

www.wileyonlinelibrary.com/journal/eva
mailto:﻿
https://orcid.org/0000-0003-4396-4654
https://orcid.org/0000-0003-3135-0233
https://orcid.org/0000-0001-8121-6783
mailto:﻿
https://orcid.org/0000-0003-0308-9496
https://orcid.org/0000-0003-1771-1514
http://creativecommons.org/licenses/by/4.0/
mailto:tfaske@nevada.unr.edu


2882  |    FASKE et al.

1  |  INTRODUC TION

Changing climate, invasive species, and human land use activities 
have altered plant communities worldwide (Chen et al., 2011; Kelly 
& Goulden, 2008; Parmesan & Yohe, 2003; Thuiller et al., 2005). 
Attempts to restore and preserve native communities are import-
ant for maintaining ecosystem function and conserving evolutionary 
processes (Reusch et al., 2005; Whitham et al., 2003), and resto-
ration efforts are increasing in response to global initiatives (Stange 
et al., 2021). Successful ecological restoration requires knowledge of 
spatial genetic structure and an understanding of how local adapta-
tion varies across landscapes (Hufford & Mazer, 2003; Knapp & Rice, 
1994; McKay et al., 2005). The preservation of locally adapted pop-
ulations is a primary goal of conservation (Broadhurst et al., 2008; 
Knapp & Rice, 1994; Weeks et al., 2011), and restoration success is 
thought to be influenced by the degree to which seed sources are 
locally adapted to the environmental conditions of restoration sites 
(Hufford & Mazer, 2003; McKay et al., 2005). Accordingly, decades 
of research based on phenotypic variation, often using common 
gardens, have characterized the genetic basis of phenotypic vari-
ation and adaptation to local environments across plant popula-
tions (Baughman et al., 2019; Clausen et al., 1940; Hereford, 2009; 
Langlet, 1971; Leimu & Fischer, 2008; Linhart & Grant, 1996). This 
information can also be used for climate change-aware seedings, 
with “prestoration” efforts informed by the relationship between 
genetic variation, phenotypic traits, and environmental variation 
(Butterfield et al., 2017).

In conservation or restoration contexts, population genetic data 
have traditionally been employed to characterize genetic diversity 
and differentiation across the landscape (Broadhurst et al., 2008; 
Harrisson et al., 2014). Genetic differentiation among populations 
can reflect independent evolutionary histories across variable eco-
logical contexts, and genetic diversity itself is often used as a proxy 
for evolutionary potential, which can predict population viabil-
ity or restoration outcomes (e.g., Reynolds et al., 2012; Wernberg 
et al., 2018). To date, most inferences regarding local adaptation 
for restoration have used phenotypic data from common gardens 
(Baughman et al., 2019; Kawecki & Ebert, 2004; Langlet, 1971), but 
more recent efforts have used DNA-sequencing data for this pur-
pose (e.g., Massatti & Knowles, 2020; Shryock et al., 2017, 2021). 
High throughput sequencing has improved the ability to characterize 
the fine-scale genetic structure of populations (e.g., Larroque et al., 
2019; Novembre et al., 2008; Wang et al., 2013), to describe the 
genetic signatures of adaptation (Cao et al., 2011; Li et al., 2018; 

McKown et al., 2014), and to link environmental variation to evolu-
tionary processes (Forester et al., 2016; Storfer et al., 2018). While 
whole genome resequencing can be costly when applied to large 
numbers of individuals, reduced representation approaches (e.g., 
GBS, RADseq; Andrews et al., 2016; Parchman et al., 2018) can rap-
idly and inexpensively assay tens of thousands of genetic variants 
in a large number of individuals without relying on prior genomic 
resources. These approaches have shown utility for describing fine-
scale population structure and evolutionary history relevant to evo-
lutionary potential in changing environments (Massatti et al., 2018; 
Shryock et al., 2021), and for characterizing the genetic context and 
consequences of restoration efforts (Bragg et al., 2020; Dittberner 
et al., 2019; Jahner et al., 2019; Williams et al., 2014). Reduced repre-
sentation sequencing has also increasingly been used to analyze the 
genomic signature and environmental drivers of local adaptation in 
nonmodel organisms (Hendricks et al., 2018; Savolainen et al., 2013) 
or in the context of restoration (Flanagan et al., 2018; Harrisson 
et al., 2014; Hoffmann et al., 2015).

When describing the genetic basis of adaptation, analytical ap-
proaches can control for confounding processes underlying spatial 
genomic structure (such as isolation-by-distance; IBD) and describe 
the more restoration-relevant contribution of environmental vari-
ation to divergence among populations (isolation-by-environment; 
IBE; Bradburd et al., 2013; Lotterhos & Whitlock, 2015; Wang & 
Bradburd, 2014). Genetic-environment association (GEA) analyses 
leverage environmental and population genomic data to detect allele 
frequency shifts coordinated with environmental variation across 
space (i.e., adaptation) while testing for the influence of specific en-
vironmental variables (Forester et al., 2018; Günther & Coop, 2013; 
Rellstab et al., 2015). In contrast to uninformed genome scans, GEA 
analyses can be relatively robust to confounding processes such as 
IBD and are relatively effective at detecting weaker, multilocus sig-
nals of selection (Capblancq et al., 2018; Forester et al., 2016, 2018; 
Lotterhos & Whitlock, 2015). A variety of methodologies (e.g., mixed 
models, ordination, hierarchical Bayesian modeling, and machine 
learning) have been implemented across a range of taxa and data 
types (reviewed in Forester et al., 2018; Rellstab et al., 2015). Recent 
studies have used GEA to identify the genomic signal of local adap-
tation and its environmental drivers in the context of restoration or 
to predict population responses to climate change (Bay et al., 2018; 
Brauer et al., 2016; Fitzpatrick & Keller, 2015; Jia et al., 2020; Lu 
et al., 2019; Perrier et al., 2018; Supple & Shapiro, 2018). While few 
studies have utilized both phenotypic and GEA-based methods in 
such contexts (but see Carvalho et al., 2021; Fitzpatrick et al., 2021; 

for detecting the environmental causes and genetic signatures of local adaptation in a 
widely distributed plant species of restoration significance.
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Jordan et al., 2020; Mahony et al., 2020; Steane et al., 2014), congru-
ent results from independent approaches offer more comprehensive 
evidence for local adaptation (de Villemereuil et al., 2016; Rellstab 
et al., 2015; Sork et al., 2013). More generally, approaches combining 
phenotypic, genomic, and environmental data allow for a baseline 
understanding of how local adaptation varies across the landscape 
and provide important context for restoration as managers consider 
how genetic material (i.e., seed sources) will respond to different en-
vironments (Breed et al., 2019; Carvalho et al., 2021; Flanagan et al., 
2018).

Here, we apply genomic and phenotypic methods within the 
Great Basin Desert of North America, a topographically and eco-
logically distinct region covering five western states (~540,000 km2) 
and characterized by pronounced environmental and biological di-
versity (Davies et al., 2011; West, 1983). Massive areas of perennial 
shrubland communities have been converted to exotic annual grass-
lands due to fire, drought, and the introduction of invasive plants 
(Bradley & Mustard, 2005), making this among the most threatened 
ecosystems in North America. A member of the Asteraceae, rubber 
rabbitbrush (Ericameria nauseosa) is a foundational shrub species of 
these communities. It is broadly distributed across western North 
America (Anderson, 1984; Toft, 1995) and exhibits exceptional 
phenotypic diversity (22 named varieties; Anderson, 1984; Nesom 
& Baird, 1993). E. nauseosa displays a wide range of phytochemical 
variation (Hegerhorst et al., 1987; Hegerhorst et al., 1987; Weber 
et al., 1985), serves an important role in recolonizing disturbed 
sites, and is a critical late-season flowering resource for herbivore 
and pollinator communities (Hansen, 1986; McArthur et al., 1979; 
Ogle et al., 2007; Rogers, 1979). Studies of E. nauseosa have reported 
remarkable herbivore (e.g., 39 gall-forming species at a single site; 
Fernandes et al., 2000) and pollinator diversity (e.g., visits from 60% 
of fall flying bees [167/278  species] across a 4-year study; Carril 
et al., 2018). Understanding how genetic variation is distributed 
across geographic and environmental space and how it relates to 
phenotypic variation is particularly crucial for foundational species, 
such as E. nauseosa, as the degree of local adaptation in such plants 
often has extended community- and ecosystem-level consequences 
(Grady et al., 2011; Hughes et al., 2008).

Here, we analyze the geographic distribution of genetic varia-
tion across E. nauseosa populations in the western Great Basin, using 
both DNA sequencing and common garden-based phenotypic data. 
This species is an excellent candidate for such work, as there has 
been a history of interest in the habitat value of E. nauseosa (e.g., 
Weber et al., 1985), but to-date, it has not frequently been included 
in large-scale restoration projects that could obscure historic pat-
terns of adaptation and gene flow. We used reduced representation 
sequencing to quantify spatial genomic structure and to analyze 
the association between genetic, geographic, and environmental 
variation. Specifically, we quantified the extent to which population 
genetic structure is associated with geographic and environmental 
variation and used two GEA approaches to detect the genetic sig-
nature of local adaptation and to identify the environmental vari-
ables underlying it. Additionally, we quantified phenotypic variation 

in seed weight, emergence, and seedling traits for the same pop-
ulations using a greenhouse common garden. We tested for local 
adaptation by analyzing phenotype-environment associations and 
quantified the degree to which environmental variables were dually 
implicated across phenotype-environment and genetic-environment 
association analyses. Finally, we quantified the relative predictive 
power of geographic, environmental, and genetic data sampled in 
the field for explaining phenotypic variation in the common gar-
den. Our results provide a population genomic perspective on local 
adaptation to environmental variation in the western Great Basin 
and illustrate how genomic and phenotypic approaches can yield 
complementary results for analyses of local adaptation capable of 
informing restoration.

2  |  METHODS AND MATERIAL S

2.1  |  Population sampling and common garden 
experiment

Ericameria nauseosa consists of two subspecies (nauseosa and con-
similis) that additionally encompass 22 named varieties (Anderson, 
1995; Nesom & Baird, 1993). Our study focused on habitats within 
the western Great Basin that are inhabited primarily by ssp. nau-
seosa var. hololeuca, with one collection of ssp. nauseosa var. spe-
ciosa. While genetic differentiation among subspecies is apparent, 
varietal classifications within subspecies are largely not reflective of 
genetic differentiation, especially within the var. speciosa complex 
(T. M. Faske et al., unpublished data). We bulk-collected seeds from 
17  localities (Figure 1A) in the western Great Basin during the fall 
of 2017 from a minimum of 50 plants per location. After a survey of 
sagebrush steppe communities in the region with similar dominant 
vegetation, these sites were selected for sampling because they 
hosted multiple native species that could potentially serve as res-
toration seed sources. Plants face multiple challenges in these cold 
deserts, including low annual precipitation (215.2–388.4 mm for all 
sites included here), year-to-year variation in precipitation, strong 
precipitation and temperature seasonality (most precipitation ar-
rives during the coldest months, followed by hot, dry summers), and 
soils that vary in depth, texture, and salinity (West, 1983). Most of 
the dominant plant species are perennial (West, 1983), and estab-
lishment from seed can be challenging; seedling survival through 
periods of summer drought is a limiting life history stage for many 
species, including E. nauseosa (Donovan et al., 1993).

Adult leaf material was sampled from 15 plants per popula-
tion and dried with silica gel to facilitate DNA extraction. Dried 
leaf material from each plant was ground into powder form using a 
Qiagen TissueLyser, and genomic DNA was extracted using Qiagen 
DNeasy Plant kits (Qiagen). Extracted DNA was quality and quan-
tity screened using a QIAxpert microfluidics electrophoresis device 
(Qiagen).

We planted seeds from each sample locality in field soil in a green-
house on the University of Nevada, Reno campus (latitude/longitude: 
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39.538, −119.805; elevation: 1370 m). Filled seeds (endosperm pres-
ent) were separated from unfilled seeds, as they are visually distinct 
on a light table. We weighed ten batches of 10 filled seeds per pop-
ulation to calculate an average seed weight per population. We then 
planted 100 filled seeds from each site following a randomized block 
design in the fall of 2018. Seeds were monitored daily for emergence, 
and seedlings were harvested 40 days after emergence, using meth-
ods previously developed for describing seedling traits, which are 
important predictors of success in restoration scenarios (e.g., Leger 
et al., 2020; Rowe & Leger, 2011). We separated seedlings into roots 
and shoots before drying and weighing. Samples were scanned and 
analyzed using WinRhizo imaging software (Regents Instruments). 
From these images, we measured the root length, root area, root and 
shoot mass, root mass ratio (root mass/total plant mass), and specific 
root length (length/mass). A descriptive summary of the full pheno-
typic data set is available in Table S1 and Appendix S2. We generated 
genetic data from adult plants at each of the 17 sampling localities, 
while phenotypic data from the greenhouse common garden included 
only 14 of these localities where collected seeds were viable.

2.2  |  Reduced representation sequencing and 
variant calling

Reduced representation libraries were prepared using a double-digest 
restriction-site associated DNA sequencing (ddRADseq) method 
(Parchman et al., 2012; Peterson et al., 2012). Genomic DNA was di-
gested with two restriction endonucleases, EcoRI and MseI, before 
uniquely barcoded Illumina adaptors were ligated to digested frag-
ments using T4 DNA ligase. Following PCR amplification of pooled 
fragment libraries with a proofreading polymerase (Iproof; BioRad), 

fragments ranging from 350 to 450 base pairs (bp) were size-selected 
using a Pippin Prep quantitative electrophoresis unit. Single-end se-
quencing (100 bp read lengths) was performed using two lanes on an 
Illumina HiSeq 2500 platform at the University of Wisconsin-Madison 
Biotechnology Center (Madison, WI).

After contaminant cleaning and demultiplexing, reads were as-
sembled to a de novo reference with bowtie2 v 2.3.0 (Langmead & 
Salzberg, 2012), and variants were called using samtools and bcftools 
v 1.8 (Li et al., 2009). After subsequent filtering with vcftools v 0.1.15 
(Danecek et al., 2011), we retained biallelic single nucleotide poly-
morphisms (SNPs) with sequencing data for at least 70% of the sam-
ples and with minor allele frequency (MAF) >0.05. To guard against 
genotyping bias stemming from the potential mis-assembly of paral-
ogous regions, we removed loci with excessive coverage (summed 
depth across all samples >10000), and those with abnormal hetero-
zygosity (FIS < −0.5 or >0.5). Full methods for contaminant cleaning, 
assembly, variant calling, and additional filtering steps can be found 
in the Appendix S1.

2.3  |  Population and landscape genomic variation

We used a hierarchical Bayesian model that incorporates genotype 
uncertainty (entropy; Gompert et al., 2014; Shastry et al., 2021) to es-
timate genotype probabilities for each individual at each locus, infer 
the number of ancestral genetic clusters (k), and estimate individual 
ancestry coefficients (q). This model uses an allele frequency prior 
and incorporates genotype uncertainty arising from sequencing and 
alignment error as well as stochastic variation among individuals 
and loci in sequencing depth during parameter estimation (Gompert 
et al., 2014). We used genotype likelihoods calculated from samtools 

F I G U R E  1  Landscape genomic structure strongly mirrors geography. (a) Map of the sampled localities for the 17 E. nauseosa populations. 
(b) Principal components analysis (PCA) of genotype probabilities illustrates spatial genomic structure. A Procrustes rotation of the first 2 PC 
axes onto latitude/longitude displays how spatial genetic structure is strongly predicted by geographic proximity. Colors of points in B match 
those of the population labels in “a”
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as input and used linear discriminant analysis, following k-means 
clustering of principal component scores to provide starting values 
of ancestry coefficients (q) to seed the MCMC (cf. Gompert et al., 
2014). Genotype probability models with different ancestral clus-
ters (k) from entropy were estimated based on 100,000 MCMC itera-
tions with a burn-in of 30,000 and thinning every tenth step. As the 
k = 2 model fit the data best (i.e., had the lowest deviance informa-
tion criterion [DIC] value), genotype probabilities from this model 
were used for subsequent analyses (see Table S2 for DIC compari-
sons across k = 2–8). Due to complex fine-scale population struc-
ture, we do not present ancestry coefficient bar plots as they do not 
usefully illustrate population differentiation across the landscape. 
Rather, we used this model primarily to (1) obtain genotype proba-
bility estimates and thereby allow for the incorporation of genotype 
uncertainty into subsequent analyses and (2) generate individual an-
cestry coefficients (q), which were used to mitigate the influence of 
neutral population genetic structure in GEA analyses (see below).

We used principal component analysis (PCA), following stan-
dardization proposed by Patterson et al. (2006), to visualize popu-
lation structure. A Procrustes rotation of the first two PC axes onto 
latitude and longitude was used to illustrate the concordance of ge-
netic variation and geography (Wang et al., 2010), using the vegan R 
package (Oksanen et al., 2019; R Core Team, 2020). We character-
ized genetic differentiation among all populations using multilocus 
FST calculated with the hierfstat R package (Goudet & Jombart, 2020) 
and population pairwise Nei's D (Nei, 1972) calculated with custom 
R code. Isolation-by-distance (IBD; Wright, 1943) and isolation-by-
environment (IBE; Wang & Bradburd, 2014) were assessed using 
the Mantel tests (Mantel, 1967) to associate genetic distance (Nei's 
D) with geographic and environmental distances (see environmen-
tal description below). Geographic distances among populations 
were calculated as haversine distance using the geosphere R package 
(Hijmans, 2017). Using methods that incorporate genotype uncer-
tainty implemented in angsd (Korneliussen et al., 2013, 2014), we es-
timated nucleotide diversity (θπ; Nei & Li, 1979) for each population 
and individual inbreeding coefficients (F) using ngsF (Vieira et al., 
2013). See the Appendix S1 for full description of angsd and ngsF 
methods.

In addition to the Mantel tests, IBD and IBE were estimated using 
a piecewise structural equation model (piecewiseSEM; Lefcheck, 
2016; Shipley, 2000), as this allowed for estimation of the relative 
effect of environmental and geographic distance on genetic distance 
while accounting for covariance between the two (see Wang et al., 
2013). The benefit of piecewiseSEM over other SEM approaches is 
it allows for local estimation of path coefficients to include random 
effects and varying sampling distributions. While many matrix cor-
relation analyses use a permutation approach (i.e., Mantel or partial 
Mantel tests) to control for nonindependence and test significance, 
p-value estimates from these approaches can be confounded by 
spatial autocorrelation among the matrices even when controlling 
for neutral processes (see Guillot & Rousset, 2013). Here we instead 
focus purely on relative effect sizes (or beta coefficient estimates). 
Population identification for each pairwise comparison was included 

in the model as a random effect to account for the correlated error 
structure inherent in pairwise observations, as suggested by Clarke 
(1993). All distance matrices were vectorized, centered, and stan-
dardized prior to analysis. Model fit was assessed with explained 
variance (marginal and conditional r2) and implemented using lme4 
and piecewiseSEM packages in R.

2.4  |  Genetic-environment association analyses

We quantified environmental variation across sampling sites based 
on elevation and 30 climate variables calculated using the 30-year 
prism normals (1981–2010, 800  m  ×  800  m resolution) and the 
Climatic Water Deficit Toolbox (Dilts et al., 2015; Lutz et al., 2010). 
An R script provided by Redmond (2019) converts monthly normals 
to estimates of potential evapotranspiration, actual evapotranspira-
tion, soil water balance, and climatic water deficit, which have been 
shown to effectively predict aspects of spatial and distributional 
variation across plant communities (Barga et al., 2018; Stephenson, 
1998). Before any analyses, the pool of variables was reduced from 31 
to 10 after removing highly correlated variables (based on Pearson's 
|r| ≤ 0.60) to control for multicollinearity. These ten variables repre-
sented variation in temperature, precipitation, elevation, evapotran-
spiration, and soil water capacity as well as precipitation seasonality, 
which is the degree of variability in monthly rainfall throughout the 
year (Walsh & Lawler, 1981; Table S3). Euclidean distances of the 
10 variables were used to represent environmental distance among 
populations where appropriate for distance-based analyses. Range 
values of the ten chosen environmental variables are presented in 
Table 2, and correlations of these variables with phenotypic meas-
urements are illustrated in the Appendix S1 (Figures S1 and S2) while 
full summary statistics of all 31 variables and descriptions are pro-
vided in the Appendix S2 (Table S3).

We quantified the degree to which genetic variation is associated 
with geographic and environmental variation using two approaches: 
(1) we estimated the proportion of genomic variance explained by 
environmental variation and the individual contributions of each 
environmental variable and (2) we quantified locus-specific allele 
frequency shifts correlated with environmental variation to detect 
selection on genome variation and quantify the extent different 
variables underlie these shifts.

Two different GEA methods, redundancy analysis (RDA; 
Legendre & Legendre, 2012) and Gradient Forest (GF; Ellis et al., 
2012; Fitzpatrick & Keller, 2015), were used to identify loci with 
allele frequency shifts potentially reflecting adaptation to environ-
mental variation. Recent studies (Capblancq et al., 2018; Forester 
et al., 2016, 2018) have shown through both simulations and empir-
ical data that RDA performs best (i.e., less prone to false negatives 
and false positives) in identifying loci under selection while remain-
ing robust to complex demographic histories. We first used a partial 
RDA to assess the degree adaptive genetic variation among individ-
uals is explained by a particular set of environmental variables and 
to identify outlier loci potentially under selection. Gradient Forest 
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is a multivariate extension of the machine-learning algorithm, 
Random Forests (Breiman, 2001), originally developed to model 
communities of species assemblages. Gradient Forest uses split 
functions along environmental gradients to predict both genome-
wide and locus-specific allele frequency shifts (Fitzpatrick & Keller, 
2015; Keller et al., 2018; reviewed by Fenderson et al., 2020). To 
reduce the confounding effects of neutral genetic variation on GEA 
inference, individual ancestry coefficients (q; generated by entropy) 
were partialled out by regressing q from each environmental vari-
able prior to analyses. This is statistically equivalent to conditioning 
within RDA (Legendre et al., 2011) but allowed partial effects to be 
accounted for in the same manner across both GEA analyses (RDA 
and GF).

To identify loci associated with environmental variation and po-
tentially under selection, RDA was used with stringent outlier filter-
ing of ±3.5 SD on the first RDA axis (p < 0.0005; following Forester 
et al., 2018). These loci were then associated with individual envi-
ronmental variables using Pearson's correlation (r) to identify the 
strongest predictor. Gradient Forest also gives a relative importance 
metric (R2) for each locus (i.e., loci with R2 > 0 indicate potential adap-
tive shifts in allele frequencies across a given environmental gradi-
ent) and the associated environmental variable. Results from RDA 
and GF analyses were compared using the correlation between the 
first RDA axis loading and GF R2 for environmental variables and out-
lier loci, and by quantifying the degree to which loci were associated 
with the same environmental predictor variables. To further show 
that these associations were not due to chance alone, a permutation 
test (n = 1000) was implemented in GF to verify there was a greater 
number of overlapping outlier loci between the two methodologies 
in the observed data set than in random subsets of loci of equal size. 
Absolute values of the RDA loadings were used for any comparative 
analysis because only the relative strength of association was being 
assessed, not directionality. Most analyses and data manipulation 
were performed using the base stats library or custom R functions, 
the vegan library (Oksanen et al., 2019) was used for the RDA, and the 
gradientforest library (Ellis et al., 2012) was used for GF.

2.5  |  Phenotypic variation

To complement GEA-based inference of local adaptation and its en-
vironmental drivers, we measured phenotypes from field-collected 
seeds of 14 of the above populations in a greenhouse common gar-
den, focusing on seed and seedling traits that have been shown to 
affect seedling establishment, an important component of restora-
tion, in other taxa (Leger et al., 2020). Because seeds were collected 
from wild plants growing in different maternal environments, phe-
notypic variation likely represents both genetic and maternal envi-
ronment effects, which is common in studies on local adaptation or 
provenance trials in wild plants (Baughman et al., 2019; Hereford, 
2009; Risk et al., 2021). Ericameria nauseosa requires at least 3 years 
to produce seed, precluding a multigenerational design to control 
for maternal effects. The variables used for our analyses included 

a subset of traits with correlations of |r| ≤ 0.60 to control for mul-
ticollinearity. These included seedling emergence (the number of 
seedlings that emerged and survived until harvest at 40 days; 92% 
of emerged seeds survived for 40 days, and thus for simplicity, we 
combined emergence and survival here), days to emergence, shoot 
biomass, average root diameter, and seed weight (average of 10 
seeds weighed in 10 batches per population). It is important to note 
that seed weight variation was sampled and measured from popula-
tions in nature and was thus not an outcome of the common garden 
experiment. Shoot biomass was chosen as the representative trait 
for seedling size as it is highly correlated (r = 0.62–0.92) with addi-
tional traits (total biomass, root length, root area, etc.) that are likely 
to be important in establishment (Caruso et al., 2019). Additionally, 
seedling emergence, seed weight, and shoot biomass were all highly 
positively correlated (r = 0.760–0.948) and were collapsed to a single 
composite variable using the first principal component axis, captur-
ing 90.07% of the variance. This single composite variable was used 
for any multivariate analyses while the mean values for each trait in 
each population were used for univariate analyses.

The extent to which phenotypic variation might be influenced 
by genetic, environmental, and geographic variation was evaluated 
across a variety of analyses. First, we asked if traits measured in the 
common garden varied among populations using independent gen-
eralized linear mixed models. In these models, block was included as 
a random effect, a Bernoulli logistic regression was used for seedling 
emergence, a Poisson distribution was used for days to emergence, 
and Gaussian distributions were used for seed weight, shoot bio-
mass, and average root diameter. Next, we analyzed the associa-
tion of specific environmental variables with phenotypic variation 
from the common garden, asking whether there were phenotype-
environment correlations consistent with local adaptation (Endler, 
1986). For phenotype-environment associations, we used Random 
Forests (RF; Breiman, 2001) to assess potential relationships be-
tween phenotype and the same 10 environmental variables consid-
ered for the GEA analyses.

While phenotype-environment associations can be influenced by 
genetic drift, assessing how phenotypic variation relates to genetic 
variance can provide insight into the presence and mode of selec-
tion through PST - FST comparisons (McKay & Latta, 2002; Merilä 
& Crnokrak, 2001). PST, an analogous proxy for QST when pedigree 
information is unavailable (Brommer, 2011), was estimated for each 
phenotype and compared to multilocus FST. We calculated PST/FST 
across a range of c/h2 (where c is additive genetic variance, and h2 is 
narrow sense heritability) to determine the critical value for c/h2 (i.e., 
where the lower 95% CI of PST equals the upper 95% CI of FST) for 
each phenotype. More detailed methods and justifications for this 
analysis are available in the Appendix S1. To further evaluate congru-
ence of environmental signal across genetic (GEA) and phenotypic 
(common garden) inference of local adaptation, we assessed whether 
specific environmental variables ranked similarly in their magnitude 
of association in both analyses. Importance (R2) from RF for the envi-
ronmental variables on the mean trait values of seedling emergence, 
seed weight, days to emergence, shoot biomass, and average root 
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diameter were correlated with the same environmental variable 
loading/importance from the GEA analyses (both RDA and GF).

Finally, the extent to which population-level phenotypic differ-
ences were associated with genetic, environmental, and geographic 
variation was assessed using a variance partitioning technique to es-
timate individual and shared contributions of each variable (Borcard 
et al., 1992). This approach uses partial RDAs to estimate the propor-
tion of explained variance for each predictor variable, independently 
and combined, out of the total explained variance. Each model included 
phenotype as the response variable and all combinations of genetic, 
environmental, and geographic variation as predictors. Phenotype 
was characterized by three variables: the composite variable of seed-
ling emergence, seed weight, and shoot biomass, and the mean trait 
value of days to emergence and average root diameter for each pop-
ulation. Genetic and environmental data were collapsed using PCA, 
and the first four PC axes were treated as composite variables to rep-
resent each group of data. Environmental data inputted into the PCA 
was the standardized raw data of all 10 variables, while genetic data 
were represented by the variance-covariance matrix of the genotype 
probabilities, with the four PC axes explaining 86.0% and 62.7% of the 
total data sets, respectively. Geography was characterized by the lat-
itude and longitude of the population. The total phenotypic variance 
explained (PVE) by the predictors and adjusted r2 (i.e., individual con-
tribution in terms of total PVE) was estimated with the varpart func-
tion in the vegan package in R. Model significance, when appropriate, 
was assessed using independent RDA and pRDAs, permutation-based 
ANOVAs (n = 999), and significance thresholds of α ≥ 0.05. All mea-
surements were centered and standardized prior to analyses.

3  |  RESULTS

3.1  |  Population and landscape genomic variation

Two lanes of Illumina sequencing produced ~613 million reads across 
222 individuals, of which ~496  million were retained after quality 
filtering and demultiplexing (mean = 2.2 million reads per individual). 
Initial variant calling generated ~1  million variant sites, which re-
duced to 38,615 loci after stringent filtering. Data from all 222 indi-
viduals were retained as coverage was relatively high (mean = 9.5×; 
~1 locus per 13kb based on genome size of ~528 Mb [B. Richardson, 
personal communication]), and individuals had relatively low per-
centages of missing data (mean = 5.9%).

While multilocus FST estimates were in the low range (0.076; 
95% bootstrapped CI: 0.067–0.085; see Figure S3 for population 
pairwise estimates), genetic structuring among populations was 
clearly indicated by tight, often nonoverlapping population clusters 
in principal component space, and a strong concordance between 
geographic and genetic distances (Procrustes correlation coefficient 
r = 0.738; Figure 1B). The Mantel tests of IBD and IBE indicated that 
both geographic distance and environmental distance predicted ge-
netic distance among populations (IBD: Mantel r = 0.246, p = 0.025; 
IBE: Mantel r =  0.286, p =  0.008). There was less evidence for an 

association between environmental and geographic distance (Geo-
Env: Mantel r = 0.202, p = 0.084; Figure 2). Similar results of IBD 
and IBE were found using the piecewiseSEM approach (IBD: direct 
β = 0.293, indirect β = 0.086; IBE: β = 0.300; Geo-Env: β = 0.286; 
Figure 2D), but relative contributions of each metric could be assessed 
using this holistic approach. As our piecewiseSEM incorporates mul-
tiple response variables and random effects, we could further assess 
the model through the variance explained (r2) for each response vari-
able with fixed effects only (marginal estimation) and with random 
effects (population) included (conditional estimation). Thus, variance 
explained was relatively low for the marginal estimation with only 
fixed effects (environmental distance: r2 = 0.075, genetic distance: 
r2  =  0.186) but was much greater in the conditional estimation on 
the full model including random effects (environmental distance: 
r2 = 0.744, genetic distance: r2 = 0.403). This indicated that including 
a random effect of population identification to eliminate the inherent 
autocorrelated structure of pairwise comparisons was most appro-
priate. Additionally, populations displayed moderate levels of genetic 
diversity (θπ = 0.019–0.021; Table 1), and there was no evidence of 
selfing/inbreeding as individual inbreeding estimates, F, were effec-
tively 0 (mean = 0.0033; only one individual with F > 0.035).

3.2  |  Genetic-environment association analyses

Genetic-environment association analyses provided evidence of 
local adaptation to specific environmental variables, and an over-
lapping set of loci potentially under selection was detected by the 
two methods employed. The signature of local adaptation could be 
attributed to a set of environmental predictors that were largely 
consistent between the two methods employed (Table 2). The first 
RDA axis identified 176 outlier loci potentially associated with ad-
aptation (PVE  =  21.65%; Figure 3B). The environmental variables 
with the greatest explained variance in the RDA included pre-
cipitation seasonality, slope, elevation, and annual precipitation 
(Table 2; Figure 3). Gradient Forest results overlapped considerably 
with those from the RDA, with loadings from the first RDA axis and 
R2 from GF being strongly correlated for both the environmental 
predictors and the identified outlier loci (environment: Pearson's 
r = 0.796, loci: Pearson's r = 0.656; Figure 4). Precipitation season-
ality was overwhelmingly the strongest environmental predictor 
in both the RDA and GF analyses, with both the largest explained 
variance and number of associated outlier loci (56.5% of the total 
outliers). Consistent sets of loci were identified as outliers in both 
analyses: 54.5% (96/176 loci) had allele frequency shifts associated 
with environmental variation in the RDA and as estimated by split 
importance (or R2 > 0) in GF. A permutation test (n = 1000) using 
176 randomly sampled loci across all 38,615 loci indicated the RDA 
outlier loci had more overlapping loci with GF outliers than would be 
expected by chance (permuted outlier range: 3.4–17.0% [6–30 loci]; 
p < 0.001). Furthermore, 65 out of the 96 RDA and GF outlier loci 
were most strongly associated with the same environmental predic-
tor. An additional 27 loci (92 or 95.8% of RDA and GF outlier loci) had 
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the same top two environmental associations, with minimal differ-
ence (average <0.095 SD) between the first and second association 
strength to that locus (r for RDA or R2 for GF). In other words, RDA 
and GF approaches typically agreed on the top two environmental 
predictors driving the outlier loci, only flipping between first and 
second when the difference in association strength was negligible.

3.3  |  Phenotypic variation

Populations grown from wild collected seed in the common gar-
den differed in all measured phenotypes (seedling emergence: 
p < 0.001; seed weight: p < 0.001; days to emergence: p < 0.001; 
shoot biomass: p < 0.001; average root diameter: p = 0.014; Figure 5 
and Figure S4). Variation among populations was high, for example, 
mean seed weight (measured from natural populations, not in the 
common garden) and shoot biomass were 3.3× and 4.3× greater, 
respectively, in the largest populations over the smallest (Figure 5). 
Correlations among environmental and phenotypic variables were 
consistent with local adaptation, as phenotypic variation was asso-
ciated with environmental variation across populations (Figures S1 
and S2). Only seedling emergence, seed weight, and shoot biomass 
had positive variance explained in the RF analyses with precipitation 
seasonality as overwhelmingly the largest predictor of phenotypic 
variation among populations (seedling emergence: r = 0.790, seed 

weight: r = 0.710, shoot biomass: r = 0.635; Figures 4 and 5). Days 
to emergence and average root diameter, while each having positive 
correlations to specific environment variables (Figures S1 and S2), 
had negative variance explained in RF indicating that broadly, when 
all ten environmental variables are included, environmental vari-
ables are no better at predicting variation in those two phenotypes 
than random chance.

PST - FST comparisons indicated seedling emergence, seed weight, 
and shoot biomass were more differentiated than neutral expecta-
tion (i.e., directional selection: PST > FST) while days to emergence 
and average diameter were not (Table S4, Figure S5). Furthermore, 
the critical values of the c/h2 ratio for seedling emergence, seed 
weight, and shoot biomass were low (0.042 and 0.578, respectively) 
indicating the robustness of our comparisons and conclusions. 
Because days to emergence and average diameter were not pre-
dicted by environmental variation and did not deviate from neutral 
expectations, the composite variable of seedling emergence, seed 
weight, and shoot biomass was used as representative of phenotypic 
variation when assessing environmental associations and compar-
ing to the GEA analyses (Table 2). There was considerable overlap 
in the environmental variables inferred to underlie local adaptation 
in both GEA (genetic) and common garden (phenotypic) analyses. 
Exceptions include annual mean temperature and heat load, which 
were the third- and fourth-ranked predictors of phenotypic varia-
tion but were relatively insignificant in the GEA analyses (Figure 4A). 

F I G U R E  2  Neutral and adaptive processes shape landscape genomic structure. Positive relationships between genetic distance and both 
(a) geographic and (b) environmental distances provide evidence for IBD and IBE. (c) Less evidence for an association between geographic 
and environmental distance is most likely due to the heterogeneous environments of the Great Basin. (d) Relative contributions of 
environmental and geographic distance to genetic distance were estimated using a piecewiseSEM. Geographic distance had a slightly larger 
relative impact on genetic distance (β = 0.379; or 0.293 + [0.286 × 0.300]) than on environmental distance when accounting for indirect 
effects. Conditional estimates (includes random effects) of variance explained are represented by the r2 under each response variable
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Even still, variable importance values for environmental variables 
were strongly correlated between the GEA and common garden 
(RF~GF: r = 0.717, RF~RDA: r = 0.346), mostly driven by associations 
with precipitation seasonality in both analyses.

Further evidence for the importance of environmental and ge-
netic variation on the phenotypic variation was provided by the vari-
ance partitioning approach combined with RDA and pRDAs. Taken 
together, genetics, environment, and geography explained a large 

TA B L E  1  Relevant environmental information for the sampled populations and summary statistics for sampling effort and genetic 
diversity (θπ). Inbreeding coefficients (F) are not reported, as most are effectively zero (mean = 0.0033). Gray rows indicate populations 
included in genetic analyses but not in the common garden

Site name, State Site abbr.
Precip. 
seasonality

Annual mean 
temp. (℃) Aspect Elev. (m) N θπ

Austin Summit, NV AS 0.322 7.72 244.80 2408 15 0.0206

Bald Mountain, NV BM 0.191 6.85 158.20 2245 14 0.0211

Buena Vista, OR BV 0.286 8.02 127.88 1277 15 0.0209

Dayton Hill, NV DH 0.600 10.54 342.90 1400 15 0.0210

Diamond Crater, OR DC 0.267 8.01 138.37 1295 14 0.0211

East Walker, CA EW 0.531 8.15 82.69 2043 10 0.0195

Finger Rock, NV FR 0.185 8.45 9.46 2129 15 0.0205

Hwy 140, NV HO 0.322 9.01 135.00 1423 13 0.0212

Jones Canyon, NV JC 0.406 9.25 205.02 1440 15 0.0209

Long Valley, CA LV 0.579 9.02 37.41 1660 12 0.0194

Modoc, CA MD 0.403 8.51 315.00 1333 15 0.0202

Patagonia, NV PT 0.469 10.72 24.78 1421 7 0.0204

Peavine Low, NV PL 0.643 9.09 38.66 1724 14 0.0205

Petrified Wash, NV PW 0.186 9.03 266.99 1871 10 0.0213

Smith Creek, NV SC 0.175 7.73 170.75 2050 14 0.0202

Spanish Springs, CA SS 0.307 7.54 356.19 1645 9 0.0195

Virginia Mountains, NV VM 0.561 9.64 145.01 1503 15 0.0209

F I G U R E  3  Environmental variation predicted population structure and was associated with pronounced allele frequency shifts at loci 
likely to be under selection (a) Redundancy analysis (RDA) of the genotype probabilities for each individual associated with environmental 
predictor variables (Table 2). Direction and length of arrows correspond to the loadings of each variable on the same two RDA axes. Point 
colors correspond to population colors in Figure 1. (b) The loadings of each locus onto the same two RDA axes and environmental predictor 
variables (vectors scaled 8.45× and 0.376× for graphical representation in “a” and “b”, respectively). The colored points indicate loci 
identified as outliers (±3.5 SD; p < 0.0005) on the first RDA axis. The top-right inset illustrates the proportion of variance explained (PVE) 
for each of the first six RDA axes, with the first RDA axis overwhelmingly explaining the most variance. Points are colored to match the 
environmental predictor of greatest association in both RDA and GF analyses with white representing outliers unique to RDA. The number 
of outlier loci associated with each variable is represented parenthetically. Environmental correlations can be positive or negative, thus the 
same colors can exist for outliers on the left and right
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proportion of phenotypic variance (PVE = 69.84%; Table 3, Figure 
S6, but when each variable was assessed individually, environment 
(PVE = 54.50%) and genetics (PVE = 52.66%) explained substantially 
more variance than geography (PVE = 21.26%). When looking at the 
partial contributions of each predictor independent of correlative 
effects of other predictors, environment contributed the most (adj. 
r2 = 16.12%), followed by genetics (adj. r2 = 12.94%), and geography 
contributing very little (adj. r2 = 2.57%).

4  |  DISCUSSION

An understanding of the distribution and function of landscape 
genomic variation in widespread, foundational species can provide 
insight into the evolution and maintenance of diversity and can be 
critical for managers seeking to preserve or restore communities 
facing climate change or other disturbances. Although phenotype-
environment and genetic-environment association analyses have 
each been widely employed, relatively few studies have applied both 
approaches, although their combined application could provide more 
comprehensive inference of local adaptation (Breed et al., 2019; 
Rellstab et al., 2015; Sork et al., 2013). Studies that have applied both 
approaches often report congruent evidence for the environmental 

contributions to local adaptation (e.g., Carvalho et al., 2021; De 
Kort et al., 2014; de Villemereuil et al., 2018; Mahony et al., 2020; 
Yoder et al., 2014). Consistent with such studies, our phenotype-
environment and genetic-environment association analyses generally 
implicated a consistent set of environmental variables and provided 
complementary evidence for local adaptation across the western 
Great Basin. While it can be challenging to separate the effects of 
maternal environment and genetics on trait variation in wild plants, 
the congruent environmental results from GEA analyses support the 
inference that phenotypic differentiation in the common garden was 
at least partially a genetically-based result of local adaptation.

Genetic-environment association analyses have increasingly 
been applied to studies of local adaptation because they can assess 
large numbers of individuals and populations across wide environ-
mental gradients and can be readily applied in taxa where common 
garden designs are not feasible (e.g., endangered species, species 
that are challenging to grow or have high seed dormancy, are long-
lived or highly vagile). However, GEA analyses can be limited by the 
spatial resolution of environmental data (Daly, 2006), confounding 
signals from drift or other aspects of population history (Hoban 
et al., 2016; Lotterhos & Whitlock, 2014), and potentially weak and 
diffuse signal underlying polygenic adaptation (Barghi et al., 2020; 
Rockman, 2012). Common garden approaches have drawbacks as 

F I G U R E  4  Local adaptation to specific environmental predictors illustrated across both GEA approaches and analyses of phenotypic 
data from a common garden. (a) Relative importance of each environmental variable (scaled from 0% to 100%, with 100% having the largest 
contribution) for both the phenotype-environment and genetic-environment associations. GEA analyses are represented in solid colors 
with loadings of the first RDA axis (dark) and split importance (R2) from GF (light). Relative importance of each environmental variable in the 
phenotypic analysis is represented by the importance R2 from RF and represented by the striped bar. The composite variable of seedling 
emergence, seed weight, and shoot biomass was used in the RF analysis to represent phenotypic variance within the common garden. The 
rank of each environmental variable within its analysis is displayed to the right of each bar. Concordance among the two GEA approaches is 
illustrated by strong correlation between the absolute value of the first RDA axis loadings and GF R2 for each environmental variable (b) as 
well as across the individual outlier loci (c). Concordance of environment variable association in the common garden with both GEA analyses 
is displayed in panels “d” and “e”
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well, including the challenges of reducing environmentally mediated 
maternal effects, limited phenotypic variation based on sampling or 
incomplete seed germination, laborious execution, unintended se-
lection imposed by the garden itself, and the exclusion of important 
ecological processes (e.g., herbivory or competition; Antonovics & 
Primack, 1982; Gibson et al., 2016; Sork et al., 2013). Additionally, 
common gardens tend to focus on phenotypes that are suspected to 
be components of fitness, but that might vary in the direction and 
magnitude of their effect on fitness in particular environments (Sork 
et al., 2013). While GEA analyses have been independently applied 
in restoration contexts without consideration of phenotypic data 
(e.g., Massatti et al., 2018, 2020; Shryock et al., 2017, 2021), stud-
ies utilizing both approaches should provide a more detailed under-
standing of how both genetic and phenotypic are variation shaped 
by adaptation to environments. Below we discuss genomic and 
phenotypic variation of E. nauseosa in the context of environmental 
heterogeneity across the western Great Basin, the distribution and 
causes of local adaptation, and the potential for such analyses to 
inform restoration.

4.1  |  Spatial genomic structure

The degree of fine-scale spatial genomic structure we detected was 
surprising given E.  nauseosa is wind dispersed and fairly continu-
ously distributed across its range (Anderson, 1984). Although levels 
of genetic differentiation between populations were by no means 
high (multilocus FST = 0.076; see Figure S3 for pairwise population 
estimates), genetic differentiation across fine geographic scales was 

illustrated by tight and often nonoverlapping clusters in PCA space. 
For example, several pairs of sampling localities separated by <10 km 
(e.g., FR to PW; LV to PL; BV to DC) formed wholly distinct clus-
ters (Figure 1B). The number of loci generated with our sequencing 
design likely improved our ability to recover such structure, which 
also appears to be influenced by the environmental and topographic 
complexity of the western Great Basin. Out-crossing appears to 
dominate in these populations, as individual inbreeding coeffi-
cient (F) estimates were close to 0 (mean F = 0.003). Although past 
studies of Ericameria have suggested high rates of self-fertilization 
(Anderson, 1966; McArthur et al., 1978), low levels of inbreeding 
indicated by our analyses could result from our sampling of adult 
plants if self-fertilization or inbreeding was associated with reduced 
seed set or seedling fitness. Further, estimates of nucleotide diver-
sity (θπ = 0.019–0.021; Table 1) revealed moderately high and con-
sistent levels of standing variation within the populations spanning 
our study region.

Genetic differentiation among populations was predicted by 
both geographic and environmental distances (Figures 1B and 2), 
indicating that population genetic structure is driven by stochastic 
processes, such as genetic drift, as well as those stemming from envi-
ronmental variation. A positive relationship between environmental 
and genetic distances among populations can arise from IBE, where 
gene flow is reduced across environmental gradients such as when 
divergent selection reduces effective migration among populations 
adapted to different local conditions (Shafer & Wolf, 2013; Wang 
& Bradburd, 2014). Across our sampled populations, environmen-
tal and geographic distances were weakly related (Figure 2C), elim-
inating some of the confounding demographic processes shaping 

TA B L E  2  Environmental variable abbreviations with descriptions and units used in the text and figures, and the range of values for each 
variable. Data for these variables are represented more fully in Table S3. Both genetic and phenotypic associations with each environmental 
variable are given for RDA (loading on the first axis), GF (split importance R2), and RF (importance R2). Rank represents the rank of that 
variable/analysis combination (i.e., 1 is most important, 10 is least). Number of loci is the number most highly correlated with each 
environmental variable with percent (%) out of the total outlier loci overlapping between RDA and GF (92 loci). Variables are ordered by their 
loading on the first RDA axis

Env. variable Description (units) Variable range

Genetic-environment association Common garden

RDA1 
(rank)

GF R2 
(rank) # loci (%) RF R2 (rank)

PrcpSeas Precipitation seasonalitya 0.18–0.64 0.666 (1) 0.026 (1) 52 (56.5%) 20.82 (1)

Slope Slope (degrees) 0.68–17.39 0.538 (2) 0.012 (5) 6 (6.5%) 1.15 (8)

Elevation Elevation (m) 1277–2408 0.526 (3) 0.014 (2) 13 (14.1%) 4.91 (7)

MinVPD Min. vapor pressure deficit (hPa) 1.28–3.30 0.497 (4) 0.009 (6) 3 (3.3%) 6.59 (6)

PrcpAnn Annual precip. (mm) 215.19–388.44 0.431 (5) 0.014 (3) 1 (1.1%) 6.69 (5)

Aspect Aspect (degrees from North) 9.46–356.19 0.409 (6) 0.012 (4) 11 (12%) 12.31 (2)

SoilMax Max. soil water capacity (cm) 89.77–163.34 0.362 (7) 0.007 (10) 1 (1.1%) 0.00 (9; tie)

CumlAET Cuml. actual evapotranspiration 
(mm per year)

185.29–275.46 0.299 (8) 0.008 (9) 4 (4.3%) 0.00 (9; tie)

TempAnn Annual temp. (℃) 7.1–10.7 0.267 (9) 0.008 (8) 1 (1.1%) 10.75 (3)

HL Heat load indexb 0.81–1.03 0.24 (10) 0.008 (7) NA 9.87 (4)

aPrcpSeas classes designated by Walsh and Lawler (1981).
bHL calculated from McCune and Keon (2002).
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spatial genomic variation that can potentially interfere with the 
detection of local adaptation. Similar studies of heterogeneous re-
gions of western North America have gone as far as estimating the 
relationship between geography and environment prior to sampling 
to ensure diverse environmental ranges and reduce confounding ef-
fects for inferring genetic-environment associations (e.g., Massatti & 
Knowles, 2020; Massatti et al., 2018). Here, we used a holistic ap-
proach (piecewiseSEM) to estimate the relative effects of geography 
and environment on genetic structure while accounting for spatial 
autocorrelation (Figure 2D). Environment had a slightly larger direct 
influence than geography on genetic distance among populations. 
Results from additional analyses, including constrained ordination 
(RDA) and machine-learning approaches (GF), are also consistent 
with an influence of environment on spatial genomic structure. 
Overall, our results suggest that local adaptation and reduced gene 
flow across environmental gradients has contributed to spatial ge-
netic structure, and that geographic proximity alone is not a great 
predictor of the environmental conditions underlying local adapta-
tion in this region (Hereford, 2009; Raabová et al., 2007). Thus, our 

results support the development of spatially-complex seed transfer 
zones (areas where seeds can be moved without loss of fitness) that 
are based on environmental, rather than geographic, distances (e.g., 
Bradley St. Clair et al., 2013; Massatti et al., 2020).

4.2  |  Genetic-environment associations

While reduced representation sequencing data have limits for char-
acterizing the genetic basis of adaptation (Lowry et al., 2017; but 
see Catchen et al., 2017; McKinney et al., 2017), our sequencing ap-
proach generated moderate marker density data (38,615 loci across 
the estimated ~528 Mb genome size or ~1 locus per 13 Kb), provid-
ing a sampling of genomic variation likely shaped by a continuum of 
evolutionary processes. Genetic-environment analyses have advan-
tages compared to more widely employed divergence outlier scans 
(i.e., FST outlier analysis) for inferring adaptation as they interrogate 
environmental variation associated with allele frequency shifts while 
detecting locus-specific signals of selection (Capblancq et al., 2018; 

F I G U R E  5  Phenotypic data from a common garden suggest local adaptation to precipitation seasonality. (a) Strong associations between 
seedling emergence and precipitation seasonality suggest local adaptation. Seedling emergence is calculated as the percentage of plants 
emerged and survived 40 days in each population. (b) Monthly precipitation averages from 30-year PRISM normals for three populations 
with the highest (PL), lowest (SC), and median (MD) precipitation seasonality. (c, d) Seed weight and shoot biomass vary by orders of 
magnitude among the populations. Additionally, their associations with precipitation seasonality (described by Pearson's r and p-values) are 
consistent with local adaptation. The line corresponds to the precipitation seasonality estimate of that population. The mean phenotype and 
95% bootstrapped confidence intervals are represented by the squares and error bars. The populations are ordered by seedling emergence, 
illustrating correlation among the phenotypes. Colors are the same as those in the Figure 1 map
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Forester et al., 2016, 2018; Lotterhos & Whitlock, 2015; Rellstab 
et al., 2015). The two GEA methods we employed (RDA and GF) 
detected an overlapping set of loci tagging genomic regions likely 
responding to local environmental variation (Figures 3 and 4C). The 
RDA detected 176 outlier loci (0.4% of total loci) associated with 
environmental variation, 96 of which were dually implicated by GF 
and largely attributed to the same environmental influence (95.8%; 
92 out of 96 loci). While GF has largely been used for genomic pre-
diction of maladaptation under future climate change scenarios 
(e.g., Bay et al., 2018; Capblancq et al., 2020; Keller et al., 2018), 
Fitzpatrick et al. (2021) recently showed that it also performs well 
for outlier loci detection. Combined and congruent results from RDA 
and GF provide genomic evidence for local adaptation of E. nauseosa 
populations across environmental space in the western Great Basin, 
even in the absence of phenotypic information.

The two GEA approaches also suggested a congruent set of envi-
ronmental variables has influenced local adaptation, with the stron-
gest contributions from precipitation seasonality, slope, aspect, 
elevation, and annual precipitation (Table 2, Figure 4A,B). Although 
the relative contribution and order of importance varied for genetic-
environment association across methods, the influence of environ-
mental variables and their association with outlier loci were strongly 
correlated (Figure 4B,C). Many of the implicated environmental 
variables are known to predict spatial variation in plant performance 
(Barga et al., 2018; Dilts et al., 2015; Stephenson, 1998) and are often 
thought to influence natural selection across plant species ranges 
(Dawson et al., 2000; Loveless & Hamrick, 1984; Reich et al., 2003). 
For example, in a meta-analysis of 161 common garden-based stud-
ies in the Great Basin, 75% identified locally adapted traits associated 
with environmental variables similar to those implicated here (e.g., 
seasonality, temperature, precipitation, soil, evapotranspiration, 
etc.; Baughman et al., 2019). Precipitation seasonality, a metric also 

strongly correlated with fall actual evapotranspiration (r  =  0.824), 
was overwhelmingly the strongest predictor in our analyses (Figures 
3 and 4). This variable has similarly been inferred to influence local 
adaptation in other recent GEA analyses of arid land plants (Shryock 
et al., 2017; Temunović et al., 2020). Precipitation seasonality values 
for our sampled localities ranged from 0.175 to 0.643 (Tables 1 and 
2), with locations having higher seasonality experiencing relatively 
high precipitation in the winter months (Figure 5B; Walsh & Lawler, 
1981). Ericameria nauseosa is a phreatophyte that develops a deep 
root system to access soil moisture and avoid low water potentials 
in the summer, when precipitation is scarce (Donovan & Ehleringer, 
1994). The importance of precipitation seasonality for predicting 
phenotypic variation, including seedling emergence and seed size, 
suggest that plants from more seasonal environments could be 
avoiding summer drought by relying on deep stores of water from 
winter precipitation (Branson et al., 1976). Additional variables impli-
cated by GEA analyses include slope, aspect, elevation, and annual 
precipitation, all factors that influence soil depth, water table level, 
and available water during summer drought (Måren et al., 2015; Van 
de Water et al., 2002).

4.3  |  Phenotypic variation in a common garden

Common garden experiments have long been used to quantify ge-
netically based phenotypic differentiation among populations and 
to infer local adaptation to environment (e.g., Baughman et al., 2019; 
Kawecki & Ebert, 2004; Lind et al., 2018). In our study, seed and 
seedling traits were substantially differentiated among populations 
(Figure 5 and Figure S4), suggesting they are controlled to some 
degree by genetic variation among populations. Further, pheno-
typic and environmental variation were strongly associated across 
sites, suggesting local adaptation driven by specific environmental 
variables (Figures 4 and 5, Figures S1 and S2). Phenotypic variation 
among populations for traits exhibiting environmental associations 
was also greater than expected under drift after accounting for 
population structure (i.e., PST > FST; Table S4, Figure S5). However, 
because we grew and measured seedlings from wild collected seeds, 
our design does not account for maternal effects (Gienapp et al., 
2008; Kawecki & Ebert, 2004). Environmental variation could shape 
maternal effects through, among other mechanisms, proximate in-
fluences on seed size (Donohue, 2009; Lampei et al., 2017; Roach 
& Wulff, 1987; Sultan et al., 2009), and E.  nauseosa seed size was 
correlated with environmental variation (e.g., precipitation season-
ality and annual precipitation; Figures S1 and S2) as well as other 
measured phenotypes (e.g., seedling emergence and shoot biomass). 
Thus, phenotypic differentiation could have arisen from genetic var-
iation, maternal effects, or a combination the two. Accounting for 
maternal effects can be challenging, requiring multiple generations 
of seed production in common gardens, and may not be feasible for 
many long-lived arid land plants or over management relevant time-
frames. Indeed, a recent review of phenotype-environment associa-
tion analyses of Great Basin plants found that only 19 (5.8%) of 327 

TA B L E  3  Variance partitioning of the individual and shared 
contributions of genetic, environmental, and geographic variation 
on phenotypic variation from the common garden experiment. All 
three predictors captured 69.84% of the total phenotypic variation. 
Adjusted r2 represents the individual contribution of the predictor 
with all others partialled out and the proportion of variance 
explained (PVE) represents the overall contribution without 
controlling for interactive effects among the predictors. Models are 
ordered by the greatest PVE

Model Adj. r2 (%) PVE (%)

Pheno ~ Gen + Env +Geo 20.36a 69.84*

Pheno ~ Gen + Env 19.52a 67.28*

Pheno ~ Env + Geo 0.00a 56.90*

Pheno ~ Env 16.12* 54.50*

Pheno ~ Gen + Geo 0.00a 53.72*

Pheno ~ Gen 12.94* 52.66*

Pheno ~ Geo 2.57* 21.26*

Residuals 30.16a –

aModel significance cannot be tested.
*Model significance (p ≥ 0.05) using RDA/pRDA.
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experiments accounted for maternal effects (Baughman et al., 2019). 
While we cannot easily distinguish among proximate and ultimate 
causes of seed weight variation across environments, our results 
are nonetheless consistent with past studies demonstrating that 
germination, emergence phenology, and seed and seedling traits are 
often heritable and evolve in response to environmental variation 
(e.g., Baughman et al., 2019; Caignard et al., 2019; Clauss & Venable, 
2000; Gremer & Venable, 2014; Hernández et al., 2019).

Congruence in the environmental variables implicated in 
phenotype-environment and genetic-environment association 
analyses also support the inference that phenotypic differences 
measured in the common garden are influenced by local adapta-
tion. Consistent with GEA analyses, precipitation seasonality had 
the strongest influence on seed and seedling phenotypic variation. 
Increases in this variable were associated with increased seedling 
emergence, seed weight, and shoot biomass (Figure 5 and Figure S1), 
possibly because the concentration of precipitation in the winter fa-
vors larger seeds that are more likely to germinate and produce larger 
seedlings (Brown et al., 1997). While aspect, annual mean tempera-
ture, and heat load also predicted phenotypic variation (Figure 4 and 
Figure S1), the specific timing and magnitude of precipitation was 
more predictive. Increased annual mean temperature and precipita-
tion were also associated with greater seedling emergence, heavier 
seeds, and bigger shoots (Figures S1 and S2). Temperature is known 
to influence germination and subsequent emergence in E. nauseosa: 
seeds from warmer habitats germinate more rapidly, while those 
from colder montane environments have greater dormancy and 
require extended periods of cold-wet stratification (Meyer et al., 
1989). Finally, increasing soil water capacity was associated with 
thicker and shorter roots (Figures S1, S2, and S4). While these soils 
have a greater capacity to store water, their higher clay content and 
finer texture lead to lower water potentials and greater water lim-
itation during summer. Thus, thicker roots may increase fitness by 
reducing root cavitation in these soils (Sperry & Hacke, 2002).

While inferences were broadly congruent between the 
phenotype-environment and genetic-environment association 
analyses, there were some inconsistencies as well. For example, 
annual mean temperature was strongly associated with pheno-
typic variation but was a minor contributor to GEA. Similarly, slope 
and elevation ranked highly in the GEA analyses but low in the 
phenotype-environment association analyses (Figure 4). Several 
factors, both within our experiment specifically and more gener-
ally, could have contributed to this discordance. First, our common 
garden focused on emergence phenology and seedling phenotypes 
suspected to have fitness consequences early in life, while the GEA 
analyses were based on variation in adult plants that survived in the 
wild for multiple years. Second, discordance may have arisen from 
the selective environment of the common garden itself (Gibson 
et al., 2016). That is, because not every sown seed germinated and 
survived, the common garden may have unintentionally represented 
a nonrandom set of phenotypic variation, which is almost inevitable 
when growing wild plants. Finally, strong phenotype-environment 
associations without strong GEA support could arise from traits 

more strongly influenced by maternal environment. Thus, the in-
complete congruence among inferences of local adaptation from 
phenotype-environment could represent fruitful areas for further 
study.

Since we sampled genetic variation from adult plants in nature 
and not from common garden seedlings, we could not directly quan-
tify genetic variation underlying phenotype in the garden (i.e., using 
genome-wide association). Nonetheless, a variance partitioning ap-
proach allowed us to examine the contribution of genetic, environ-
mental, and geographic variation among populations to phenotypic 
variation measured in the common garden. Genetic and environmen-
tal variation were much stronger predictors of phenotypic variation 
than geography (Table 3, Figure S6). Environment explained 54.50% 
of the variance in phenotype alone, while all three variables together 
explained 69.84% of the variation. As plants were grown and phe-
notyped in a common garden, the contribution of environment in 
these analyses likely represents a combination of genetic variation 
controlling phenotype (i.e., local adaptation to environmental vari-
ation across the sampled populations) and maternal effects, while 
the contribution of genetic variation represents genome-wide dif-
ferentiation among populations. As many plants are adapted to local 
environmental conditions (Leimu & Fischer, 2008), these results 
illustrate the importance of considering environmental variation in 
heterogenous landscapes where geographic proximity alone may be 
a poor predictor of local adaptation.

4.4  |  Implications for management

Despite being widespread, disturbance oriented, and wind dis-
persed, E.  nauseosa of the western Great Basin exhibited fairly 
pronounced spatial genomic structure, driven both by stochas-
tic processes and local adaptation to environmental variation. 
Because E.  nauseosa has not been widely included in large-scale 
restoration projects to-date, it is an ideal system for examining pro-
cesses underlying natural genomic variation (i.e., evolutionary his-
tory, local adaptation, gene flow, etc.) in plants of the Great Basin 
as extant population likely exhibit an unmanipulated representa-
tion of genetic diversity across its range. Inference of local adapta-
tion from our population genomic and common garden approaches 
implicated a largely consistent set of environmental variables and 
strongly pointed to precipitation seasonality as a major driver of 
local adaptation. Given the apparent importance of this variable in 
this and other recent studies of local adaptation in arid land plants 
(Baughman et al., 2019), seasonality may be generally important 
for shrub species of the Great Basin and could be incorporated into 
the estimation of seed transfer zones for taxa that have not been 
thoroughly studied, in addition to temperature and aridity, which 
are commonly used for this purpose (e.g., Bower et al., 2014). While 
there are clear advantages to pairing GEA and common garden ap-
proaches for the study of local adaptation (e.g., de Villemereuil 
et al., 2016), consistent results from both approaches from this and 
other recent studies (e.g., De Kort et al., 2014; Herrera et al., 2015; 
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de Villemereuil et al., 2018; Yoder et al., 2014) indicate GEA analy-
ses alone can usefully characterize the genetic signature and envi-
ronmental drivers of local adaptation in organisms where common 
gardens are not possible or practical. Additionally, our results il-
lustrate how congruence among approaches may bolster inference 
of local adaptation for phenotypic data measured in common gar-
dens for species where it is difficult to control for maternal effects. 
While higher marker density data (e.g., whole genome resequenc-
ing) will ultimately provide more thorough perspective on the 
genetic architecture of local adaptation, reduced representation 
sequencing provides an efficient means to sample large numbers 
of individuals and environments and can be applied across most 
organisms. Although such data lack critical perspective on pheno-
typic variation and its relation to fitness, it has the additional ben-
efit of providing information on genetic diversity, differentiation, 
and gene flow across space and environments that could be criti-
cal for predicting the response of populations to climate change 
(Capblancq et al., 2020; Waldvogel et al., 2020) and improving the 
resolution and accuracy of provenance collections for seed sourc-
ing strategies (Breed et al., 2019; Rossetto et al., 2019).
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