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Abstract
The cortical code that underlies perception must enable subjects to perceive the world at time scales relevant for behavior.
We find that mice can integrate visual stimuli very quickly (<100 ms) to reach plateau performance in an orientation
discrimination task. To define features of cortical activity that underlie performance at these time scales, we measured
single-unit responses in the mouse visual cortex at time scales relevant to this task. In contrast to high-contrast stimuli of
longer duration, which elicit reliable activity in individual neurons, stimuli at the threshold of perception elicit extremely
sparse and unreliable responses in the primary visual cortex such that the activity of individual neurons does not reliably
report orientation. Integrating information across neurons, however, quickly improves performance. Using a linear decoding
model, we estimate that integrating information over 50–100 neurons is sufficient to account for behavioral performance.
Thus, at the limits of visual perception, the visual system integrates information encoded in the probabilistic firing of
unreliable single units to generate reliable behavior.
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Introduction
Animals regularly identify the presence of external stimuli and
make decisions based on this evidence within very short time
intervals (Thorpe et al. 1996; Keysers et al. 2001; Yilmaz and
Meister 2013; Hoy et al. 2016). Reliable performance with limited
information requires a robust representation of the external
world, but the structure of neural activity that underlies repre-
sentation of sensory stimuli in circumstances where evidence is
fleeting or scarce is not known.

In primates and carnivores, a natural time scale exists for
integrating visual information—the fixation duration. Within an
intersaccadic duration (150–350 ms [Guo et al. 2006; Berg et al.
2009]; cf. ∼ 1000 ms for rodents [Sriram et al. 2016]), the subject
gathers information from a part of the visual scene and extracts

stimulus information relevant to behavior (orientation, motion,
color, etc.), suggesting that behaviorally relevant information
can be extracted in a few hundred milliseconds. Rapid process-
ing of sensory information has obvious evolutionary benefits
(Yilmaz and Meister 2013; Hoy et al. 2016), but the relation-
ship between performance and neural representation has not
been carefully investigated. One reasonable hypothesis would
be that animals integrate information for a duration that leads
to reliable responses in cortical neurons. We sought to address
this possibility by carefully comparing the reliability of cortical
representation with the quality of behavioral performance.

In several species (Holmes 1918; Cowey and Stoerig 1995;
Rees et al. 2002; Petruno et al. 2013), the activity of neurons in the
primary visual cortex (V1) enables conscious perception of visual
patterns in the world (though unconscious blind sight effects do
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not require V1 [Marcel 1983; Leopold 2012; Petruno et al. 2013]).
Within cortical visual pathways, visual information is thought
to be represented by a sparse and distributed neural code (Field
1994; Vinje and Gallant 2000; Kremkow et al. 2016). Such rep-
resentations can be energetically favorable (Levy and Baxter
1996; Bell and Sejnowski 1997), have higher capacities than local
codes (where each stimulus is represented by the activity of a
small number of neurons), and are capable of generalization
and tolerant to error. Constraining neural responses to be sparse
and distributed in network models has recreated many of the
properties of neurons in the early visual system (Olshausen and
Field 1996). Most stimulus parameters associated with evok-
ing sparse responses nonetheless produce reliable stimulus-
locked responses. It is not known if this response reliability
is required for the system to extract meaningful information.
Several additional questions remain unanswered: 1) How sparse
can the responses be and still have animals perform reliable
discrimination? 2) What “code” do animals use to detect and
discriminate between stimuli? and 3) How many neurons are
required to perform these discriminations? Answers to these
questions have the potential to yield insight into how animals
learn, integrate, and process information over short time scales
to support decision making.

In this study, we first establish that mice can rapidly integrate
evidence over time to support decision making. Remarkably,
we find that mice achieve plateau performance at time scales
less than 100 ms. We then measure the electrophysiological
responses of neurons across the layers of V1 to such short
stimuli. These include neurons that send and receive inputs to
various other cortical and subcortical areas (Glickfeld, Ander-
mann, et al. 2013) and could be involved in integrating relevant
visual information. We find that there is only a marginal change
in V1 neural activity under these conditions and a majority of
neurons show no stimulus-evoked activity even for stimuli in
their receptive fields—the average V1 neuron fails to fire a single
action potential on a vast majority of the trials.

To quantify how well individual neurons perform in discrim-
inating visual stimuli, we developed a simple logistic regression
model to quantify the contribution of each neuron to the dis-
crimination task. For short-duration stimuli, we find that the
vast majority of recorded units were poor discriminators with
only a small fraction (∼11%) consistently discriminating the ori-
entation of the stimulus above chance. While consistent, these
neurons never improved discrimination of the visual stimulus
more than a few percentage above chance. Based on the model,
we can project the population requirement for the orientation
discrimination task. We find that mice would need to integrate
from a few tens to a few hundred neurons from individually
unreliable responses to account for the reliable performance of
mice in the orientation discrimination task. This constitutes a
small fraction (<0.1%) of the total number of neurons available to
encode the stimulus in V1 of the mouse (Schuz and Palm 1989),
indicating that mice can use sparse and highly unreliable neural
responses to efficiently extract information to enable decision
making at the limits of sensory perception.

Materials and Methods
All procedures were performed with the approval and guidance
of the Institutional Animal Care and Use Committee at the
University of California, San Diego, CA and at Biogen, Cambridge,
MA. We used N = 39 adult male and female mice for this study.

Behavioral Training

Behavioral training methods were adapted from training
systems developed previously for rats (Meier et al. 2011).
Water-restricted adult (>P90) male and female mice were
trained to use an operant conditioning chamber to receive
water rewards while performing visually guided tasks. Water
restriction and behavioral training/testing continued 5 days a
week followed by weekends where subjects received water ad
libitum. Measuring subject weight over time enabled careful
monitoring of dehydration status. Subject weight was kept
above 90% of adult, non–water-restricted weight. The operant
conditioning chamber was a transparent arena with 3 ports
(spaced 10 cm apart) to record mouse responses and provide
water rewards. The arena was adjacent to an LCD screen
(Viewsonic V3D245, 60 Hz) that displayed visual stimuli. The LCD
was linearized with a Spyder2 Pro (DataColor) with a measured
maximum luminance of 100 cd/m2 and an approximately
equal luminance across the R, B, and G channels. The screen
subtended an angle of 100◦ × 65◦ (width × height) with respect to
the subject. Mice licked the request port (center port) to display a
visual stimulus on the monitor. Mice responded to the displayed
stimulus by licking one of the response ports (left and right
ports). Correct responses were rewarded with a small droplet of
water (∼10 μL), while incorrect responses were punished with
a timeout (5–20 s). Auditory feedback consisting of beeps of
various frequencies and white noise stimuli were also included
to further indicate the nature of the responses: correct, incorrect,
try again, etc. Throughout the training and testing process, we
varied the reward size and the timeout duration to maintain
high motivation in the subject.

Task Sequence and Parameters of Stimuli for Behavior

Mice learned visual discrimination tasks over many weeks
performing hundreds of trials a day and many thousand
trials over the course of the experiment. High performance in
the orientation discrimination tasks was achieved by taking
the mice through a series of shaping steps. These steps
trained naïve mice in using the operant chamber effectively
and in learning the structure of a self-directed 2-alternative
forced-choice (2AFC) trial before training them on orientation
discrimination. We describe the shaping steps for 2 experiments
relating to behavior: basic characterization of orientation
tuning (see Supplementary Table 1) and measuring integration
times (see Supplementary Table 2). Preliminary experiments
determined the specific parameters used to probe behavior in
the orientation discrimination task. The spatial frequency of
the gratings used for these experiments (0.08 cpd) maximized
performance in most subjects. We used gratings tilted 45◦
to the vertical instead of vertical and horizontal gratings to
prevent subtle variations in contrasts while rendering vertical
versus horizontal gratings from influencing the behavior
in an orientation-independent fashion. While preliminary
experiments used full-screen stimuli, all behavioral data shown
in the paper used a circular aperture with a diameter of ∼ 60◦.
This ensured that the spatial frequency of the stimulus at
the edge of the aperture was no greater than 0.11 cpd. This
spatial frequency was not so different as to change the overall
performance of the animal and yet was high enough to allow
multiple cycles of gratings within the aperture such that the
mean luminance presented varied by less than 2% at different
times during the trial (for drifting gratings) or for different trials
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(for flashed gratings). When different contrasts were shown
on the screen, the stimuli presented were isoluminant with
the mean luminance equal to the background luminance. While
identifying the integration duration of subjects, we used flashed
gratings with random spatial phases instead of drifting gratings
because, for the durations tested, the stimulus would have
changed only a little and would have changed inconsistently
from trial to trial. The randomized phases prevented the animal
from using luminance information to perform the task—they
had to use the overall angle of the grating presented to perform
the task.

Analysis of Behavior

We programmatically capture various facts about each trial
performed by subjects. This allowed us to perform a quantitative
assessment of behavioral performance. In our tasks, the subjects
have complete control over when trials are requested and when
they respond to trial requests. For analysis, we excluded trials
that were completed within 50 ms. Such fast responses would
have required unattainable motor speeds and likely indicated
water-clogged ports due to incomplete reward consumption.
This condition excluded <0.1% of the trials. We further excluded
trials that took >5 s. This was to ensure that we only counted
trials where subjects were highly motivated to perform the task,
excluding trials where subjects were distracted or in a low
motivational state. The fraction of trials rejected due to large
Reaction times (RTs) did not exceed 3.05% in any of our subjects
and averaged 1.18 ± 0.91% (mean ± standard deviation [SD]).
We measured confidence intervals (CIs) on the performance
(number of trials correct/number of trials in total) using the
Clopper–Pearson method (Clopper and Pearson 1934) and the
significance of difference in binomial proportion using Agresti–
Caffo statistics (Agresti and Caffo 2000).

Psychometric Data Fitting

In the experiments where we vary various features of the sen-
sory input (contrast and duration), we model subject perfor-
mance as a function of the strength of the stimulus:

P(s) = F
(

s − m
ω

; λ, γ
)

where P is the psychophysical performance function and F is
the logistic function, such that

F (x; λ, γ ) = γ + (1 − λ − γ )

(
1

1 + e−x

)

where s is the strength of stimulus, m is the stimulus strength at
half-maximum performance, ω is the width of the psychometric
function (stimulus strengths where the psychometric function
changes), λ is the lapse rate, and γ is the guessing rate. In our
analysis of contrast threshold, we define stimulus contrast at
half-maximum performance as the threshold contrast (denoted
as υ), and in our analysis of integration times, we define the
stimulus duration at half-maximum performance as the thresh-
old integration time (denoted as τ ). Since all our behavioral data
were obtained with a 2AFC trial structure, we set γ to 0.5 in our
analyses. Consistent with this assumption, when subjects were
presented with trials having little or no information about the
correct response (zero-contrast stimulus or very-low–duration
stimulus), subjects’ performance was no better than chance.

We then identified those parameters (m, ω, λ) that best fit our
data. To identify these parameters, we used constrained max-
imum likelihood techniques—techniques that maximize the
likelihood of the given data for some estimates of the unknown
parameters, subject to constraints—to create point estimates.
These analyses forced guessing rates to 0.5 (50%) and assumed
that priors for the lapse rates (λ) followed a beta distribution
with shape parameters (1.2, 12) while the priors for m and ω were
flat through the stimulus range. We sampled from the posterior
distribution using Markov chain Monte Carlo techniques and
used the 95-percentile range of the marginal of the posterior
distribution of the fitted parameters as the CI. Our analyses are
based on previously described open-source methods (psignifit)
(Fründ et al. 2011). In experiments where we varied the duration
of the stimulus, we measured the total time required to reach
90% of the maximum performance as the total integration time
(“T” in Fig. 1C).

Animal Variability and Use of Average Subject

The perceptual thresholds measured varied from animal
to animal. We fit psychometric tuning curves to the responses
of individual animals and report the ranges of the fit parameters
where applicable. When we report aggregate values, we used
the values fit from the responses of an average subject.
We simulated the average subject from the responses of all
the animals in the population. However, different subjects
performed different numbers of trials based on individual trial
rates. Eight subjects were included in the contrast threshold
estimation study where subjects performed between 2803 and
6078 trials averaging 4255 ± 1192 (mean ± SD). Six subjects were
included in the visual integration study where subjects per-
formed between 16 098 and 54 654 trials averaging 32 051 ± 13 896
(mean ± SD). To ensure equal weight for each animal in
measuring aggregate fit parameters, we sampled the same
number of trials from each subject randomly across stimulus
conditions. We created the average subject by concatenating
these sampled responses. To ensure that the sampling process
did not bias estimates, we performed the resampling process
1000 times. We report the mean of the most likely estimates
across these 1000 resamples for the average subject.

Recording Electrode Implantation Surgery for Chronic
Probes

We used standard surgical techniques to implant NeuroNexus
probes (Neuronexus Inc., Ann Arbor, MI, USA) into V1. Adult mice
were anesthetized under isoflurane (2.5% [v/v] for induction and
1.5% [v/v] for maintenance). After subjects were anesthetized,
the fur from the top of the head was shaved and the mouse
was injected with atropine to minimize secretion (0.3 mg/kg)
and dexamethasone to prevent inflammation (2.5 mg/kg). Sub-
jects were then placed on a stereotaxic frame (Stoelting Co., IL,
USA). The scalp over V1 was removed using surgical scissors,
and the skull dried. A small (∼0.5-mm) craniotomy was made
over the monocular region of V1, and NeuroNexus probes were
inserted (Poly2, Poly3, and A4x2-tet configurations) into the
craniotomy. The open craniotomy was covered with silicone
gel. A second adjacent craniotomy was made over the olfac-
tory bulb, and ground/reference screws were installed here. The
exposed skull surface was then closed using dental cement. A
custom-designed head bar was also installed to enable head
fixing for later experiments. Subjects were then removed from
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Figure 1. Mice integrate visual information quickly using activity in V1. (A) Schematic of trial structure for measuring integration time. Subjects control stimulus onset,

but stimulus offset is under experimental control. (B) Performance improves with stimulus duration. Performance of individual subjects (thin lines) at high contrast
(100%, dark blue) and at low contrast (15%, light green) as well as performance with 95% CI of average subject (thick lines) at high and low contrasts (light green)
are plotted. CIs for short-duration stimuli are small and are hardly visible. (C) Sigmoid fits to performance of average subject at high contrast (dark blue) and at low
contrast (light green). The threshold integration time (τ ), total integration time (T), and lapse rates (λ) for fits obtained for high-contrast stimuli are graphically denoted.

Maximal likelihood estimates of (D) threshold integration time (τ ), (E) total integration time (T), and (F) lapse rates (λ) for the individual subjects along with the average
animal (bold circles) at high contrast (dark blue) and low contrast (light green) are shown. (G) Schematic of behavior. Subjects control stimulus onset; stimulus offset
is under experimenter control. Stimuli last 100 ms and showed low-contrast gratings (c = 0.15). On random half of trials, a blue LED light is delivered to fiber-optic
cannulae attached to the skull of the animal. LED stimuli last 100 ms longer than the visual stimulus (H) Epifluorescent image of visual cortical neurons with PV+
neurons in green and neurons expressing ChR2 in red imaged from coronal slices approximately over V1 (top panel) for mice expressing ChR2 (middle panel) and
sham mice (bottom panel). (I) Average performance in trials with (“+LED”) and without (“no LED”) LED activation for 4 subjects expressing ChR2 in PV+ interneurons
and 2 sham subjects not expressing Channelrhodopsin. Average performance is significantly reduced for PV-ChR animals (paired t-test, P = 0.0345) but not for sham
animals (paired t-test, P > 0.05). Abbreviations: Req.: Request; Stim: Stimulus; Resp.: Response; Reinf.: Reinforcement.

the stereotaxic frame and allowed to recuperate in a heated
chamber and injected with buprenorphine for postoperative
pain management (Subcutaneous injection, 0.3 mg/kg). All V1
recordings began at least 5 days postsurgery. In a small number
of animals, chronic NeuroNexus probes were installed along
with movable electrode drives to sample neural populations at
different depths for each session.

Headcap Surgery for Acute Recording Preparation

The surgical procedure was identical to that of the chronic probe
surgery in all respects except that no craniotomy was performed

over V1. The skull surface was cleaned, and the area over V1
was covered with a thin layer of cyanoacrylate-based glue and
allowed to dry completely. The animal was allowed to recover
for 5 days after surgery.

Channelrhodopsin Expression and Fiber-optic Cannula
Implantation

Channelrhodopsin-2 (ChR2) was targeted into parvalbumin-
positive (PV+) fast-spiking interneurons within V1 through
1 of 2 ways: 1) PV-cre (JAX:0080609) subjects were injected
with 200–400 nL of AAV2-Flex-ChR2-tdTomato (UPenn Vector
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core Cat# AV-9-20297P) at various depths using a Nanoject II
(Drummond Scientific) bilaterally over V1, and 2) PV-cre animals
(JAX:0080609) were crossed with Flex-ChR2 (JAX:024109) and
F1 progeny positive for both genes were selected for behavior.
Fiber-optic cannulae (MFC_480/500-0.63_3mm_ZF1.25(G)_B60,
Doric Lenses Inc.) were implanted into the open craniotomies
over V1 such that the fiber terminus lay over the exposed brain
surface. The open skull was covered with dental cement, and the
mouse was removed from the stereotaxic frame and set aside for
recuperation. As a light stimulation negative control, 2 subjects
underwent a sham injection. These subjects (PV-cre:0080609)
were implanted with fiber-optic cannulae over V1 without viral
injection.

Optogenetic Manipulation During Behavior

Subjects implanted with fiber-optic cannulae were allowed
to recuperate for 5 days, after which they were reintroduced
into the behavior chamber. We established baseline behavioral
performance in the orientation discrimination task for ∼ 1 week
before attaching the animal to a fiber-optic light source.
Transistor-Transistor Logic (TTL) pulses from the behavior
computer controlled the LED light source (M470F3, Thorlabs)
through an LED driver (LEDDB1, Thorlabs). This light entered the
behavior arena via an optical commutator (FRJ_1x1_FC_FC, Doric
Lenses), then split into two through a 1 × 2 branching fiber-optic
patch cord (BFP(2)_480/500/900-0.63_0.3m_FCM-2xZF1.25(F),
Doric Lenses), and mated with the cannulae with a plastic
sleeve. Based on prior estimates of stimulus latency within V1
(Haider et al. 2013), we extended the LED light stimulation past
the visual stimulus by 100 ms. Thus, LED lights started with
stimulus onset and finished ∼ 100 ms after stimulus offset. We
estimate the LED power to be ∼ 9 mW at the fiber tip leading to
a power density of ∼ 12 mW/mm2.

Stimulus Presentation and Electrophysiological
Recording from Chronic Probes

Subjects that underwent electrode implantation surgery were
allowed to recuperate for 5 days. We acclimated subjects to being
head fixed for 2 days before recording from V1 neurons. Subjects
were head fixed by screwing the custom-designed head bar to a
mating bar. The mating bar was then attached to the recording
rig with the mouse placed over a Styrofoam ball suspended in
air to allow free range of motion (Dombeck et al. 2007; Niell
and Stryker 2010) or over a vertical wheel capable of rotating
along a horizontal axis (Ramesh et al. 2018). While the mouse
was head fixed, an LCD monitor (Viewsonic V3D245) was placed
contralateral to the electrode implantation site. The LCD was
the same distance away from the head-fixed subject as it would
have been during behavior and was linearized in an identical
fashion. The location of the monitor was adjusted to drive visual
responses in the V1 neurons being recorded. The raw waveforms
from V1 were buffered, filtered, and digitized to a hard drive
using the Open Ephys (Siegle et al. 2015) or OmniPlex (Plexon
Inc.) system. Coincident with the physiological recording, we
recorded synchronizing TTL pulses from the display computer
to align spikes with the stimulus. Stimuli presented to the
subject were similar in characteristics to the stimuli used to
drive behavior, except for a few characteristics. To maximize
the number of neurons that were driven by stimuli, we chose
to use full-screen stimuli instead of through a circular window.

An initial recording epoch collected the responses of subjects to
gratings of different orientations (full contrast, 12 orientations,
flashed for 500 ms or drifting for 2000 ms). The responses to
these stimuli were used to characterize the orientation tuning of
the neurons. Some sessions included responses to long-duration
stimuli (2000 ms) of full-contrast (100%) and low-contrast (15%)
drifting gratings (temporal frequency of 2 Hz) tilted 45◦ from
the vertical. After this characterization, we recorded responses
of neurons to flashed gratings of short durations (50–200 ms).
These included trials where the contrast presented was zero and
no stimulus was shown on the screen. These trials measured
background firing rates for the neuron. In a small number of
sessions, we performed pupillometry as well as measured the
running speed of the subject as a measure of arousal (Bradley
et al. 2008; Niell and Stryker 2010; Reimer et al. 2014).

Pupillometry and Pedometry

In sessions where pupillometry was performed, videos of the
mice’s pupils were captured with a Stingray camera with
infrared (IR) filter removed while recording the mouse’s eyes
under IR illumination (850 nm) using a Computar MLH-10X
zoom lens. Visible light was excluded from the camera using
a spectral filter (LP800-46, Midwest Optical Systems Inc.). Eye
tracking was synchronized with neural recording using the
Cineplex system (Plexon Inc., TX, USA). To measure pupil
size from the video, a deep learning algorithm was trained
on sample eye-tracking videos from multiple subjects across
multiple days (Deeplabcut 2.0 [Mathis et al. 2018]). Based on
this algorithm, the major and minor axes of the pupil were
identified across all the data along with the location of the
corneal reflection (Fig. 5C), and this measurement was used to
measure the size of the pupil. Measured sizes were smoothed
with a median filter (1 s) and z-scored to identify epochs of high
engagement (z > 0) and low engagement (z ≤ 0). In these animals,
running speed was measured using an optical motion sensor
(PWM3360) placed against the outer surface of the wheel. Motion
data were captured by an Arduino device programmed with
custom code, converted to analog voltages (MCP4725 digital–
analog converter, Adafruit industries), and synchronized with
the neurophysiological recording using the Omniplex System
(Plexon Inc.). In our hands, epochs of high locomotion coincided
with epochs of larger pupil sizes. Thus, we used pupil size as the
sole measure of arousal.

Stimulus Presentation and Electrophysiological
Recording from Acute Probes

Subjects were allowed to recover for 5 days postsurgery and
were acclimated to the Styrofoam ball for at least 2 days before
the recording. On the day of the recording, subjects were lightly
anesthetized, a small craniotomy was performed over V1, and
the exposed brain was covered with silicone gel. The animal
recovered from anesthesia for at least 2 h before recording.

Single-Unit Identification

Raw neural data were filtered between 300 and 10 000 Hz using
a zero-phase digital filter. Open source libraries (Rossant et al.
2016) (spikedetekt) were used to detect putative spikes as
significant voltage deviations (5σ strong threshold, 2.5σ weak
threshold). Detected spikes were automatically clustered using
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an expectation maximization algorithm (klusta [Rossant et al.
2016]), which modeled features (principal components of
waveforms) of neurons as a mixture of Gaussians. Clustered
single units were manually verified using a visualization
algorithm (kwik-gui). Overclustered units were combined based
on the location of detected spike on the electrode, waveform
shape, feature stability, and absence of refractory violations.
Single units showed no refractory violation and were sufficiently
separated from other units such that total false-positive + false-
negative rates are less than 5% (Hill et al. 2011). For each unit, we
extracted the location within the brain calculated as the location
of the electrode that had the largest mean waveform amplitude.
This depth was used to categorize the unit as belonging to
the superficial (<400 μm, Layer 2/3 [L2/3]) or deep (>450 μm,
L5/6) layers of the cortex. As we were recording with chronic
electrodes, some units were detected on the same electrodes
across multiple days. These units were identified by looking for
units with 1) the same waveform shape (Pearson correlation
> 0.95 across days) and 2) the same interspike interval (ISI)
distribution (Pearson correlation > 0.95 across days) present at
3) the same depth across days. We found 190 V1 units that were
present across multiple days. Duplicate units were removed
such that only the responses of the units on the first day they
were present were considered for future analysis.

Analyzing V1 Responses

We synchronized spiking responses in V1 with stimulus pre-
sentation using TTL pulses. Unless otherwise specified, on each
stimulus presentation, we extracted the total number of spikes
in a time window that started with the visual stimulus onset
and extended to 500 ms after onset. We chose to analyze this
time interval for 3 reasons. 1) V1 responses do not begin imme-
diately after stimulus onset. Capacitive charging effects and
line delays cause a response latency of ∼ 50–100 ms (Gao et
al. 2010; Haider et al. 2013). 2) V1 responses could sometimes
extend far beyond the duration of the stimulus due to recurrent
activity within the network (Reinhold et al. 2015). 3) Analysis of
various time intervals showed that a spike number code that
included the chosen time interval (0–500 ms) maximized the
average decoding performance across all neurons (Fig. 3B), had
close to the maximum number of consistent predictors of the
stimulus (Fig. 3B), and completely covered the stimulus in all
conditions.

Fitting Performance of Individual Neurons and for
Populations of Neurons in a Session

Spike rates for each neuron were considered one at a time.
We first excluded the firing rates for trials without stimuli
(i.e., contrast = 0). The firing rates for the remaining trials were
randomly assigned to “Training” (70%) and “Test” (30%). The data
in the Training set were used to fit a logistic regression model
(statsmodels v0.9.0 in Python 3.6) and logistic regression coef-
ficients obtained for each neuron. This regression coefficient
was used to test the model on the Test dataset (along with the
no-stimulus trials). We repeated this process 100 times with
a different subset of trials belonging to the Training and Test
datasets. The results of regression included the probability that
the extracted coefficient was significantly different than 0. If this
probability was high (>95%) in at least 70 out of 100 different
splits, the unit was considered a consistent predictor (i.e., they

predict the stimulus as belonging to the same orientation no
matter which trials are included in the fitting process). For fitting
performance across populations, we used all the spike rates in a
session and performed the regression in a similar fashion. The
decoding performance of a single unit or a population was the
average performance across the 100 splits.

Simulating Neural Subpopulations and Measuring
Performance of Simulated Populations

For each of the neurons in our dataset, we tabulated the spike
count responses according to the stimulus conditions tested in
our study (contrasts of 0, 0.15, and 1 and durations from 50
to 200 ms). To create a virtual session of a given population
size from our dataset, we first chose a random subset of that
size from the overall population with replacement with each
neuron being equally likely to be included in the subpopulation.
Responses for each neuron were then simulated from the corre-
sponding response table making sure to only sample from the
responses of that neuron for that stimulus condition. We used
the previously calculated regression coefficients (calculated one
neuron at a time) as the regression coefficient for the simulated
neuron. The orientation of the stimulus was then predicted
based on these independent regressors and compared against
the input orientation. This was repeated 1000 times to provide
an estimate of the performance of a population of that size.

Results
Mice Performing Orientation Discrimination Task
Integrate Information Over Very Short Time Scales

First, we trained adult mice in an orientation discrimination
task. Naïve mice were introduced into the training arena with
3 response ports and their behavior slowly shaped to the appro-
priate response contingency (see Supplementary Figure 1A; see
also Behavioral Training and Task Sequence and Parameters of
Stimuli for Behavior). We captured the contrast dependence of
the orientation discrimination task in a series of trials where
we varied the contrast of the discriminandum. As expected,
we find that all subjects improved performance with increasing
contrast (see Supplementary Figure 1B, gray lines, performance
at c = 1.0 greater than performance at c = 0.15 for 8/8 mice). We
fit the performance of mice across contrasts to a logistic regres-
sion curve (see Supplementary Figure 1B, C and Supplementary
Results, contrast tuning of orientation discrimination) and iden-
tified the threshold contrast to be c = 0.15. Furthermore, we
found that the animal’s reaction time was shorter for higher con-
trast stimuli (see Supplementary Figure 1E) and performance
of the animal increased the longer it looked at the stimulus
(see Supplementary Figure 1F and Supplementary Results, inte-
grating information in orientation discrimination task across
contrasts), indicating that the mice can integrate evidence.

To precisely measure the time window over which mice
effectively integrate information, we tested subjects trained in
orientation discrimination to perform trials where the maxi-
mum duration of a stimulus available for the subject is sys-
tematically controlled (see Task Sequence and Parameters of
Stimuli for Behavior). After this maximum duration (denoted
“stimulus duration”), the screen changes to a gray screen and
awaits response from the subject (Fig. 1A). This trial structure
puts limits on how long subjects can integrate visual infor-
mation—stimuli after the stimulus duration do not contain
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useful information to perform the task. All subjects improved
performance as the stimulus duration increased (Fig. 1B, thin
lines, performance at 500 ms > 16 ms in all animals, P < 0.05,
Agresti–Caffo statistics). This was true for high-contrast stimuli
(Fig. 1B, blue lines) as well as lower contrast stimuli (Fig. 1B,
green lines). For example, while no subject had performance
significantly above chance for a 16-ms stimulus at low contrast
(c = 0.15), all subjects perform significantly above chance for
stimuli lasting 50 ms at low contrast. At higher contrast (c = 1), all
subjects were significantly above chance for a stimulus duration
of 16 ms, the shortest stimulus duration tested. To precisely
measure the dynamics of integration, we fit a logistic regres-
sion curve to the stimulus duration versus performance curve
(see Psychometric Data Fitting and Animal Variability and Use
of Average Subject; Fig. 1C). This allowed us to measure the
threshold integration time (τ ), total integration time (T), and
lapse rate (λ) (see Psychometric Data Fitting for definitions).
Based on these fits, individual mice had a threshold integration
time between 13 and 46 ms at high contrast (c = 1) averag-
ing 24 ± 12 ms (mean ± SD; Fig. 1D) and a threshold integration
time between 33 and 75 ms at low contrast (c = 0.15) averaging
54 ± 16 ms (mean ± SD; Fig. 1D). Thus, subjects require very
short stimulus durations—significantly shorter than the typical
intersaccade duration—to perform significantly above chance in
an orientation discrimination task. The average subject had a
threshold integration time of 12 ms at high contrast (Fig. 1D, blue
circle) and 45 ms at low contrast (Fig. 1D, green circle), an order
of magnitude lower than the mean reaction times (∼1 s) from
the reaction time task described earlier.

Our assessment of the total integration time indicated that
it was between 20 and 400 ms for high-contrast stimuli and
between 55 and 250 ms for low-contrast stimuli (Fig. 1E). The
total integration time for the average subject was 98 ms at high
contrast and 107 ms at low contrast (Fig. 1E). This duration is an
order of magnitude smaller than mean reaction times. The lapse
rates for high-contrast stimuli (0.33 ± 0.15) (Fig. 1F) were consis-
tent with the lapse rates of subjects at high contrasts (0.31 ± 0.14)
in the reaction time task (see Supplementary Figure 1C;
P = 0.85, Mann–Whitney–Wilcoxon U test). Similarly, plateau
performance for low-contrast stimuli (mean ± SD = 0.74 ± 0.08)
is comparable with the performance of subjects for low-contrast
stimuli (mean ± SD = 0.67 ± 0.1) in the reaction time task (P = 0.18,
Mann–Whitney–Wilcoxon U test). This indicates that subjects
have integrated as much of the information from the visual
stimulus as possible within ∼ 100 ms to guide their behavior.

Activity in V1 Is Necessary for Performing the
Orientation Discrimination Task

To test if V1 neurons are required for orientation discrimination,
we expressed blue-light–sensitive ChR2 in PV+ inhibitory
interneurons (Fig. 1H, middle panel) in V1, which should
suppress activity of projection neurons in V1 when activated.
Suppression of cortical activity by the activation of PV+
interneurons is known to be immediate and reversible (Lien and
Scanziani 2013; Reinhold et al. 2015). We tested the causal role of
V1 activity in behaving animals by activating Channelrhodopsin
on random trials while the subjects performed an orientation
discrimination task (Fig. 1G; also see Optogenetic Manipulation
During Behavior). Performance in trials where ChR2 was
activated was significantly lower than in trials where no ChR2
activation occurred (Fig. 1I, PV-ChR2 no LED vs. +LED; P < 0.05,
Mann–Whitney–Wilcoxon U test). We confirmed that the loss in

performance was not due to the distracting influence of the blue
light by performing identical experiments in a small cohort of
sham animals (n = 2) that did not express ChR2 in PV+ inhibitory
interneurons (Fig. 3E, bottom panel). While the small sample size
does not allow us to be certain of the effects of the distracting
effects of blue light in these sham animals, performance in
light-activated trials was no different than the performance in
trials without light activation (Fig. 1I, sham/no LED vs. +LED; not
significant, Mann–Whitney–Wilcoxon U test). Thus, activity of
neurons in V1 is necessary for mice to carry out this orientation
discrimination task.

Activity of V1 Neurons Is Sparse and Unreliable

To understand the neural basis for fast visual integration, we
recorded from neurons across the layers of V1 in subjects
running on a Styrofoam ball or on a vertical wheel while
passively viewing stimuli of various contrasts, durations, and
orientations (Fig. 2A). Visual responses of neurons from 19
subjects across a total of 119 sessions were captured. Of
these, 65 sessions (N = 9 mice) were recorded in naïve animals
that had no exposure to the behavioral arena and 16 (N = 6
mice) were recorded in animals that had prior experience
in the orientation discrimination task and had threshold
performance in the simple orientation discrimination task
(see Step 4, Supplementary Table 2). Additionally, 38 sessions
from 4 subjects included simultaneous pupillometry and
pedometry. Our dataset contained a total of 2373 units,
of which 978 were well-isolated single units (Fig. 2B, top
panels) and 1395 were multiunit (Fig. 2B, bottom panels)
activities (see Supplementary Figure 2B,C; also see Single-
Unit Identification). These units had firing rates that ranged
from a minimum of 0.2 Hz to a maximum of 80.9 Hz (see
Supplementary Figure 2D). Most neurons fired very few spikes
over the course of the session (see Supplementary Figure 2D,
mode at the lowest firing rate). Firing rates were dependent on
the depth of the recording (superficial [L2/3]: depth < 400 μm,
deep [L5/6]: depth > 400 μm, Kolmogorov-Smirnov (KS) test;
P < 10−3; see Supplementary Figure 2E). Spike widths varied
from 0.07 to 0.87 ms based on peak-to-trough duration (see
T in Supplementary Figure 2F). Spike widths showed a bimodal
distribution (see Supplementary Figure 2G, left panel). Cluster
analysis using k-means clustering (similar to Niell and Stryker
2008) indicated that 2 overlapping clusters could be identified.
Among well-isolated single units, the first cluster contained
units with short spike widths and high firing rates (mean =
0.26 ms, 15.2 Hz), whereas the second contained units with
long spike widths and lower firing rates (mean = 0.54 ms,
5.6 Hz), and these differences were significant (P < 0.05, Mann–
Whitney–Wilcoxon U test for each respective comparison). We
denote these as “fast-spiking” and “regular-spiking” neurons
respectively. We expect that these clusters are enriched in
fast-spiking, PV+ interneurons and regular-spiking excitatory
neurons, respectively.

As expected from neurons in V1, a large fraction of neu-
rons showed significant orientation tuning (Fig. 2C). For a subset
of neurons (2206 units), we calculated orientation tuning (see
Supplementary Figure 2H,I, polar plot) and vector sums of ori-
entation tuning (see Supplementary Figure 2I, arrows) as mea-
sures of neural tuning to orientation (similar to prior techniques
[Mazurek et al. 2014]) based on high-contrast flashed gratings
of different orientations that lasted 500 ms or drifting gratings
that lasted 2000 ms (see Supplementary Figure 2H). For all these
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Figure 2. Statistics of neural responses in V1. (A) Schematic of recording setup. Subjects run on a Styrofoam ball suspended in air while recording in the left V1. We
show visual stimulation to the right eye on an LCD monitor placed ∼ 15 cm from the eye, tangential to the eye. (Top panel) Stimuli are gratings of different orientations,

contrasts, and durations separated by short periods (∼1 s) of gray screen. (B) Waveform, ISI, and first principal component of one single unit (top, yellow) and one
multiunit (bottom, green) simultaneously recorded in V1 on 2 separate tetrodes. (C) Distributions of OSI across the population as a function of depth of the unit (top
panel; solid blue: single units, light blue: multi units) as well as box plots of the distributions for superficial (super) and deep units (bottom panel: box plots of OSI
distributions for superficial and deep units). (D) Distribution of preferred orientation (Pref. Ori) calculated from the preferred orientation vectors. (E) The orientation

(or) (left = blue, right = red), contrast (ctr) (0: white, 0.15: gray, 1: dark gray), and duration (dur) (50–200 ms) of the stimulus of the first 100 trials of a single session. (F) Heat
map of the spike rates of simultaneously recorded neurons in a time window that started with stimulus onset and ended 500 ms after stimulus onset. Inset shows
the scale of the heat map. This shows 25 out of 39 neurons recorded in this session. (G) The fraction of total recorded neurons that produced at least one spike in the

time window of interest. (H–J) Raster of the responses of a single L2/3 neuron with preferred orientation to the right as a function of contrast. Stimulus orientation
and contrast (image) as well as onset and offset times (blue curve) are provided above the raster. In these panels, trials without a single spike are denoted by a gray
line through the duration of the trial. (K) The probability of neurons responding to stimuli with a single spike at different contrasts (c = 1, black; c = 0.15, dark gray; c = 0,
light gray) as a function of duration of stimulus.

neurons, we further calculated Jackknife error estimates of these
measures by removing data from one trial at a time. Neurons
showed varied selectivity and orientation preferences (Fig. 2C,D).

The orientation selectivity index spanned values from 0 to
1 with a mean selectivity of ∼ 0.31 (Fig. 2C), while the pre-
ferred orientation spanned the entire orientation space with
significant preference for vertical and horizontal orientations
(Fig. 2D, P < 10−4, KS test vs. uniform null hypothesis). We note
that a small population of neurons (N = 168) show very high
orientation selectivity (Orientation Selectivity Index; OSI > 0.95).
These neurons have significantly lower firing rates compared
with the rest of the population (0.21 Hz for high OSI vs. 5.94 Hz
for the population; P < 10−4, Mann–Whitney–Wilcoxon U test).
The high OSI was due to an extremely low firing rate for the

orthogonal orientation, but each of these neurons had consis-
tent orientation tuning—the SD of Jackknife estimates of orien-
tation preference was less than 20◦ in all high-OSI units with a
median of 2.5◦. Furthermore, putative regular-spiking neurons
had a higher mean OSI than fast-spiking neurons (0.31 vs. 0.27;
P < 0.05, Mann–Whitney–Wilcoxon U test). Thus, as shown previ-
ously, we find that neurons in V1 are orientation tuned and are
ideally poised to encode the stimulus orientation to direct the
animal’s behavior.

Next, we characterized the population responses of simul-
taneously recorded neurons to stimuli that last a short
duration (≤200 ms). We recorded between 2 and 54 neurons
(see Supplementary Figure 2C, top panel) simultaneously in
our recording sessions. We show the stimulus (orientation,
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Figure 3. Contribution of individual neurons to orientation discrimination. (A) Schematic of logistic regression fit. The responses of the neuron were split into 70%

training (TRAIN) and 30% testing (TEST), and spike counts were used as features for a logistic regression. Regression coefficients calculated from the TRAIN dataset were
tested on the TEST dataset to obtain decoding performance. (B) Average decoding performance of individual neurons across the population as a function of the spike
count window. Performance for each neuron was measured as the average decoding performance for that neuron across a hundred independent splits of training–

testing subsets. Top panel: Spike count window begins on stimulus onset and could extend past stimulus offset. Bottom panel: the average decoding performance of
all units (black) and consistent units (neurons that reliably improve the logistic fit upon inclusion no matter how the data are split; blue) as a function of the spike
count window (t). Error bars are 95% CI of the mean. (C) The number of consistent predictors in the population as a function of the spike count window. (D) Histogram of
decoding performance of units (calculated as in A, with spike counts over 500 ms as features) in the recorded population. A performance of 0.5 indicates no information.

Mean ± 95% CI of performances of the overall population (gray) and the consistent subpopulation are also shown (∗∗∗∗P < 0.001). (E) Duration and contrast dependence
of the performance of neurons. Data show mean ± 95% CI performance for 15% (gray) and 100% (black) contrasts. Curves have been shifted slightly in the x-direction
to aid in visualization. Mean performance for 0% (unfilled) is also shown without CIs. (F) The preferred orientation of consistent predictors (blue) compared with that
of the overall population (gray). Abbreviations: or, orientation; ctr, contrast; dur, duration.

contrast, and duration) (Fig. 2E) spike counts in a time window
that spanned the first 500 ms after stimulus onset of 25 (out of
39) simultaneously recorded neurons for the first 100 trials of
one session (Fig. 2F). For each trial, the fraction of the recorded
population that responded to the stimulus with at least one
spike (Fig. 2G) was computed. For the session shown, the average
fraction of neurons that responded to the stimulus with at least
one spike was 36 ± 9% (mean ± SD). Across all sessions and all
trials, the fraction of V1 neurons that responded with at least
one spike in the 500-ms window was 43 ± 17% (mean ± SD). This
fraction of responsive neurons varied with the contrast and
duration of the stimulus used (see Supplementary Figure 2J,K).
We measured the mean population fraction for each session
as a function of the stimulus parameters. For stimuli that
lasted 100 ms, this mean fraction was lower for zero-contrast
stimuli compared with the fraction at high-contrast stimuli (see
Supplementary Figure 2K; f = 37% at c = 0 vs. f = 43% at c = 0.15,
and f = 37% at c = 0 vs. f = 44% at c = 1). The difference between the

fraction of responsive neurons was not significantly different
across any of the stimulus conditions (Mann–Whitney–Wilcoxon
U test, adjusted for multiple comparisons). Thus, for such short
stimuli, merely looking at the number of active neurons would
not indicate the presence or absence of the stimulus. These
results indicate that, for stimuli that drive reliable behavior,
stimulus onset increases the fraction of responsive V1 neurons
by at most 8%.

Effect of Visual Stimulus on Spike Probability of V1
Neurons

Sparse responses could still underlie reliable behavior if indi-
vidual neurons could respond reliably. To study the reliability
of neural responses, we measured the probability that neurons
would respond with at least one spike to stimulus presenta-
tion. We show the responses of one such L2/3 neuron with
preferred orientation to the right of vertical (Fig. 2H–J). To assess
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the influence of contrast on spike probability, we calculated the
fraction of trials that elicited at least one spike during the time
that spanned the stimulus presentation and extended 100 ms
after stimulus offset. The spike probability changed as we varied
contrast at the preferred orientation (Fig. 2H–J). Trials where the
neuron failed to respond with a single spike are denoted with
gray lines across the duration of the trial. The neuron responds
unreliably even for high-contrast stimuli (Fig. 2J), indicating that
individual neurons may not fire reliably for stimuli that drive
reliable behavior.

To quantify the contrast and duration dependence of
response probability, we split the recorded population of
neurons into populations sensitive to orientation tilted to
the right of vertical and to the left of vertical. Across the
population, even at the highest contrast and highest duration
presented, neurons fire spikes on fewer than 20% of trials
(Fig. 2K, black) on average. Responses at lower contrasts (Fig. 2K,
gray) and durations elicit spikes on fewer trials. Thus, for the
stimulus conditions that drive reliable behavior (low-contrast,
100-ms stimuli/high-contrast, 50-ms stimuli), neurons that are
responsible for encoding that behavior fire fewer than 0.1 spike
every trial.

Individual Neurons Encode Short Stimuli Poorly

To understand the extent to which individual neurons might
contribute to reporting the orientation of the stimulus, we used
the trial-to-trial responses to decode the orientation of stimuli.
We split the responses of individual sessions across differing
durations, orientations, and contrasts into Training (70%) and
Test (30%) sets (Fig. 3A; see Fitting Performance of Individual
Neurons and for Populations of Neurons in a Session). A logistic
regression model was created on the training set and used on
the test data to obtain decoding performance for the neuron
(Fig. 3A) as well as identify specific units that are consistent
predictors of the orientation of the stimulus (see Fitting Perfor-
mance of Individual Neurons and for Populations of Neurons in
a Session). To identify the window over which we can best iden-
tify the orientation of the stimulus from neural responses, we
performed the decoding analyses for different spike count win-
dows (Fig. 3B,C). The average decoding performance across the
population was low but peaked around 500 ms (Fig. 3B, black).
Consistent predictors were significantly better than the overall
population at decoding the orientation of the stimulus for spike
windows ranging from 100 ms to 1 s (Fig. 3B, blue). For all further
analyses, we chose to focus on the spike counts over 500 ms
because it 1) completely covered all the stimulus conditions
tested in our dataset (Fig. 3B, top panel) and 2) approximately
maximized the average information in the neural responses (Fig.
3B, bottom panel) while 3) maximizing the number of consistent
predictors (Fig. 3C).

Individual neurons encoded the orientation of the stimu-
lus poorly. The performance of individual neurons across all
stimulus conditions varied from 0.46 to 0.64 (Fig. 3D), compared
with chance performance of 0.50. The performance of consis-
tent predictors was marginally but significantly higher than the
overall population (Fig. 3D, blue; 0.55 vs. 0.5, P < 10−6, Mann–
Whitney–Wilcoxon U test). This subpopulation 1) was enriched
in single units compared with the overall population (49% vs.
41%, Agresti–Caffo statistics, P < 0.05), 2) included units with
firing rates from 0.1 to > 80 Hz (see Supplementary Figure 3A),
3) showed increases in performance with increased contrasts
and durations in a manner consistent with the improvement in

performance of subjects in the orientation discrimination task
(cf. Fig. 3E vs. Fig. 1B), and 4) had units whose orientation pref-
erence was enriched in angles around the discriminated stim-
ulus (Fig. 3F). Specifically, the fraction of units with preferred
orientations within 10◦ of the discriminated stimuli was higher
in the consistent subpopulation (0.16 vs. 0.1, P = 0.023, Agresti–
Caffo statistics), and the overall distribution of orientation pref-
erence was significantly different between the consistent and
overall populations (KS test, P = 0.004). Consistent units included
both regular- and fast-spiking units in approximately the same
proportion that they were present in the overall population.
Both categories discriminated the stimulus to the same degree
(Mann–Whitney–Wilcoxon U test, P > 0.05).

Responses to longer duration stimuli (±45◦, contrast = 1
and 0.15, drifting at 2 Hz for 2 s) were captured in a subset
(781 out of 2373) of units (see Supplementary Figure 3B).
Identical decoding analyses of the orientation of the stim-
ulus from this subset revealed that 1) a greater fraction
of neurons were consistent predictors of the orientation
of the stimulus (35.4% vs. 10.7% for short-duration stimuli,
P < 0.001, Agresti–Caffo statistics), 2) the average performance
of the consistent population was significantly higher (0.61
vs. 0.55, P < 10−4, Mann–Whitney–Wilcoxon U test), and 3) a
small population of units (10/781) performed better than the
performance of the animal (see Supplementary Figure 3C).
Decoding performance from responses to long- and short-
duration stimuli were highly correlated (Pearson ρ = 0.45,
P < 0.001; see Supplementary Figure 3C), indicating that the
responses to long-duration stimuli were qualitatively similar
to but quantitatively different than responses to minimally
discriminable stimuli. Nevertheless, longer duration stimuli can
drive reliable responses such that the activity of one or a few
neurons is sufficient to decode the orientation of the stimulus.
In contrast, for minimally discriminable short-duration stimuli,
even the best performing individual neuron was not close to
the performance of the whole animal (e.g., ∼ 80% behavioral
performance for full-contrast stimuli that lasted 100 ms or
∼ 70% for low-contrast stimuli that lasted 100 ms), indicating
that any strategy that relies on the response of an individual
high-performing neuron was unlikely to drive the behavior of
the animal.

Integrating Information Across Neurons Predicts
Orientation

Since even the best performing single units were poor predictors
of stimulus orientation, we next explored how integration across
relatively unreliable units might affect stimulus prediction. To
determine how decoding of stimulus improves with integration
of information from multiple neurons, we used the simulta-
neously recorded spike rates in all the neurons recorded in a
session to fit a multidimensional logistic regression similar to
the method employed for the single neuron fits (Fig. 4A; also see
Fitting Performance of Individual Neurons and for Populations
of Neurons in a Session). While performance with multidi-
mensional logistic regression was not directly correlated with
the number of simultaneously recorded neurons in the session
(Fig. 4B; ρ = −0.01, P = 0.81), it correlated well with the number
of consistent neurons recorded in the session (Fig. 4C; ρ = 0.92,
P < 10−3). There was a rapid increase in stimulus prediction per-
formance with recruitment of additional neurons indicating a
high sensitivity to integrating information from even a relatively
small number of neurons.
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Figure 4. Integrating evidence across neurons improves performance. (A) Schematic of logistic regression fit. The responses of the neuron were split into 70% training
(TRAIN) and 30% testing (TEST), and spike counts across all neurons were used as features for a multidimensional logistic regression. Regression coefficients calculated
from the TRAIN dataset was tested on the TEST dataset to obtain decoding performance. Multidimensional logistic regression fits obtained from training data and
tested on test data as a function of (B) total number of units in the session or (C) total number of consistent units in the session. Circles indicate performance of

individual sessions. Solid line indicates best linear fit, and shaded area indicates the CI of the linear fit. (D) Schematic of resampling method to create virtual sessions
of different subpopulations of neurons. “Virtual” neurons were chosen with replacement from the set of consistent neurons (blue), and spike counts of these neurons
simulated by sampling from their respective response distribution. Prior logistic fits were then used to estimate performance. (E) Relationship between number of

consistent neurons and performance measured for virtual sessions created as in D for gratings of low (15%, green, top row) or high (100%, blue, bottom row) contrast
that lasted between 50 and 200 ms (left to right columns). Solid lines indicate median performance, and shaded areas indicate 95 percentiles of performances across
1000 subsamples. Arrows indicate the measured behavior for the average subject for the specific stimulus. (F) Number of reliable neurons required to perform as well as
an average subject as a function of stimulus duration for high contrast (blue) and low contrast (green). Data show median ± 95 percentiles. Abbreviations: ctr, contrast;

dur, duration; Hi, high; Lo, low; Num., number; or, orientation.

To estimate the number of neurons required to perform as
well as the animal, we simulated new sessions using increasing
subpopulation of neurons from the overall population. Each
neuron in the subpopulation was selected at random with
replacement from the original population and firing rates for
multiple trials simulated from known responses of the neuron
for similar stimuli (Fig. 4D; also see Simulating Neural Subpop-
ulations and Measuring Performance of Simulated Populations).
We used these virtual sessions along with known logistic fits for
individual neurons to create a multidimensional logistic regres-
sion (Fig. 4D). This analysis revealed that performance improved

with the number of neurons and was dependent on the contrast
(Fig. 4E, top row vs. bottom row) and duration (Fig. 4E, left to
right columns) of the stimulus. Consistent with the absence of
visual information at zero contrast, the decoding performance of
populations of neurons to zero-contrast stimuli was at chance
level (see Supplementary Figure 4A). We used the population
dependence curves along with known performance of the aver-
age subject (Fig. 4E, arrows) in the behavioral task to estimate
how many consistent neurons would be required to decode
the stimulus as reliably as the average subject could. Across
stimulus conditions, a few tens to a few hundred neurons are
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required to match the performance of subjects from behavioral
experiments (Fig. 4F), averaging a median of 68 neurons for low-
contrast stimuli and 88 neurons for high-contrast stimuli. This
still represented < 0.1% of the neurons in V1 and suggests that
information contained in the sparse and variable firing pattern
in V1 is sufficient to account for visually guided behavior.

Discussion

Our assessment of the time scale of evidence integration for
visually guided decision making was enabled by the develop-
ment of an automated platform for studying visual function in
rodents (Meier et al. 2011). We adapted this platform for mice
such that dozens of mice would perform hundreds of trials daily
and quickly learned many kinds of visually directed behaviors.
By simultaneously training and testing multiple subjects pro-
grammatically, we were able to collect behavioral information at
scale, allowing us to measure psychophysical tuning curves by
changing parameters of the stimulus used to probe the behavior
(Meier et al. 2011). We first measured the contrast tuning of
orientation discrimination (N = 8 mice). The threshold contrast
measured (∼15%) was similar to thresholds measured earlier
in mice (Prusky and Douglas 2004; Busse et al. 2011; Glickfeld,
Histed, et al. 2013; Long et al. 2015), comparable with those of the
hooded rat (Keller et al. 2000), but is an order of magnitude higher
than contrast thresholds in monkeys and humans (De Valois et
al. 1974). Nevertheless, mice improve performance with stimu-
lus duration and thus are capable of evidence integration across
time. This is similar to the behavioral responses in rats (Reinagel
2013) but potentially different from responses in monkeys and
humans (Hanks et al. 2011).

One of the principal findings of this study is that mice can
extract sufficient information on very short time scales (tens of
milliseconds) to perform visually driven tasks. This is consistent
with recent work in mice (Resulaj et al. 2018). Moreover, the
useful integration times are an order of magnitude shorter than
typical stimulus durations used to probe visual perception in
mice (Andermann et al. 2010; Lee et al. 2012; Glickfeld, Histed,
et al. 2013; Long et al. 2015). The total integration time—time
beyond which subjects do not integrate visual information—was
∼ 200 ms. This may not reflect an inability of mice to integrate
information over longer time durations and might just reflect
the strategy subjects use to maximize reward given the nonzero
cost of accumulating evidence (Laughlin et al. 1998; Drugowitsch
et al. 2012). Indeed, in other tasks, rats are known to integrate
information over many seconds (Brunton et al. 2013). Neverthe-
less, subjects that integrate information quickly perform well in
the orientation discrimination task.

The ability of mice to discriminate orientation requires V1, as
their performance is compromised by optogenetic inhibition of
V1 responses. This is consistent with the known response prop-
erties of V1 neurons (Hubel and Wiesel 1959; Niell and Stryker
2008) and with prior research in rodents (Glickfeld, Histed, et al.
2013; Resulaj et al. 2018) investigating the requirement of various
visual pathways for perception. At these short time scales, we
find that responses in V1 are sparse and unreliable. We find that
the average neuron can fail to produce even a single spike to
preferred orientations on 85% of the trials on average while still
allowing maximal performance (85% correct) in subjects. The
ability to discriminate orientation from responses of individual
neurons based on a spike number code varied between 0.43 and
0.64 indicating that the best performing neurons do not come

close to accurately predicting stimulus orientation. This stands
in contrast with earlier work (Newsome et al. 1989; Vogels and
Orban 1990; Britten et al. 1992) indicating that some V1 neurons
can be as sensitive or more sensitive than the subject.

Why are response reliabilities and decoding power so
different in the mouse? A variety of experimental factors may
underlie this discrepancy. First, this difference could be due
to the species used. Mice do not use vision as their primary
sensory modality as opposed to primates and carnivores, in
which similar stimuli may drive reliable and robust responses.
However, high-contrast, 100-ms stimuli may not be the minimal
discriminable stimuli in primates and carnivores, and responses
to these minimal stimuli may be equivalently unreliable and
sparse (Berens et al. 2012). Second, our results could be due
to the location of our recordings. Our dataset contains neurons
from all layers of the cortex. Separating the superficial responses
(L2–L4) from the deep responses (L5–L6) indicated that, while the
decoding performance of consistent neurons was comparable
between the 2 layers (Fig. 5A, left panel), superficial layers
were enriched in consistent neurons by ∼ 4-fold (Fig. 5A, right
panel). Third, it is possible that training in the orientation
discrimination task may alter both the orientation tuning and
the reliability of the neurons (Poort et al. 2015). To assess if
training in the behavioral task improves the reliability of the
neurons, we separated the responses of the cohort of animals
(N = 6 mice, 16 sessions) that had experience with the orientation
discrimination task. We found that training changed neither
the decoding performance (Fig. 5B, left panel) nor the average
orientation selectivity (Fig. 5B, right panel) in our data. Fourth,
the low reliability in our recordings could be attributed to
the uncontrolled and variable attentional state of the animal.
It remained possible that, in an attentive state, similar to
the state of the animal while performing behavioral trials,
V1 responses would be more reliable. To assess if this was
the case, we recorded from a small cohort (n = 4 animals, 38
session, N = 536 units) while simultaneously recording pupil
diameter and running speed (Fig. 5C, left panel). Running has
been shown to amplify V1 responses in mice (Niell and Stryker
2010), while pupil diameter is well known to modulate with
attentional engagement (Reimer et al. 2014). We analyzed
neural responses during intervals of high engagement (pupil
diameter z-score > 0) and compared it with intervals of low
engagement (pupil diameter z-score ≤ 0). This split the data to
include 50% of the trials in the high-arousal subset (Fig. 5C, green
lines). Intervals of high engagement led to both significantly
higher firing rates (Fig. 5C, center panel) and a higher decoding
performance in neurons (Fig. 5C, right panel) compared with
intervals of low reliability. Nevertheless, the improvements
in predictive power were small (∼2% difference; Fig. 5C, right
panel, top), and the responses were not reliable enough
to predict the animal’s behavioral performance at a single
neuron level.

Since the animal performs much better than would be
predicted from single-unit responses, we sought to explore
the impact of pooling information over populations of neurons
on stimulus prediction. We estimate that pooling across ∼ 75
consistent neurons would be required to perform as well as the
subject. Prior estimates of the population requirements of neural
coding have indicated that very few neurons may be required
for certain kinds of sensory discriminations in mammals
(Newsome et al. 1989; Britten et al. 1992; Stüttgen and Schwarz
2008; Huber et al. 2012), and indeed, responses to longer duration
drifting gratings showed similar population requirements (see
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Figure 5. Contribution to decoding performance. (A) Contribution of depth. Decoding performance of consistent units (left panel) and fraction of units that were
consistent (right panel) for deep and superficial units. (B) Contribution of training. Decoding performance (left panel) and orientation selectivity of units recorded in
untrained versus trained animals. (C, left panel, bottom) z-score of pupil size (green) and running speed (blue) of a head-fixed mouse while viewing visual stimuli

across an entire session. Blocks of low arousal (red lines) and high arousal (green lines) are marked below. Sample images of the pupil at different times during the
session are shown (left panel, top). The corneal reflection is in red, while the extent of the pupil is shown in blue. Center panel: average firing rates of recorded
neurons normalized to its firing rate during low-arousal trials. Diamonds indicate the average ratio across the population (∗∗∗P < 0.001). Right panel: orientation
decoding performance during low- and high-arousal epochs for consistent neurons (bottom) along with the histogram of the difference in performance between

the 2 conditions (top). Diamonds are mean values, and error bars are 95% CI. Some error bars are too small to visualize. (D) Contribution of correlations. Left panel:
schematic of shuffling strategy for the estimation of influence of correlations on performance. Stimuli were grouped according to stimulus parameters (orientation,
contrast, duration). Spike number swaps (black arrows) occurred only between stimuli of identical parameters. Right panel: multidimensional logistic regression fits
obtained as in Figure 4B for the original (blue) and shuffled (red) data as a function of the number of consistent neurons. Inset shows the performance on shuffled

sessions plotted against performance on the original sessions. (E) Contribution of strategy. Left panel: Integrating evidence from a population of neurons is modulated
by cognitive inefficiencies on random trials, leading to lapse in performance. Right panel: the number of neurons required to perform as well as the animal if lapses
in performance could be attributed to sensory noise alone (sensory) or due to cognitive contributions alone (cognitive). Abbreviations: Hi, high; Lo, low; Num., number;

Shuf, shuffled.

Supplementary Figure 3B,C). However, the minimal required
population requirements measured using sparse optical
activation were found to be comparable with those measured
in this study (Huber et al. 2008). The mouse V1 contains ∼ 1
million neurons (Leuba and Garey 1989; Schuz and Palm 1989;
Collins et al. 2010) in each hemisphere. Thus, the orientation
discrimination task requires only a small fraction of the overall
population (<0.1%) for adequate performance.

In our analyses of how pooling leads to improved perfor-
mance, we neglect the effect that correlations play in the cortical
code. Neural responses within the cortex show a significant
correlation with one another (Zohary et al. 1994; Kohn and Smith
2005). Under some scenarios, covariations in neuronal responses
prevent pooling responses across multiple neurons from remov-
ing noise (Shadlen and Newsome 1998) and therefore might
reduce the overall information available to the subject. Thus, it is
possible that correlations across V1 neurons limit the total infor-
mation the animal can extract from the population. Alterna-
tively, however, correlations could make decoding stimuli easier
if it is another channel to communicate information about the
stimulus present in the animal’s environment. In this situation,
including correlations might improve the code (Averbeck et al.
2006; Cohen and Kohn 2011; Froudarakis et al. 2014). We inves-
tigated the effects of correlation by artificially removing them

from our recorded sessions, by shuffling neural responses across
trials (Fig. 5D, left panel). Shuffling neither changed the slope
of the “performance versus number of neurons” curve (Fig. 5D,
right panel) nor the average performance by itself (Fig. 5D, right
panel, inset), indicating a minimal role for correlations in affect-
ing decoding performance for just-discriminable stimuli. How-
ever, even small correlations can affect the decoding of stimuli
if information is spread across large populations of neurons
(Zohary et al. 1994), and the precise structure of the correla-
tions plays an important role in the decodability of popula-
tion responses (Beck et al. 2011; Moreno-Bote et al. 2014). We
have only tested the role that correlations play for population
sizes between 1 and ∼ 50 neurons. Based on the population
requirement for reflecting behavioral performance (∼75 reli-
able discriminators) and the measured prevalence of reliable
discriminators (∼1 in 10), we would then need to measure the
influence of correlations on a simultaneously recorded popula-
tion with a size of ∼ 750 neurons. Future experiments should
aim to record from such large populations and directly mea-
sure the effects of correlations on decodability. However, based
on our existing dataset, correlations play only a marginal role
in decodability.

Another assumption that could affect how integrating noisy
evidence could limit the total information available for discrim-

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz147#supplementary-data
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inating stimuli relates to the source of noise in the brain. Our
model assumes that the noise in the sensory system limits
the behavioral precision of the subject and the reason why
performance plateaus for longer duration stimuli is due to the
subject only integrating from a small subset of responses instead
of using all the available information. However, cognitive inef-
ficiencies could be an alternate source of noise in the system
such that behavioral performance can be degraded even in the
presence of perfect sensory information. We modeled these cog-
nitive effects using a simple 2-step model: 1) Logistic regression
of neural responses provided sensory evidence, which 2) on a
random fraction of trials (equal to the lapse rate), was corrupted
by the cognitive process (Fig. 5E, left panel). This led to reduced
decoding performance for a given population size such that the
subject would need to integrate from a larger pool of neurons to
achieve the same decoding performance in the orientation dis-
crimination task. Our data indicate that the population required
to predict the orientation of the stimulus varied from ∼ 75 for
the sensory-noise–limited model to > 150 consistent units for
the cognitive-noise–limited model. We expect that the actual
number lies somewhere in the middle.

Finally, given the unreliability of individual neurons and the
evidence that behavioral performance is dependent on pooling
information from a population of neurons, it is worth asking
how such pooling would be achieved in the cortex. Both L2/3
neurons and L5/6 neurons are known to receive information
from L2/3 neurons and send projections to other parts of the
neocortex. So, these are likely populations whose firing would
reflect pooled population response. The fact that even the best
performing L2/3 neurons are poor predictors of performance,
even though previous data indicate that L2/3 neurons have
a bias towards making connections with other L2/3 neurons
with similar orientation selectivity (Gilbert and Wiesel 1989;
Malach et al. 1993), suggests that L2/3 may not be the site of
population pooling. L5/6 neurons can be eliminated based on
similar reasoning. The increased prevalence of consistent units
in the superficial layers may indicate that information relevant
to this orientation discrimination task may be broadcasted to
other areas of the cortex preferentially through L2/3 neurons—a
hypothesis that can be tested with layer-specific manipulation
of neural or synaptic activity. However, our data indicate that
the site of population pooling likely resides outside V1. Careful
dissection of the visual pathway through optogenetic inactiva-
tion of secondary visual areas along with recording of neural
responses in these areas may be needed to definitively identify
the integrator. Nevertheless, this integrator must be capable of
producing reliable outputs from the unreliable outputs of V1.
Our findings provide evidence that visually guided behavior
at the limits of perception relies on effective integration of
information across units with sparse and unreliable responses
to stimuli.
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