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    T cells adapt immune responses not only to the 
antigens, but also to the type of pathogen they 
face. Cell-based pathogens, such as viruses, in-
tracellular bacteria, and tumors evoke a CD4 +  
Th1 type of response characterized by the pro-
duction of IFN- � . In contrast, extracellular-
based pathogens, such as worms and allergens, 
evoke a Th2 type of response characterized by 
the production of IL-4, IL-5, and IL-13 ( 1 ). 
Recently, some bacteria and fungi have been 
found to evoke a Th17 type of response char-
acterized by the production of IL-17 (or IL-
17A), IL-17F, IL-21, IL-22, IL-6, and TNF- � , 
as well as IL-23 by APCs ( 2 – 6 ). The proinfl am-
matory Th17 response induces the recruitment 

of neutrophils and is involved in auto  immune 
infl ammatory diseases. However, the reactivity 
of T cells is modulated by T regulatory (T reg) 
cells. These include so-called natural Foxp3 +  T 
reg cells that are induced in the thymus ( 7 ) as 
well as adaptive Foxp3 +  or Foxp3  �   T reg cells 
that are induced in the periphery and produce 
TGF- �  and/or IL-10 ( 8, 9 ). 

 The generation of these distinct T cell ef-
fector types is under control of specifi c cyto-
kines and transcription factors ( 2 ). In mice, 
TGF- �  is required for the generation of both 
Th17 and T reg cells. The switch to the Th17 
pathway is induced by IL-6 and/or IL-21 ( 4 – 6, 
10 – 12 ), and requires IL-23 for full eff ector 
maturation ( 2, 3 ). However, TGF- �  together 
with IL-6 induces CD4 +  T cells to produce 
both IL-17 and IL-10, a population that is 
not able to induce infl ammation in mice ( 13 ). 
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 The nuclear hormone receptor retinoic acid receptor – related orphan receptor  � t (ROR � t) is 

required for the generation of T helper 17 cells expressing the proinfl ammatory cytokine 

interleukin (IL)-17. In vivo, however, less than half of ROR � t +  T cells express IL-17. We 

report here that ROR � t +  T �  �  cells include Foxp3 +  cells that coexist with IL-17 – producing 

ROR � t +  T �  �  cells in all tissues examined. The Foxp3 +  ROR � t +  T �  �  express IL-10 and 

CCL20, and function as regulatory T cells. Furthermore, the ratio of Foxp3 +  to IL-17 –

 producing ROR � t +  T �  �  cells remains remarkably constant in mice enduring infection and 

infl ammation. This equilibrium is tuned in favor of IL-10 production by Foxp3 and CCL20, 

and in favor of IL-17 production by IL-6 and IL-23. In the lung and skin, the largest popu-

lation of ROR � t +  T cells express the  �  �  T cell receptor and produce the highest levels of IL-

17 independently of IL-6. Thus, potentially antagonistic proinfl ammatory IL-17 – producing 

and regulatory Foxp3 +  ROR � t +  T cells coexist and are tightly controlled, suggesting that a 

perturbed equilibrium in ROR � t +  T cells might lead to decreased immunoreactivity or, in 

contrast, to pathological infl ammation. 
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chromosome (BAC) ( 40 ). An estimated 5 – 10 copies of the 
BAC transgene were integrated, as assessed by quantitative PCR. 
The expression pattern of EGFP in  Rorc( � t)-Gfp  TG  mice was 
identical to the one described previously in  Rorc( � t)  +/GFP  mice 
carrying one allele of  Rorc( � t)  inserted with EGFP ( 39, 41 ). 
Faithful expression of GFP was further confi rmed by immuno-
fl uorescence histology of GFP and endogenous ROR � t in 
various organs from  Rorc( � t)-Gfp  TG  mice. In all tissues ana-
lyzed, we found a strict correlation between GFP and ROR � t 
protein expression (not depicted). High expression of GFP 
was found in fetal lymphoid tissue inducer (LTi) cells, LTi-
like cells in the adult intestine, in immature CD4 + CD8 +  
thymocytes (not depicted), and in a subpopulation of pe-
ripheral T cells ( Fig. 1 A ).  The highest frequency of ROR � t +  
T cells was observed in the intestine, as previously reported 
( 39 ), which were localized in the lamina propria of the villi, 
whereas CD3  �   ROR � t +  cells, i.e., LTi-like cells, were clus-
tered in cryptopatches that are precursor structures to iso-
lated lymphoid follicles ( Fig. 1 C ) ( 42 ). ROR � t +  T cells 
were also found in all organs or tissues tested, including 
the LNs, spleen, lung, skin, and bone marrow ( Fig. 1 A ). As-
sessing the homogeneity of these populations within diff er-
ent organs, we observed that up to 50% of ROR � t +  T cells 
in the lung and skin expressed the  �  �  TCR instead of the 
 �  �  TCR ( Fig. 1 B ). ROR � t +  T �  �  cells expressed the high-
est levels of EGFP ( Fig. 1 A ) and none of the CD4 or CD8 
coreceptors ( Fig. 1 D ). 

 ROR � t +  T cells include both Th17 and IL-10 – producing 

Foxp3 +  T reg cells 

 We assessed whether ROR � t was a marker for IL-17 – pro-
ducing cells in both T �  �  and T �  �  populations, and stained 
ROR � t +  T cells for IL-17, IFN- � , and Foxp3. Surprisingly, 
even though a majority of IL-17 – producing cells expressed 
ROR � t ( Fig. 2 A ), only 15 – 50% of ROR � t +  T �  �  cells ex-
pressed IL-17, depending on the organ examined, and few but 
detectable numbers of ROR � t +  T �  �  cells produced both IL-
17 and IFN- �  ( Fig. 2 B ).  In contrast, a majority (50 – 90%) of 
ROR � t +  T �  �  cells expressed high levels of IL-17. Even more 
surprising, 15 – 50% of IL-17  �   ROR � t +  T �  �  cells expressed 
the T reg cell markers Foxp3 and CD25 ( Fig. 2, B and C ), with 
the highest incidence in LNs, even though Foxp3 +  ROR � t +  
T �  �  cells represented only a minority of the total population 
of Foxp3 +  T cells ( Fig. 2 A ). No ROR � t +  T �  �  cells were 
found to express both IL-17 and Foxp3, and no ROR � t +  T �  �  
cells expressed Foxp3 (not depicted). The coexpression of 
ROR � t and Foxp3 protein at the single cell level was con-
fi rmed by immunofl uorescence histology of the LNs ( Fig. 2 D ). 
Furthermore, Foxp3 +  ROR � t +  T �  �  cells were functionally T 
reg cells, as they suppressed in vitro proliferation of activated 
CD4 +  T cells ( Fig. 2 E ). 

 We next measured the expression, by the diff erent subsets 
of ROR � t +  T cells isolated by FACS (Fig. S1, available at 
http://www.jem.org/cgi/content/full/jem.20080034/DC1), 
of a restricted panel of genes involved in the Th17 and 

In contrast, IL-23 generates proinfl ammatory cells that pro-
duce only IL-17. In accordance with these fi ndings, sponta-
neous colitis is induced in mice defi cient for IL-10 ( 14 ), and 
the infl ammatory disease is prevented by concomitant defi -
ciency in IL-23 ( 15 ). The immunosuppressive IL-10 can be 
produced by all types of T cells, including a subset of T reg 
cells ( 16 ), and is induced by IL-27 in Th1 and Th2 cells ( 17 – 19 ). 
TGF- �  alone induces the T reg cell pathway ( 20 ) and is 
strongly promoted in the gut-associated lymphoid tissues by 
all-trans retinoic acid (RA) ( 21, 22 ). The generation of T reg 
cells requires the forkhead/winged-helix transcription factor 
Foxp3 ( 23 – 25 ). Mice defi cient in Foxp3 lack natural T reg cells 
( 24 ) and are highly susceptible to infl ammatory disease ( 26 ). 

 The development of infl ammatory pathologies, such as 
experimental autoimmune encephalomyelitis ( 27, 28 ), an an-
imal model of multiple sclerosis, collagen-induced arthritis 
(CIA) ( 29 ), and infl ammatory bowel disease ( 15, 30 ), depends 
on Th17 cells and IL-23. In humans, a coding variant of  Il23  
confers protection to Crohn ’ s disease ( 31 ). The Th17 – IL-23 
pathway in also involved in resistance to a growing list of 
bacterial and fungal pathogens in mice ( 11, 32 – 35 ), and Th17 
cells are readily isolated from patients with  Candida  infection 
( 36 ). However, a comprehensive picture of the class of path-
ogens targeted by this pathway remains to be drawn. T reg 
cells, on the other hand, and IL-10 in particular, have been 
shown to limit infl ammation and adaptive immunity to a va-
riety of pathogens ( 37 ), as well as to promote long-term T 
cell memory ( 38 ). Collectively, these studies demonstrate the 
essential role of the Th17 and the T reg cells in immunity, 
immunoregulation, and immunopathology. They also sug-
gest that a balanced expansion of these Th subsets during im-
mune responses might ensure effi  cient yet restrained immunity 
that limits damage to self. 

 The nuclear hormone receptor RA receptor – related or-
phan receptor  � t (ROR � t) is a marker for Th17 cells and is 
required for their generation ( 39 ). Using an enhanced GFP 
(EGFP) reporter mouse, we found that ROR � t +  T �  �  cells 
included IL-10 – producing Foxp3 +  T reg cells. These cells 
coexisted with IL-17 – producing ROR � t +  T �  �  cells in all 
tissues examined in an equilibrium regulated by Foxp3 and 
CCL20 in favor of Foxp3 +  cells, and by IL-6 and IL-23 in 
favor of IL-17 – producing cells. Foxp3 was shown to bind to 
ROR � t, suggesting that it directly regulates ROR � t activity. 
The equilibrium within ROR � t +  T �  �  cells was maintained 
during massive infl ammation of the intestine or the lungs, but 
it was perturbed in cancer. We suggest that the balanced ex-
pansion of ROR � t +  T �  �  cell subsets during infl ammation 
might ensure effi  cient yet regulated immunity, and that per-
turbation of this equilibrium might lead to inadequate immune 
reactivity to tumors, pathogens, or self. 

  RESULTS  

 Diversity and distribution of ROR � t +  T cells in vivo 

 To optimize the visualization of ROR � t +  cells, we have 
generated transgenic  Rorc( � t)-Gfp  TG  mice expressing EGFP 
under control of the  Rorc( � t)  locus on a bacterial artifi cial 
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more, CCR6, the receptor for CCL20, was expressed by 
both CD25 +  and CD25  �   ROR � t +  T �  �  cells (Fig. S4), sug-
gesting that CD25 +  ROR � t +  T �  �  cells can regulate the 
recruitment of ROR � t +  T �  �  cells. Interestingly, ICOS ( 43 ), 
CCL20 ( 13, 44 ), and MMP-9 ( 45, 46 ) have been associ-
ated with Th17 cells previously, but not with T reg cells, 
whereas CX 3 CL1 is normally expressed by activated endo-
thelial cells ( 47 ). 

 Generation and regulation of IL-17 +  or Foxp3 +  ROR � t +  cells 

 We further assessed how the generation of IL-17 – producing 
or Foxp3 +  ROR � t +  T cells in vivo was aff ected by the ab-
sence of factors shown to be required for the generation of 
Th17 or T reg cells, such as IL-6 ( 4 – 6, 10 – 12 ) and Foxp3 
( 24, 26 ). In IL-6 – defi cient mice, the number and proportion 
of ROR � t +  T �  �  cells, in particular of IL-17 – producing 
ROR � t +  T �  �  cells, were signifi cantly decreased, whereas 
the proportion of IL-10 – producing Foxp3 +  ROR � t +  T cells 
was unaff ected ( Fig. 4, A, C, and D ).  This confi rms the re-
quirement of IL-6 for the generation of Th17 cells, but also 
shows that IL-6 is not required for the generation of IL-10 –
 producing ROR � t +  T cells, even though in vitro it acts in 
synergy with TGF- �  to induce IL-10 – producing CD4 +  T 
cells ( 13, 17 ). In contrast, IL-17 – producing ROR � t +  T �  �  
cells were unaff ected by the absence of IL-6 ( Fig. 4 B ). 
Furthermore, in IL-12R � 1 – defi cient mice, unresponsive to 
both IL-12 and IL-23 ( 2, 3 ), the proportion of IL-17 – produc-
ing ROR � t +  T �  �  cells was slightly decreased ( Fig. 4, C and D ), 

T reg cell pathways using quantitative qRT-PCR arrays. As 
compared with ROR � t  �   T cells, ROR � t +  T cells expressed 
higher levels of  Rorc ,  Il17a ,  Il17f ,  il22 , and  Il23r , as expected, 
as well as of  Il10 ,  Icos ,  Ccl20 ,  Cx3cl1 , and  Mmp9  (Fig. S2). 
Expression of these genes was further examined in the in-
dividual ROR � t +  T cell subsets. As cells could not be fi xed 
and stained for Foxp3 expression before isolation for RNA 
recovery, Foxp3 +  ROR � t +  T cells were isolated on the ba-
sis of CD25 expression. As expected, CD25  �   ROR � t +  T �  �  
cells enriched in IL-17 – producing cells ( Fig. 2 C ), as well as 
ROR � t +  T �  �  cells, expressed high levels of  Il17a ,  Il17f , and 
 Il22  transcripts ( Fig. 3 A  and not depicted).  CD25 +  ROR � t +  
T �  �  cells expressed detectable levels of  Il17a  and  Il17f  tran-
scripts, probably due to the presence of a small population 
of IL-17 – producing CD25 +  cells ( Fig. 2 C ). In addition, 
ROR � t +  T �  �  cells, but not ROR � t  �   T �  �  cells, expressed 
 Csf2 , which codes for GM-CSF involved in the mobilization 
of granulocytes and monocytes. 

 CD25 +  (Foxp3 + ) ROR � t +  T �  �  cells specifi cally ex-
pressed high levels of the expected  Foxp3  transcript, as well 
as  Il10 ,  Icos ,  Ccl20 ,  Cx3cl1 , and  Mmp9 . IL-10 expression was 
confi rmed at the protein level, and Foxp3 + , but not Foxp3  �   
ROR � t +  T �  � , cells represented a major fraction of total IL-
10 – producing cells in LNs ( Fig. 3 B ), and to a lesser extent 
in the gut (Fig. S3, available at http://www.jem.org/cgi/
content/full/jem.20080034/DC1). The transcript coding for 
CCL20 was specifi cally expressed by Foxp3 +  ROR � t +  T �  �  
cells and barely detected in other T cell populations. Further-

  Figure 1.     Diversity and distribution of ROR � t +  T cells in vivo.  (A and B) Flow cytometry analysis of cells isolated from the organs of 8 – 12-wk-old 

 Rorc( � t)-Gfp  TG  mice. Plots are gated on CD3 +  cells (A) or GFP +  CD3 +  cells (B). Numbers indicate mean percent cells in quadrants  ±  SD obtained with at 

least three  Rorc( � t)-Gfp  TG  mice. LPLs, lamina propria lymphocytes isolated from small intestine; mLN, mesenteric LNs; BM, bone marrow. (C) Immunofl uo-

rescence histology of ROR � t +  cells in the small intestine of  Rorc( � t)-Gfp  TG  mice. Most ROR � t +  cells in villi are T cells, whereas ROR � t +  cells in crypto-

patches located between crypts are CD3  �   LTi cells. Bar, 50  μ m. (D) Expression of CD4 and CD8 �  by spleen GFP + TCR- �  +  and lung or GFP + TCR- �  +  cells.   



1384 EQUILIBRIUM BETWEEN TH17 AND REGULATORY ROR � T +  T CELLS  | Lochner et al. 

  Figure 2.     ROR � t +  T cells include Th17 and Foxp3 +  T reg cells.  (A and B) Flow cytometry analysis of cells isolated from  Rorc( � t)-Gfp  TG  mice. Cells 

were restimulated in vitro with PMA/ionomycin for 5 h and subjected to intracellular staining for GFP, IL-17, Foxp3, and/or IFN- � . Plots are gated on TCR-

 �  +  cells (A) and GFP + TCR- �  +  or GFP + TCR- �  +  cells (B). Numbers indicate mean percent cells in quadrants  ±  SD obtained with at least three  Rorc( � t)-Gfp  TG  

mice. (C) CD4 +  T cells isolated from the spleen and mesenteric LNs of  Rorc( � t)-Gfp  TG  mice were sorted into two populations based on their expression of 

GFP and CD25. Sorted cells were subsequently restimulated in vitro and stained for IL-17 and Foxp3. Results are representative of three independent ex-

periments. (D) Immunofl uorescence histology staining for GFP, ROR � t, Foxp3, and nuclei (DAPI) of a mesenteric LN isolated from a  Rorc( � t)-Gfp  TG  mouse. 

Arrowheads indicate cells expressing ROR � t and/or Foxp3. Bar, 20  μ m. (E) Proliferation assay of CD4 +  T cells isolated from the spleen and mesenteric LNs 

of  Rorc( � t)-Gfp  TG  mice and sorted into two populations based on their expression of GFP and CD25. CFSE-labeled CD25  �   responder T cells (2.5  ×  10 4 ) 

were cultured alone (left) or together with either GFP  �  CD25 +  T cells or GFP + CD25 +  T cells (2.5  ×  10 4  or 0.625  ×  10 4  cells). Cells were cultured in duplicates 

for 3 d in the presence of 10 5  irradiated spleen cells and anti-CD3 �  antibody. Numbers indicate frequency of proliferating cells ( ±  SD) obtained from three 

independent experiments.   
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marrow chimeras were generated by adoptive transfer of bone 
marrow from  Foxp3  sf   ×   Rorc( � t)-Gfp  TG  and WT mice into irra-
diated lymphopenic hosts (Fig. S5, available at http://www
.jem.org/cgi/content/full/jem.20080034/DC1). In such chi-
meras, ROR � t +  T cells do not express Foxp3, but cells from 
WT mice protected the host from a scurfy phenotype (not de-
picted).  Foxp3  sf  ROR � t +  T �  �  cells failed to generate IL-10 –
 producing cells and generated a reduced proportion of 
IL-17 – producing cells as compared with  Foxp3  wt  ROR � t +  
T �  �  cells in control chimeras ( Fig. 5, A and B ).  This shows 
that Foxp3 protein or Foxp3 +  cells are required for the genera-
tion of IL-10 – producing ROR � t +  T �  �  cells and, surprisingly, 
also favor the diff erentiation of IL-17 – producing ROR � t +  
T �  �  cells. 

 To test whether Foxp3 regulates ROR � t +  T �  �  cells 
through direct interaction with ROR � t, N-terminally FLAG-
tagged ROR � t was expressed in HEK293T cells together 
with Foxp3. Foxp3 was specifi cally coimmunoprecipitated 
with FLAG-ROR � t, indicating that the two factors inter-
act ( Fig. 5 C ). Collectively, these data suggest that Foxp3 

in accordance with the important but not essential role of IL-23 
in the generation of Th17 cells ( 2, 3 ). 

 It has recently been shown that Th17 cells isolated from 
SKG mice, which spontaneously develop arthritis, as well as 
human Th17 cells, express CCR6 ( 44, 48, 49 ).We therefore 
assessed the impact of CCR6 on the generation of IL-17 –
 producing or Foxp3 +  ROR � t +  T cells. In CCR6-defi cient 
mice ( 50 ), contrary to IL6- or IL12R � 1-defi cient mice, the 
proportion of IL-17 – producing ROR � t +  T �  �  cells was sig-
nifi cantly increased ( Fig. 4, C and D ). As CD25 +  (Foxp3 + ) 
ROR � t +  T �  �  cells specifi cally express  Ccl20  transcripts ( Fig. 
3 A ), these cells might regulate the generation of IL-17 – pro-
ducing ROR � t +  T �  �  cells through CCR6. 

 We next assessed whether Foxp3 regulates the generation 
of IL-17 –  or IL-10 – producing ROR � t +  T �  �  cells. Mice bear-
ing the  Scurfy  mutation in the  Foxp3  gene ( Foxp3  sf  mice) lack 
T reg cells ( 24, 26 ). In these mice, however, the analysis of 
ROR � t +  T cells was complicated by generalized auto immunity, 
and the development of immature ROR � t +  CD4  �  CD8  �   thy-
mocytes was abnormal (not depicted). Therefore, mixed bone 

  Figure 3.     ROR � t +  T cells express genes involved in the Th17 or T reg cell pathway.  (A) Cells isolated from the spleen and mesenteric LNs of 

 Rorc( � t)-Gfp  TG  mice were sorted into eight distinct populations based on their expression of GFP, CD3, TCR- � , TCR- � , CD4, and CD25 (Fig. S1), and gene 

expression was assessed using real-time PCR. Ct values were normalized to the mean Ct of fi ve housekeeping genes. Data are the mean of two or three 

independent experiments. (B) Foxp3 +  ROR � t +  T cells express IL-10. Cells isolated from LNs of  Rorc( � t)-Gfp  TG  mice were restimulated in vitro with PMA/

ionomycin for 5 h and subjected to intracellular staining for GFP, IL-17, Foxp3, and IL-10 or an isotype control. Numbers indicate percent cells in quad-

rants. Results are representative of at least three individual experiments.   
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covered in DSS-treated mice and both the frequency and the 
number of ROR � t +  T �  �  cells increased, but the ratio of IL-
17 – producing to Foxp3 +  ROR � t +  T cells remained constant. 
Similar results were obtained in mice exposed to intranasal in-
fection with infl uenza A virus, even though their lungs sus-
tained heavy leukocyte infi ltration ( Fig. 6 B ). In contrast, in 
 Rorc( � t)-Gfp  TG  x  Apc min/+   mice bearing colonic and ileal polyps 
and tumors ( 52 ), no signifi cant infi ltration of leukocyte and 
ROR � t +  T �  �  cells was observed in the colon and the termi-
nal ileum (Fig. S7, available at http://www.jem.org/cgi/
content/full/jem.20080034/DC1), whereas the mesenteric 
LNs were largely hyperplastic. The ratio of IL-17 – producing 
to Foxp3 +  ROR � t +  T cell in these LNs was signifi cantly de-
creased, even though the frequency and total number of 
ROR � t +  T �  �  cells were increased ( Fig. 6 C ). Similar results 
have recently been obtained comparing Th17 and Foxp3 cells 
in mice injected with B16 melanoma ( 53 ). These data indicate 
that the relative frequency of IL-17 – producing or Foxp3 +  
ROR � t +  T �  �  cells can remain constant during severe infl am-
mation or infection. However, chronic tumors can alter this 
balance in favor of the generation or recruitment of Foxp3 +  
ROR � t +  T �  �  cells producing the immunosuppressive IL-10. 

induces the generation of IL-10 – producing ROR � t +  T cells 
and regulates ROR � t activity directly. On the other hand, 
ROR � t is required for the generation of Th17 cells ( 39 ), 
but not for the generation of  “ mainstream ”  Foxp3 +  and/or 
IL-10 – producing T cells. In  Rorc( � t)-Cre  TG   ×   Rosa-Stop  fl   -
Dta  mice, which lack ROR � t +  T cells due to their specifi c 
expression of the lethal diphtheria toxin subunit A ( 51 ), no 
or few IL-17 – producing cells were detected (not depicted), 
and the proportion of total Foxp3 +  or IL-10 – producing cells 
was unaff ected (Fig. S6, available at http://www.jem.org/
cgi/content/full/jem.20080034/DC1). 

 Equilibrium between IL-17 +  or Foxp3 +  ROR � t +  cells 

during infl ammation 

 Given the prominent role of IL-17 – producing cells in infl am-
mation and of IL-10 – producing cells in immune regulation, 
we assessed if and how the relative frequencies of the diff er-
ent ROR � t +  T cell subsets were modifi ed in mice endur-
ing severe intestinal infl ammation, virus infection, or cancer. 
Dextran sodium sulfate (DSS) was administered orally to 
 Rorc( � t)-Gfp  TG  mice until the development of chronic intesti-
nal infl ammation ( Fig. 6 A ).  A high number of T cells was re-

  Figure 4.     The role of IL-6, IL-12R � 1, and CCR6 in the generation of ROR � t +  T cell subsets.  (A and B) Cells were isolated from the spleen of 

 Rorc( � t)-Gfp  TG  (WT) or  Il6   � / �     ×  Rorc( � t)-Gfp  TG  (IL-6 ° ) mice, restimulated in vitro with PMA/ionomycin for 5 h and subjected to intracellular staining for 

GFP, IL-17, Foxp3, and IL-10. Plots are gated on GFP + TCR- �  +  cells (A) or GFP + TCR- �  +  cells (B). Numbers indicate percent cells in quadrants and are repre-

sentative of two independent experiments. (C) Cells were isolated from the spleen, mesenteric LN, and lung of  Rorc( � t)-Gfp  TG  (WT),  Il12rb1   � / �     ×  Rorc( � t)-

Gfp  TG  (IL12R � 1 ° ),  Ccr6   � / �    ×   Rorc( � t)-Gfp  TG  (CCR6 ° ), or  Il6   � / �     ×  Rorc( � t)-Gfp  TG  mice (IL-6 ° ) and processed as in A and B. Histograms report percent 

GFP + TCR- �  +  cell subsets in total T cells. Each bar also shows the percentages of IL-17 +  and Foxp3 +  cells within the GFP + TCR- �  +  cell population. (D) Histo-

grams report the ratio of the frequencies of IL-17 – producing GFP + TCR- �  +  cells to Foxp3 +  GFP + TCR- �  +  cells as indicated in the fi gure. Three to fi ve mice 

were analyzed per group. *, P  <  0.05 as compared with WT.   
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population level ( 39 ), but not in individual cells expressing 
Foxp3. In contrast to their in vivo counterparts, however, 
few in vitro – derived Foxp3 +  ROR � t +  T �  �  cells expressed 
IL-10, which was rather expressed by ROR � t  �   T �  �  cells. 
IL-10 was not induced by TGF- �  alone but required the ad-
dition of IL-6, as found previously ( 13, 17 ), or the addition 
of IL-21. IL-10 production was inhibited in the presence of 
RA, even though RA favored the generation of Foxp3 +  
ROR � t +  T �  �  cells and decreased the generation of IL-17 –
 producing cells in the presence of TGF- �  and IL-6. A com-
bination of TGF- �  with IL-6 (with or without RA) or IL-21 
generated IL-17 – producing as well as IL-10 – producing or 
Foxp3 +  ROR � t +  T �  �  cells, showing that the engagement of 
these pathways is not mutually exclusive at the cell popula-
tion level, in agreement with recent reports ( 13, 17 ). ROR � t +  
T �  �  cells producing both IL-17 and IL-10 could be gener-
ated in the presence of TGF- �  and IL-6, but Foxp3 +  ROR � t +  
T cells produced neither IL-10 nor IL-17 (not depicted). 
Collectively, these data show that even though naive CD4 +  

 Generation of Th17, Foxp3 + , or IL-10 – producing ROR � t +  

T cells in vitro 

 Many steps in the diff erentiation pathway of Th17 cells have 
been inferred from in vitro studies. We therefore assessed if 
the distinct subsets of ROR � t +  T �  �  cells we have identifi ed 
in vivo were derived in vitro from naive CD4 +  T cells. TGF-
 �  together with IL-6 or IL-21 induced the generation of 
Th17 cells from naive CD4 +  T cells ( 4 – 6, 10 – 12 ) after mas-
sive up-regulation of ROR � t expression after 1 – 2 d of cul-
ture ( Fig. 7 ) ( 39 ).  In contrast, TGF- �  alone induces the 
generation of T reg cells ( 20 ). However, we also observed 
that most cells up-regulated of ROR � t after 1 – 2 d of culture 
in the presence of TGF- �  alone, and all Foxp3 +  cells co-
expressed ROR � t after 2 – 3 d. Up-regulation of ROR � t was 
specifi c to these conditions because stimulation under Th1 con-
ditions did not induce ROR � t +  expression (Fig. S8, available at 
http://www.jem.org/cgi/content/full/jem.20080034/DC1). 
Expression of ROR � t in the culture of naive CD4 +  T cells 
in the presence of TGF- �  has been shown before at the 

  Figure 5.     Regulation of ROR � t +  T cells by Foxp3.  (A and B) Bone marrow cells isolated from CD45.2 +   Rorc( � t)-Gfp  TG  (WT) or  Foxp3  sf   ×   Rorc( � t)-

Gfp  TG  (Scurfy) mice were mixed with bone marrow cells isolated from CD45.1 +  C57BL/6 mice and injected into irradiated lymphopenic mice. 6 wk after 

transfer, cells were isolated from the spleen, LN, and lung and restimulated in vitro with PMA/ionomycin for 5 h and subjected to intracellular staining for 

GFP, IL-17, Foxp3, and IL-10. (A) Spleen cells are gated on GFP + TCR- �  +  cells. Numbers indicate percent cells in quadrants. Reconstitutions with CD45.1 +  

and CD45.2 +  cells were comparable in all chimeras. Results are representative of two independent experiments. (B) Histograms report percent GFP + TCR-

 �  +  cell subsets in total CD45.2 +  T cells (see  Fig. 4 C ). *, P  <  0.05 as compared with WT. (C) Immunoprecipitation of ROR � t and Foxp3. Foxp3 was expressed 

in HEK293T cells alone or together with N-terminally FLAG-tagged ROR � t. Total cell lysates or immunoprecipitates (IP) using anti-FLAG antibody were 

blotted and probed with antibodies to Foxp3, FLAG, or  � -actin. Results are representative of two independent experiments.   
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cells were found in all organs examined, including the LNs, 
spleen, lung, skin, and bone marrow. This extended distribu-
tion of ROR � t +  T cells was not due to infection, as specifi c 
pathogen-free mice were used in all experiments. This dis-
crepancy might be explained by the sensitivity of the reporter 
mice that have been used. Ivanov et al. ( 39 ) used a knock-in 
mouse encoding one copy of the  Egfp  reporter gene inserted 
into the  Rorc( � t)  locus ( 41 ), whereas we used a transgenic 
mouse encoding 5 – 10 copies of a BAC carrying a similar  Egfp  
insertion and therefore induces a brighter reporter expression. 
The more extended distribution of ROR � t +  IL-17 – producing 
T cells, in particular in the LNs and spleen, might better ex-
plain the occurrence of Th17-dependent infl ammatory disease 
in the brain or joints of mice enduring experimental auto-
immune encephalomyelitis or CIA ( 27 – 29, 39 ). 

 Foxp3 +  ROR � t +  T �  �  cells were an important fraction 
of ROR � t +  T cells. They produced the immunosuppressive 
IL-10 and functioned as genuine T reg cells in vitro. Further-
more, these cells, but not IL-17 – producing ROR � t +  T cells, 
also expressed high levels of the transcript coding for CCL20. 
This transcript was undetected in ROR � t  �   T cells, suggest-
ing that Foxp3 +  ROR � t +  T cells were the main source of 
CCL20 in T cells, even though it might be expressed by a 
small subset of ROR � t  �   T cells. In accordance with our re-
sults, McGeachy et al. ( 13 ) have reported that CD4 +  T cells 

T cells diff erentiate in vitro into IL-17 – producing, IL-10 –
 producing, or Foxp3 +  ROR � t +  T �  �  cells, substantial diff er-
ences exist with the in vivo ROR � t +  T �  �  cell subsets in the 
phenotype of the cells producing IL-10, and the proportion 
of Foxp3 +  cells expressing ROR � t. 

  DISCUSSION  

 In this study, we have shown that ROR � t +  T cells include 
both IL-17 –  and IL-10 – producing Foxp3 +  T reg cells, which 
are endowed with proinfl ammatory and regulatory functions, 
respectively. In addition, ROR � t +  T cells include T �  �  cells 
producing high levels of IL-17 in an IL-6 – independent path-
way. The relative frequency of IL-17 –  or IL-10 – producing 
ROR � t +  T �  �  cells is maintained constantly during infection 
or infl ammation, suggesting that a robust mechanism main-
tains an equilibrium between these two eff ector arms. How-
ever, this equilibrium is perturbed in mice harboring intestinal 
tumors. IL-6, Foxp3, and CCR6, and to a lesser extent IL-23, 
are essential regulators of this equilibrium. 

 Ivanov et al. ( 39 ) reported that ROR � t +  T cells or IL-
17 – producing cells were only present in the intestinal lamina 
propria. These authors therefore suggested that the intestinal 
fl ora induces the diff erentiation of ROR � t +  IL-17 – produc-
ing T cells. We show now that although these cells are more 
abundant in the intestine, sizeable populations of ROR � t +  T 

  Figure 6.     Equilibrium in ROR � t +  T cell subsets during pathology.  (A)  Rorc( � t)-Gfp  TG  mice were treated with DSS in the drinking water for 6 d, fol-

lowed by water for 10 d. This protocol was repeated for a total of three cycles. After the last cycle, cells isolated from the colon were restimulated in vitro 

with PMA/ionomycin for 5 h and subjected to intracellular staining for GFP, IL-17, and Foxp3. Histograms (from left to right) report percent GFP + TCR- �  +  

cell subsets in total T cells (see  Fig. 4 C ), total numbers of ROR � t +  T �  �  cells present in the organ, and the ratio of IL-17 – producing to Foxp3 +  cells within 

ROR � t +  T �  �  cells (see  Fig. 4 D ). Right panels show immunofl uorescence histology of a colon from a healthy or a treated  Rorc( � t)-Gfp  TG  mouse. Bar, 

100  μ m. (B)  Rorc( � t)-Gfp  TG  mice were infected intranasally with 100 PFUs of infl uenza A virus for 7 d. Cells were then isolated from the lung and processed 

as in A. Right panels show immunofl uorescence histology of a lung from healthy or an infected  Rorc( � t)-Gfp  TG  mouse. Bar, 50  μ m. (C) Cells were isolated 

from the mesenteric LNs of a 4-mo-old  Rorc( � t)-Gfp  TG   ×   Apc min/+   mouse and processed as in A. Right panels show immunofl uorescence histology of a 

mesenteric LN from a normal or a tumor-bearing mouse. Bar, 100  μ m. Data shown are representative of at least three independent experiments. Three to 

four mice were analyzed per group. *, P  <  0.05 as compared with control (mock-treated or WT mice).   
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through the recruitment and activation of eff ectors, as well as 
through tissue remodeling through MMP-9. It might be sug-
gested that the role of Foxp3 +  ROR � t +  T cells is not merely 
to regulate infl ammation through IL-10, but also to partici-
pate in the recruitment of infl ammatory cells such as Th17 cells 
to an immunosuppressive environment. On the other hand, 
we cannot formally exclude that Foxp3 +  ROR � t +  T cells con-
tain distinct functional subsets of IL-10 – producing and/or 
CCL20-, ICOS-, MMP-9 – , and CX 3 CL1-expressing cells. 

 Of note, 30 – 50% of ROR � t +  T �  �  cells did not express 
IL-17, IL-10, or Foxp3. We could not purify these cells from 
IL-17 producers for transcript analysis, as no markers were 
found to distinguish these cells before intracellular cytokine 
staining. It is possible that non – IL-17 and non – IL-10 pro-
ducers contained uncommitted ROR � t +  T cells, i.e., not yet 
committed to either the Th17 or the T reg cell pathway. 
They could also represent a third committed subpopulation 
that remains to be characterized. In favor of the fi rst hypoth-
esis, only few IFN- �  –  and no IL-4 – producing cells (not de-
picted) could be detected in ROR � t +  T cells. 

 ROR � t +  T �  �  cells have been reported previously to rep-
resent 50% of total T �  �  cells in the lamina propria of the 
small intestine, a majority of them expressing IL-17 ( 39 ). In 
the CIA model, 60 – 80% of V � 4 +  T �  �  cells and an equivalent 
number of CD4 +  T �  �  cells produce IL-17 in the draining 
LNs ( 58 ). Furthermore, T �  �  cells are a primary source of IL-
17 in the lung before and during infection with  Mycobacterium 
tuberculosis  ( 59 ) or  Mycobacterium bovis  ( 60 ), and V � 1 +  T �  �  
cells produce IL-17 during intraperitoneal infection with 
 Escherichia coli  ( 61 ). In accordance with these data, we found 

cultured in the presence of TGF- �  and IL-6, which produce 
both IL-17 and IL-10, express  Ccl20 , in contrast to cells cul-
tured with IL-23 alone, which produce only IL-17. CCL20 
is the ligand for CCR6, suggesting that Foxp3 +  ROR � t +  T 
cells regulate the recruitment of CCR6 +  T cells. Th17 cells 
isolated from SKG mice, which spontaneously develop ar-
thritis, as well as human Th17 cells, express CCR6 ( 44, 48, 
49 ). CCR6 is also expressed by a subset of  “ memory-like ”  
CD25 +  T reg cells that produce elevated levels of  Il10  tran-
scripts ( 54 ). We found that 35 – 50% of ROR � t +  T �  �  cells 
expressed CCR6, regardless of their expression of CD25 (or 
Foxp3). Importantly, CCR6-defi cient mice generated an in-
creased ratio of IL-17 –  to IL-10 – producing ROR � t +  T �  �  
cells as compared with WT mice. These results suggest that 
Foxp3 +  ROR � t +  T cells producing IL-10 and CCL20 re-
cruit CCR6 +  ROR � t +  T cells and negatively regulate their 
diff erentiation into IL-17 – producing cells. 

 Foxp3 +  ROR � t +  T cells also expressed elevated levels of 
the costimulatory receptor gene  Icos , shown to be essential for 
the induction of CIA and the optimal generation of Th17 
cells ( 43, 55 ). The expression of ICOS is also induced by IL-
23 in human cells ( 56 ). Furthermore, Foxp3 +  ROR � t +  T 
cells specifi cally expressed the metalloproteinase gene  Mmp9 , 
induced by IL-23 in a mouse tumor model ( 57 ), by IL-17 in 
the lung ( 45 ) and by IL-17R in infl amed joints ( 46 ), as well 
as elevated levels of the fractalkine gene  Cx3cl1 . The func-
tional consequences of elevated expression of  Icos ,  Mmp9 , 
and  Cx3cl1  by Foxp3 +  ROR � t +  remain to be explored, but 
this expression pattern appears paradoxical as the product of 
these genes might promote rather than modulate infl ammation 

  Figure 7.     Generation and differentiation of ROR � t +  T �  �  cells in vitro.  MACS-sorted naive (CD62L + ) CD4 +  T cells from the spleens of  Rorc( � t)-

Gfp  TG  mice were stimulated in duplicates with anti-CD3 �  and anti-CD28 in the presence of blocking anti – IFN- �  and anti – IL-4 antibodies and the indi-

cated cytokines or RA. After different periods of time, cells were restimulated with PMA/ionomycin for 5 h and analyzed by fl ow cytometry for the 

expression of GFP, Foxp3, IL-17, and IL-10. All plots are gated on TCR- �  +  cells, except plots for IL-10 that are gated on GFP + TCR- �  +  cells. Numbers indicate 

percent cells in quadrants. Data are representative of three independent experiments.   
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 The ratio of Th17 to T reg cells within ROR � t +  T cells 
varied between organs, with the highest proportions of Th17 
cells in the intestine and lung, and of Foxp3 +  ROR � t +  T cells 
in the LNs. This ratio was tuned in favor of Th17 cells by IL-
6 and IL-23, as the ratio of IL-17 – producing to Foxp3 +  
ROR � t +  T cells decreased in IL-6 –  or IL-12R � 1 – defi cient 
mice. However, in IL-6 – defi cient mice, the total number of 
ROR � t +  T �  �  cells was also signifi cantly diminished, indicat-
ing that IL-6 is involved more generally in the generation of 
ROR � t +  T �  �  cells, as observed previously ( 6, 39 ). Con-
versely, the ratio of Th17 to T reg cells within ROR � t +  T 
cells was tuned in favor of T reg cells by Foxp3 and CCL20, 
as inferred from scurfy mice or CCR6-defi cient mice. Foxp3 
might regulate the fate of  “ uncommitted ”  ROR � t +  T cells 
into IL-17 –  or IL-10 – producing cells by directly modifying 
the molecular function of ROR � t, as Foxp3 was coimmuno-
precipitated with ROR � t. Foxp3 might also act through 
Foxp3 +  ROR � t +  T cells or  “ mainstream ”  Foxp3 +  T cells 
regulating ROR � t +  T cells. Interestingly, cells derived from 
scurfy mice generated a decreased proportion of ROR � t +  
T �  �  cells and IL-17 – producing ROR � t +  T �  �  cells, indicat-
ing a more complex role for Foxp3 in the generation and reg-
ulation of ROR � t +  T �  �  cells that remains to be elucidated. 

 A robust mechanism maintains an equilibrium between 
Th17 to T reg cells within ROR � t +  T cells. During massive 
infl ammation induced by DSS in the intestine, the total num-
ber of ROR � t +  T cells increased 10-fold in the intestine and 
 > 10-fold in infl uenza A virus – infected lungs. However, the 
numbers of IL-17 –  and IL-10 – producing (Foxp3 + ) ROR � t +  
T cells were increased in comparable proportions. Regulat-
ing IL-17 versus IL-10 production might promote infl amma-
tion while limiting  “ collateral ”  damage, a necessary compromise 
between eff ective immunity and tissue integrity. IL-10 – defi -
cient mice, which lack one of these eff ectors arms, generate 
increased proportions of IL-17 – producing CD4 +  T cells and 
develop spontaneous colitis in an IL-23 – dependent pathway 
( 15 ). In contrast,  Apc min/+   mice that developed large colon 
and ileal polyps and tumors by 3 – 4 mo of age generated an 
increased proportion of IL-10 – producing ROR � t +  T cells. 
Similar observations have been made in mice injected with 
the B16 melanoma, which develop an increased ratio of 
Foxp3 +  cells versus IL-17 – producing cells as early as 8 d after 
tumor injection ( 53 ). The mechanisms used by tumors to 
alter the equilibrium between IL-17 –  and IL-10 – producing 
ROR � t +  T cells remain to be investigated, but this phe-
nomenon is reminiscent of the IL-10 – mediated immuno-
suppression induced by diverse viruses and bacteria ( 63 ). In 
contrast, the equilibrium between IL-17 –  and IL-10 – producing 
ROR � t +  T cells might be disrupted in favor of Th17 cells 
in chronic infl ammatory diseases such as rheumatoid arthritis, 
multiple sclerosis, or infl ammatory bowel disease. Tools to 
control the fate of ROR � t +  T cells might therefore prove 
useful either to boost or to limit IL-17 – producing cells. Poten-
tial targets include ROR � t as well as any factors that regu-
late the diff erentiation of ROR � t +  T cells into IL-17 –  or 
IL-10 – producing eff ectors. 

that ROR � t +  T �  �  cells were a major source of IL-17 in the 
lung and skin, as  > 80% of them produced IL-17, represent-
ing half of the total ROR � t +  T cell population in these 
compartments. ROR � t +  T �  �  cells expressed no Foxp3, but 
produced the highest levels of ROR � t, as well of  Il23r  and 
 csf2  coding for GM-CSF. The latter induces the diff erentia-
tion of granulocytes and monocytes, as well as the production 
of proinfl ammatory cytokines such as TNF- �  and IL-6 ( 62 ). 
In contrast to ROR � t +  T �  �  cells, IL-17 – producing ROR � t +  
T �  �  cells were not aff ected by the absence of IL-6 in defi -
cient mice, indicating that ROR � t +  T �  �  cells and IL-17 –
 producing ROR � t +  T �  �  cells are generated by distinct 
pathways. Collectively, these data suggest that ROR � t +  T �  �  
cells play an important role in infl ammation to pathogens 
through the production of IL-17 and GM-CSF; however, 
their precise role in vivo remains to be assessed. 

 ROR � t is required for the generation of Th17 cells and 
has been shown to induce Th17 cells when transduced into 
mouse naive CD4 +  T cells ( 39 ). Furthermore, naive CD4 +  T 
cells cultured in the presence of TGF- �  and IL-6 or IL-21 
generate Th17 cells ( 4 – 6, 10 – 12 ) and IL-17 – producing 
ROR � t +  T cells ( Fig. 4 ). We fi nd that a large fraction of 
ROR � t +  T �  �  cells expressed Foxp3, in particular in the 
LNs, as well as the immunosuppressive IL-10, and functioned 
as T reg cells. It has been shown previously that culture con-
ditions that favor the generation of Th17 cells from naive 
CD4 +  T cells, i.e., in the presence of TGF- �  and IL-6, also 
induce the generation of IL-10 – producing cells ( 13, 17 ). But 
in contrast to the in vivo situation, IL-10 was produced by 
Foxp3  �   rather than Foxp3 +  ROR � t +  T cells, indicating that 
these culture systems might not faithfully replicate in vivo 
pathways. Interestingly, RA blocked the generation of IL-
10 – producing cells, whereas it favored the generation of 
Foxp3 +  ROR � t +  T cells. Furthermore, cultures of CD4 +  T 
cells in the presence of TGF- �  and IL-6 or IL-21 generated 
ROR � t +  T cells expressing both IL-17 and IL-10, as ob-
served previously ( 13, 17 ). However, ROR � t +  T cells pro-
ducing both cytokines could not be detected in vivo, exposing 
potential confl icts between in vivo and in vitro diff erentia-
tion pathways. 

 Most cells cultured in the presence of TGF- �  alone ex-
pressed ROR � t after 1 – 2 d, but then diff erentiated into 
Foxp3 +  ROR � t +  T cells that did not express IL-17 after 2 –
 3 d. It has been previously reported that TGF- �  alone in-
duces signifi cant levels of  Rorc( � t)  transcripts but no detectable 
 Il17  or  Il23r  transcripts ( 4 – 6 ). These data indicate that ROR � t 
is necessary but not suffi  cient for the generation of Th17 
cells from naive CD4 +  T cells, in accordance with the ob-
servation that cells cultured in the presence of TGF- �  and 
IL-6 express ROR � t after 1 – 2 d, but express IL-17 only 
after 2 – 3 d of culture ( Fig. 4 ) ( 39 ). Collectively, these data 
indicate that TGF- �  is opening a ROR � t-dependent dif-
ferentiation pathway in CD4 +  T cells that leads either to 
Th17 or T reg cells, depending on the presence of matura-
tion and polarizing factors such as IL-6, IL-21, RA, IL-23, 
and possibly IL-10. 
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 In vitro proliferation assay.   2.5  ×  10 4  FACS-sorted CD4 + CD25  �   T cells 

were labeled with CFSE using CellTrace Cell Proliferation kit (Invitrogen) 

and cultured alone or in the presence of 2.5  ×  10 4  (or 0.625  ×  10 4 ) of either 

GFP +  or GFP  �   CD4 + CD25 +  T cells sorted from the spleen and LNs of 

 Rorc( � t)-Gfp  TG  mice. T cells were stimulated in duplicates with irradiated 

splenic feeder cells (10 5  per well) and 1  μ g/ml of soluble anti-CD3 in 96-

well U-bottom plates for 96 h. 

 Gene expression analysis.   To obtain RNA for gene expression analysis by 

real-time RT-PCR, 500 – 5,000 cells were directly sorted into vials containing 

RLT buff er (QIAGEN) supplemented with  � -mercaptoethanol, and total 

RNA was extracted using an RNeasy Micro kit (QIAGEN). The quality of 

total RNA was assessed using the 2100 Bioanalyzer system (Agilent Technol-

ogies). 250 – 500 pg of high quality total RNA was subjected to one linear 

mRNA amplifi cation cycle using the MessageBooster kit for quantitative 

RT-PCR (Epicentre Biotechnologies). 50 – 100 ng of amplifi ed mRNA was 

then converted to cDNA using the RT 2  PCR Array fi rst strand kit (SuperArray 

Bioscience Corporation). All procedures were performed according to the 

manufacturer ’ s protocols. The expression of 84 diff erent genes was measured 

using the mouse Th17 RT 2  Profi ler PCR Array (SuperArray Bioscience Cor-

poration). Real-time PCR was performed on a PTC-200 thermocycler 

equipped with a Chromo4 detector (Bio-Rad Laboratories). Data were ana-

lyzed using Opticon Monitor software (Bio-Rad Laboratories). 

 Immunofl uorescence histology.   Tissues were washed and fi xed over-

night at 4 ° C in a fresh solution of 4% paraformaldehyde (Sigma-Aldrich) in 

PBS. The samples were then washed for 1 d in PBS, incubated in a solution 

of 30% sucrose (Sigma-Aldrich) in PBS until the samples sank, embedded in 

OCT compound 4583 (Sakura Finetek), frozen in a bath of isopentane 

cooled with liquid nitrogen, and stocked at  � 80 ° C. Frozen blocs were cut 

at 8- μ m thickness, and sections were collected onto Superfrost/Plus slides 

(VWR). Slides were dried for 1 h and processed for staining or stocked at 

 � 80 ° C. For staining, slides were fi rst hydrated in PBS-XG (PBS containing 

0.1% Triton X-100 and 1% normal goat serum; Sigma-Aldrich) for 5 min 

and blocked with 10% bovine serum in PBS-XG for 1 h at room tempera-

ture. Endogenous biotin was blocked with a biotin blocking kit (Vector 

Laboratories). Slides were then incubated with primary polyclonal antibody 

or conjugated mAb (in general 1/100) in PBS-XG overnight at 4 ° C, washed 

three times for 5 min with PBS-XG, incubated with secondary conjugated 

polyclonal antibody or streptavidin for 1 h at room temperature, washed once, 

incubated with DAPI (Sigma-Aldrich) for 5 min at room temperature, washed 

three times for 5 min, and mounted with Fluoromount-G (SouthernBiotech). 

Slides were examined under an AxioImager M1 fl uorescence microscope 

(Carl Zeiss, Inc.) equipped with a CCD camera, and images were processed 

with AxioVision software (Carl Zeiss, Inc.). 

 Immunoprecipitation.   A FLAG-encoding sequence was added to the 5 �  

end of the  Rorc( � t)  cDNA by PCR and cloned into the pIRES2-EGFP vec-

tor (Clontech Laboratories, Inc.), and the  FoxP3  cDNA was cloned into the 

pIRES-DsRed vector (Clontech Laboratories, Inc.). 4  μ g of each construct 

was cotransfected into 1.106 293T cells using Lipofectamine 2000 (Invitro-

gen). After 48 h, immunoprecipitation was performed using the FLAG 

Tagged Protein Immunoprecipitation kit (Sigma-Aldrich) and resolved on a 

10% gel bis-tris acrylamide gel. 

 DSS and infl uenza.   To induce colitis,  Rorc( � t)-Gfp  TG  mice were treated 

with 2.5% DSS (MP Biomedicals) in the drinking water for 6 d, followed by 

water for 10 d. This protocol was repeated for a total of three cycles. To infect 

lungs,  Rorc( � t)-Gfp  TG  mice were infected intranasally with 100 PFUs of infl u-

enza A virus (H3N2 strain Scotland/20/74), and mice were killed after 7 d. 

 Chimeras.   Bone marrow cells isolated from CD45.2 +   Rorc( � t)-Gfp  TG  or 

 Foxp3  sf   ×   Rorc( � t)-Gfp  TG  mice were treated with a lineage depletion kit 

(Miltenyi). Purifi ed cells were then mixed in a 1:1 ratio with lin  �   bone mar-

row cells from CD45.1 +  C57BL/6 mice, and a total of 4  ×  10 5  was injected 

 MATERIALS AND METHODS 
 Mice.   BAC-transgenic  Rorc( � t)-Gfp  TG  or  Rorc( � t)-Cre  TG  mice were generated 

as described previously ( 40 ). The coding sequence for EGFP or Cre, including 

the stop codon, was inserted into exon 1 of  Rorc( � t)  in place of the endog-

enous ATG translation start codon, on a 200-kb BAC (Invitrogen) carrying at 

least 70 kb of sequence upstream of the  Rorc( � t)  translation start site. Transgenic 

mice used in transfer experiments were backcrossed eight times to C57BL/6 

mice. CCR6-defi cient ( 50 ),  Rosa-Stop  fl   -Dta  ( 51 ), and  Rag2   � / �   Il2rb   � / �   ( 64 ) 

mice have been described previously.  Foxp3  sf ,  Il12rb1   � / �  ,  Il6   � / �  , and  Apc min/+   

mice were obtained from The Jackson Laboratory. All mice were kept in 

specifi c pathogen – free conditions, and all animal experiments were approved 

by the committee on animal experimentation of the Institut Pasteur and by 

the French Ministry of Agriculture. 

 Antibodies.   The following mAbs were purchased from BD Biosci-

ences: PE-conjugated anti – IL-17 (TC11-18H10), PerCP-conjugated anti-

CD4 (RM4-5) and purifi ed anti-CD3 �  (145-2C11), and anti – IFN- �  

(XMG1.2). The following were purchased from eBioscience: PE-conju-

gated anti – IL-10 (JES5-16E3), TCR- �  (GL3), TCR- �  (H57-597), and rat 

IgG1 isotype control; APC-conjugated anti – IL-10 (JES5-16E3), CD45.2 

(104), TCR- �  (H57-597), and rat IgG2b isotype control; PE-Cy5 – con-

jugated anti-Foxp3 (FJK-16S); PE-Cy7 – conjugated anti-CD4 (GK1.5), 

CD8 �  (53-6.7), and streptavidin; biotinylated anti – TCR- �  (GL3), CD25 

(PC61.5), and CD45.2 (104); APC-Alexa750 – conjugated anti-CD3 �  

(17A2); Alexa647-conjugated anti – IFN- �  (XMG1.2); and purifi ed anti-

CD28 (37.51) and anti – IL-4 (11B11). PE-conjugated anti-CCR6 was from 

R & D Systems. Purifi ed anti-GFP (A-11122) and FITC-conjugated anti –

 rabbit polyclonal antibodies were from Invitrogen. Anti-ROR �  was de-

scribed previously ( 41 ). 

 Flow cytometry.   Fragments of small intestine or colon were fi rst incubated 

in PBS (Ca/Mg free) containing 15 ml of 1 mM DTT and 3 mM EDTA, 

and then for 40 min at 37 ° C in DMEM medium containing 1 mg/ml colla-

genase (Roche) and 1 U/ml DNase (Invitrogen). Lung and ear skin were di-

rectly incubated for 40 min to 1 h at 37 ° C in DMEM medium containing 

collagenase and DNase. Tissue suspensions were then pressed through a 100-

 μ m mesh, pelleted, resuspended in a 40% isotonic Percoll solution (GE 

Healthcare), and underlaid with an 80% isotonic Percoll solution. Centrifu-

gation for 20 min at 2,000 rpm yielded the mononuclear cells at the 40 – 80% 

interface. Cells were fi nally washed twice with PBS-F (PBS containing 2% 

FCS). Single cell suspensions were prepared from the thymus, spleen, and 

LNs by pressing the tissues through a 100- μ m mesh and from the bone mar-

row by fl ushing the long bones with PBS. All cells were fi rst preincubated 

with mAb 2.4G2 to block Fc �  receptors, and then washed and incubated 

with the indicated mAb conjugates for 40 min in a total volume of 100  μ l 

PBS-F. For intracellular cytokine staining, cells were stimulated for 5 h in 

complete medium in the presence of 50 ng/ml phorbol 12-myristate 13-ac-

etate and 500 ng/ml ionomycin (both from Sigma-Aldrich). For the last 2 h, 

10  μ g brefeldin A (Sigma-Aldrich) was added to the cultures. After surface 

staining for CD3, CD4, TCR- � , and/or TCR- � , cells were fi xed with fresh 

2% paraformaldehyde in PBS for 20 min. Intracellular staining was per-

formed in permeabilization-solution (1% saponin in FACS buff er) with 

anti – IL-17 (BD Biosciences), anti – IFN- � , anti-Foxp3, and/or anti – IL-10. 

Polyclonal anti-GFP was used to increase GFP signal during intracellular 

staining. Cells were analyzed on a FACSCanto (BD Biosciences), followed 

by analysis with FlowJo software (Tristar). 

 In vitro T cell diff erentiation.   Spleen and mesenteric LN cells from 

 Rorc( � t)-Gfp  TG  mice were pooled and T cells were purifi ed using a CD4 +  T 

cell isolation kit (Miltenyi) and further sorted into naive CD4 + CD62L +  cells 

using CD62L Microbeads (Miltenyi). 3  ×  10 5  cells were stimulated for 1 – 3 d 

in complete DMEM with 5  μ g/ml anti-CD3, 5  μ g/ml anti-CD28,  10   μ g/ml 

of neutralizing anti – IFN- � , and 10  μ g/ml anti – IL-4 in the presence of 10 ng/ml 

human TGF- � , 10 ng/ml mouse IL-6, 100 ng/ml mouse IL-21, and/or 100 nM 

RA (Sigma-Aldrich). 
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