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ABSTRACT

The study of changes in protein–DNA interactions
measured by ChIP-seq on dynamic systems, such
as cell differentiation, response to treatments or
the comparison of healthy and diseased individuals,
is still an open challenge. There are few computa-
tional methods comparing changes in ChIP-seq sig-
nals with replicates. Moreover, none of these previ-
ous approaches addresses ChIP-seq specific exper-
imental artefacts arising from studies with biologi-
cal replicates. We propose THOR, a Hidden Markov
Model based approach, to detect differential peaks
between pairs of biological conditions with repli-
cates. THOR provides all pre- and post-processing
steps required in ChIP-seq analyses. Moreover, we
propose a novel normalization approach based on
housekeeping genes to deal with cases where repli-
cates have distinct signal-to-noise ratios. To evalu-
ate differential peak calling methods, we delineate
a methodology using both biological and simulated
data. This includes an evaluation procedure that as-
sociates differential peaks with changes in gene ex-
pression as well as histone modifications close to
these peaks. We evaluate THOR and seven compet-
ing methods on data sets with distinct characteristics
from in vitro studies with technical replicates to clin-
ical studies of cancer patients. Our evaluation anal-
ysis comprises of 13 comparisons between pairs of
biological conditions. We show that THOR performs
best in all scenarios.

INTRODUCTION

Chromatin immunoprecipitation followed by sequencing
(ChIP-seq) experiments (1) have revolutionized our knowl-
edge of chromatin structure and transcription factor regu-
lation (2). Initial applications of ChIP-seq were based on
measuring histone modification and transcription factors
of unrelated cell lines (2). The next challenge is the study
of protein–DNA interactions of dynamic systems, such as
cell differentiation (3–5), response to treatments (6) or the
comparison of healthy (3–5) and diseased individuals (4,7).
ChIP-seq studies of clinical scenarios are of particular inter-
est, as they allow detection of epigenetic markers and regu-
latory single nucleotide polymorphisms (SNPs) (8).

These applications require the joint analysis of ChIP-seq
data with several technical or biological replicates. How-
ever, ChIP-seq is a multi-step experimental protocol, where
each step introduces distinct sources of potential artefacts
(9). Among others, these artefacts arise from bias of DNA
fragmentation to open chromatin regions, variation of IP
efficiency due to antibodies, as well as polymerase chain
reaction (PCR) amplification and sequencing depth bias.
These artefacts produce ChIP-seq experiments with distinct
signal-to-noise ratios, even when they are produced in the
same lab and follow the same protocols (9,10). Moreover,
the clinical samples, where patients have a distinct genetic
background and samples may arise from heterogeneous cell
populations, introduce further variation to the ChIP-seq
signals (11). All these artefacts impose great challenges to
the computational analysis of ChIP-seq data.

The great majority of computational tools have concen-
trated on the single signal condition peak calling (SPC)
problem, i.e. detection of genomic regions with putative
protein–DNA interactions in individual ChIP-seq experi-
ments (12–15). Later, detecting peaks in replicates of ChIP-
seq data of a single condition has been investigated. For
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example, the ENCODE project, which suggests ChIP-Seq
experiments should contain at least two biological dupli-
cates (16), proposed the use of irreproducible discovery rate
(IDR) as a post-processing step to find common peaks af-
ter the application of SPC methods to individual replicates
(16,17). Recently, Ibrahim et al. (18) proposed a method
for the joint analysis of ChIP-seq replicates for the SPC
problem. Their method detects peak boundaries with higher
precision than identifying common peaks in replicates with
IDR or pooling ChIP-seq reads of replicates.

Given the lack of appropriate tools for the analysis of dis-
tinct cell types, the initial strategy for the analysis of differ-
entiation processes was the evaluation of peaks produced
by SPC methods which were only detected in one of the cell
types (19). Later, methods solving the differential peak call-
ing (DPC) problem, i.e. the detection of genomic regions
with changes in ChIP-seq profiles between two distinct sam-
ples, have been proposed (20–28). Differential peak calling
approaches can be categorized in two broad classes: two-
stage (21–23) and one-stage (20,24–28) approaches. Two-
stage approaches are based on the use of candidate peak
regions which are detected by SPC methods. These lists of
candidate peaks are then applied to methods tailored for
the differential expression analysis of RNA-seq data such
as DESeq (29). While these methods can cope with techni-
cal and biological replicates in their second step, they have
two main caveats. First, their DPs are restricted to their ini-
tial candidate regions. Therefore, they fail to detect subtle
changes within these candidate regions (25,30). This is par-
ticularly crucial for ChIP-seq data of histone modifications,
where differential peaks occur in small regions within larger
genomic regions with high ChIP-Seq signal. This is not an
issue for ChIP-seq from transcription factors that mostly
happens in small isolated peaks associated to a single pro-
tein binding site. Second, two-stage DPC methods usually
do not provide any preprocessing steps crucial for ChIP-seq
analysis, such as fragment size estimation, GC-bias correc-
tion and input-DNA subtraction (31,32).

One-stage DPC methods are based on segmen-
tation methods, such as Hidden Markov models
(HMMs) (20,25,28) or sliding window based approaches
(21,22,24,26,27). These methods solve most of the issues
not addressed by two-stage DPC methods. However, sliding
window approaches are sensitive to the window size. While
large windows will fail to detect small changes in peaks on
histone modifications, small windows can generate overly
fragmented peaks. Methods based on HMMs, which intrin-
sically segment the signals on windows with varying size,
are capable of detecting subtle changes in DNA–protein
interactions (20,25,28), i.e. partial gains/losses of histone
modifications within large chromatin domains. They have
been successfully used by us (25,33) and others (28) in the
analysis of cell differentiation and treatment response stud-
ies (30). Currently, only window based approaches support
DPC with technical or biological replicates (24,26,27).

Furthermore, some aspects have been poorly addressed
by current DPC methods. It is crucial to evaluate the strat-
egy for the normalization of replicates. All DPC meth-
ods dealing with replicates (23,24,26,27) use a weighted
trimmed mean of M-values (TMM) (34). This strategy was
devised for gene expression experiments, which assumes

that counts of most observations (genes or peaks) do not
change. This is not necessarily the case for protein inter-
actions, as two distinct cells can have distinct amounts of
proteins or histone modifications bound to their DNA (9).
Particularly problematic in this normalization approach is
the effect of replicate specific background noise.

Moreover, evaluating DPs is still an open problem as
there is no gold standard. We have previously developed a
strategy to associate changes in activating histone modifi-
cations with fold changes in gene expression in the same
cellular conditions that lie in the vicinity of DPs (25). A
similar approach, based on a list of differentially expressed
genes, has been proposed by Heinig et al. (28). However,
these strategies do not explore the presence of replicates in
the ChIP-seq or expression data.

Another strategy for the evaluation of DPs is the simula-
tion of ChIP-seq experiments that currently is mostly based
on the SPC problem (12,27,35). There is a clear need for
methods to evaluate DPC methods by using both real and
simulated data. In particular, it is crucial to have method-
ologies exploring the performance of DPC methods on data
with distinct characteristics: samples with low variability
and high signal-to-noise ratio (data from in vitro based stud-
ies with technical replicates) versus experiments with high
variability and low signal to noise ratios (data from clini-
cal studies with biological replicates and heterogeneous cell
populations).

Our approach

We propose THOR a differential peak caller for compar-
ison of two biological conditions with replicates. THOR
expands our previous work on differential peak calling
[ODIN (25)] by supporting replicates and providing two
further approaches for normalization of ChIP-Seq libraries.
For supporting replicates, THOR uses a Negative Binomial
distribution that deals with the typical overdispersion in
read count distributions with replicates (29). Concerning
library normalization, THOR implements the commonly
used TMM approach (34) and an novel approach based on
housekeeping genes to normalize ChIP-Seq libraries of ac-
tivating histone marks. These modifications are crucial for
analysis of ChIP-seq data with high variance and distinct
signal to noise ratios as in studies with biological replicates.
This work also expands the evaluation procedure from (25)
by using for the first time histone modifications with sim-
ilar regulatory roles (activating marks) in the validation
of differential peaks. Moreover, it extensively expands the
methodology for simulation of ChIP-Seq reads from (25)
that allow to simulate ChIP-Seq data with a distinct num-
ber of replicates and distinct variance within replicates.

THOR improves previous DPC methods supporting
replicates (24,26,27), as it intrinsically detects peaks with
variable size through the use of posterior decoding algo-
rithms. This is of particular importance for the analysis of
differential peaks in histone modifications that have subtle
changes in signals within larger peaks. THOR provides all
pre- and post-processing steps required in ChIP-seq anal-
ysis including fragment size estimation, input-DNA nor-
malization, GC-bias correction, P-value estimation, multi-
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ple test correction and strand lag filtering of potential DPs.
See Figure 1A for a schematic procedure of THOR.

We evaluate THOR on four biological studies measuring
activating histone marks with distinct replicate character-
istics. We generate H3K27ac ChIP-seq data with two tech-
nical replicates on an in vitro dendritic cell differentiation
system (36). We also evaluate activating histone modifica-
tions during the response of mouse to cocaine intake with
three biological replicates (6), monocyte to macrophage dif-
ferentiation from up to eight individual replicates (37) and
a case control study comparing B cells from patients with
follicular lymphoma and healthy donors (7). While THOR
is tailored for the analysis of histone modification data, it
should also perform as well as other DPCs in the analysis
of ChIP-seq with small peaks as with transcription factors.
We therefore also include a case study with the analysis of
Pol2 ChIP-seq data from (6). These data sets provide us al-
together 13 pairs of conditions (differential peak problems)
that are analysed for differential peaks (see Table 1).

We perform a comparative analysis with all one-stage
(PePr (24), DiffReps (24) and csaw (27)) and two-stage peak
callers (DiffBind (23), MACS2 (unpublished) and the com-
bination of DESeq with SPC peaks obtained from JAMM
(18) and IDR (16)) that support replicates (Figure 1B). We
also evaluate a version of THOR using the Poisson distri-
bution, which is equivalent to ODIN (25) with support of
replicates. The performance of methods are evaluated with
expression based Differential Correlation Analysis (DCA),
which is based on the correlation between the P-values of
the top ranked DPs and the P-values of the expression val-
ues of the genes close to these DPs. This method is based
on the assumption that activating histone marks correlates
with gene expression (2,38,39). This assumption has been
previously explored in the validation of differential peaks
(25,28). We assume here that the best predictions (DPs
called by the methods) will have a higher correlation with
expression than poor predictions. Moreover, we propose for
the first time the use of histone modifications marks instead
of the gene expression in the DCA. This explores the fact
that activating (or repressing) histone modifications corre-
late (40). Therefore, we can use a particular activating his-
tone (validating mark) to evaluate peaks detected in another
activating histone mark. Finally, we make use of a simulator
for ChIP-Seq reads to evaluate the performance of methods
on controlled scenarios. This allows us to evaluate the com-
peting methods, when data have distinct characteristics such
as the within condition variability and number of replicates
(see Figure 1C).

MATERIALS AND METHODS

Basic notations and profile construction

We create a genomic profile to analyse ChIP-seq data by
fragmenting the genome into bins and counting the reads
falling in these bins. We divide the genome into a set {b1,
. . . , bL} by using a sliding window approach. Each bin bj
covers the genomic positions [j · s − 0.5 · w, j · s + 0.5 · w],
where s and w are the step size and the window size. The
value of the genomic profile xij is the number of extended
reads of ChIP-seq signal i aligned to regions overlapping
bin bj. Previous to this step, reads are extended to have a

size f, which corresponds to the DNA fragment size of the
ChIP-seq experiment. This parameter can be provided by
the user or estimated from the data (see below).

Then, X is the matrix that represents the genomic signal

X = {xij}D×L.

The ith genomic signal (experiment) is represented by the
vector xi = (xi1, . . . , xiL) and the genomic signals for bin j
is represented by the vector x· j = (x1j, . . . , xDj). Each ex-
periment belongs to one of K biological conditions. More
formally, we define the set of experiments associated to con-
dition k as

Gk = {i | i ∈ {1, . . . , D}, i belongs to k}
and experiment as

G = {G1, ..., G K }.
Here, xGk j represents the genomic signal restricted to exper-
iments belonging to Gk and xGk j is the mean read count for
all experiments in condition k, i.e.

xGk j =
∑

i∈Gk
xij

|Gk| .

Moreover, ChIP-seq experiments usually have reads from
input-DNA for each cell type analysed. We will refer to
input-DNA as Xinput.

Signal preprocessing. Previous to the application of the
HMM, we perform several preprocessing steps to the raw
ChIP-seq counts. These are in order of application: (i) es-
timation of fragment size, (ii) GC-content correction, (iii)
Input-DNA normalization and subtraction and (iv) global
ChIP-seq signal normalization.

Fragment extension estimation. As only the beginning of
DNA fragments obtained by ChIP are sequenced, we have
to reconstruct the fragments by estimating its extension size
(31). Following Mammana et al. (41), we define a strand
cross-correlation function

c( f ) =
∑

p∈F∪R

h(p) · h( f + p)

where F (R) gives all left-most (right-most) positions of
reads aligned to the forward (reverse) strand and where h de-
scribes the overlap of these positions. Function c describes
the correlation between read counts on the forward and re-
verse strand for a given fragmentation size f. The desired
estimate f̂ of the fragmentation size maximizes function c.

GC-content. To model and correct against bias introduced
by GC-content, we use a histogram based approach (11).
Considering signal X, we measure the average number of
reads assigned to bins on a particular GC-content interval,
compute the average for the GC-content interval and ad-
just the ChIP-seq profile if it differs from the expected GC-
content.

Input-DNA subtraction. Control input-DNA corrects for
bias associated to DNA shearing (31). The standard pro-
cedure is to subtract input DNA signal from the ChIP-seq
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Figure 1. THOR’s analysis workflow. (A) After pre-processing the ChIP-seq signal, normalization based on housekeeping genes (as shown) or TMM is
performed. The normalized signal serves as input for the HMM which is used to estimate DPs. Post-processing includes the statistical assessment of DPs.
(B) List of all competing methods categorized in one-stage and two-stage approaches. (C) Evaluation strategies. We evaluate DPC methods with biological
data and the DCA statistic that is based on the association between DPs, gene expression and histone modifications. Moreover, simulated data are used to
investigate the effect of distinct ChIP-seq signal characteristics on DPCs methods.

Table 1. Overview of DP experiments. We describe the experiment name, histone modification type, cellular conditions, number of replicates and data used
for evaluation by the DCA strategy for each of the evaluated differential peak problems

Experiment Histone Cond. 1 Cond. 2 #rep DCA Validation

DC-MPP-CDP H3K27ac MPP CDP 2.2 RNA-seq, H3K4me1
DC-CDP-cDC H3K27ac CDP cDC 2.2 RNA-seq, H3K4me1
DC-CDP-pDC H3K27ac CDP pDC 2.2 RNA-seq, H3K4me1
DC-cDC-pDC H3K27ac cDC pDC 2.2 RNA-seq, H3K4me1
CO-H3K36me3 H3K36me3 saline cocaine 3.3 RNA-seq, H3K4me1, Pol2
CO-H3K4me1 H3K4me1 saline cocaine 3.3 RNA-seq, H3K36me3, Pol2
CO-Pol2 Pol2 saline cocaine 3.3 RNA-seq, H3K4me1, H3K36me3
MM-H3K27ac H3K27ac MONO MAC 5.8 RNA-seq, H3K4me3, H3K4me1
MM-H3K4me1 H3K4me1 MONO MAC 5.8 RNA-seq, H3K4me3, H3K27ac
MM-H3K4me3 H3K4me3 MONO MAC 6.10 RNA-seq, H3K4me1, H3K27ac
LYMP-FL-CC H3K27ac FL CC 8.5 Microarray, H3ac
LYMP-FL-PBBA H3K27ac FL PBBA 8.3 Microarray, H3ac
LYMP-CC-PBBA H3K27ac CC PBBA 5.3 Microarray, H3ac
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signal (31). Due to different read concentration in the ChIP-
seq profile and the input-DNA, one should first normal-
ize the input-DNA in relation to the ChIP-seq signal (42).
Here, we estimate a scaling factor �SES based on the order
statistics of binned count data (42). For a given input library
xinput, we obtain an input subtracted signal for each ChIP-
seq library as

xSES
· j = x· j − α · xinput.

This step is only performed if matching input-DNA is avail-
able.

ChIP-seq signal normalization. A crucial aspect in the
analysis of multiple ChIP-seq samples is the strategy for
global normalization of samples to bring them to a similar
scale. Currently, most DPC methods use a weighted TMM
(34). Our previous work ODIN (25), only supports normal-
ization by library size.

We explored an alternative approach based on the use
of control regions (9). Control regions can be obtained
by ChIP-PCR on selected genomic regions. For the case
of activating histone modification, we use the promoter of
housekeeping genes (HK). Given that housekeeping genes
do not change their expression, the abundance of activat-
ing histone marks in their promoter should also be constant
(2,38,39).

More formally, we define a set of control genomic regions,
R = {r1, . . . , rN}. The ChIP-seq signal of region rn for sam-
ple i is

hin =
∑

j

xij · 1(bj overlaps rn).

First, for a given region n, we normalize the mean of each
samples to the particular signal i

h′
in = h·n

hin
.

The normalization factor for sample i is

fi =
∑

n h′
in

N

where N is the number of HK genes. Final, ChIP-
seq count estimates for sample i are given by, x′

i· =
fi · xi·. We use regions 500 bps upstream of all house-
keeping genes described by Eisenberg and Levanon (43)
(C1orf43, CHMP2A, EMC7, GPI, PSMB2, PSMB4,
RAB7A, REEP5, SNRPD3, VCP, VPS29) as control re-
gions for the human genome. These genes have been shown
to have a stable expression pattern over several microarrays
and RNA-seq expression experiments (43). For the mouse
genome, we left out the human specific C1orf43 gene. Note
that any list of genomic regions, where no changes in ChIP-
seq signals are expected, can be used for this normalization
approach. See Supplementary Figure S1 for an example of
this normalization approach.

THOR also supports a TMM based normalization. In
short, for a given signal xi · with i ∈ Gk, we first estimate the
mean signal xGk· of condition k. Then, the logarithmic ratio

(M-values)

Mj = log
(

xGkj

xij

)

and the logarithmic average (A-values)

Aj = 0.5 · log(xGkjxij)

are estimated for all bins j. The normalization factor fi is the
ratio of M- and A-values weighted by A-values

log( fi) =
∑

j Aj · Mj∑
j Aj

.

HMM for differential peak calling

The DPC problem is modelled by a three state HMM, which
receives a D dimensional variable X as input. This first order
HMM contains a state representing DPs gained in the first
biological condition G1 (Gain 1), a state for DPs gained in
the second biological condition G2 (Gain 2) and a back-
ground state (Back). Supplementary Figure S2 shows the
HMM topology, where all states have transitions to other
states and to themselves.

For a given state s, the emission distribution of the HMM
is given by the product of probabilities for each biological
condition G.

Pr s(x·j) = ∏
k≤|G| Pr sk(xGkj)

The probability of observing xGkj in state s and condition
k is given by the product of the observation’s probabilities
associated to condition k

Pr sk(xGkj) = ∏
i∈Gk

Pr sk(xij)

The distribution for a given state s, condition k and sample
i is modelled by a Negative Binomial distribution as follows

Pr sk(xij) = g
(
xij | ask, μsk

) =

�(xij + a−1
sk )

�(xij + 1) · �(a−1
sk )

·
(

a−1
sk

a−1
sk + μsk

)a−1
sk

·
(

μsk

a−1
sk + μsk

)a−1
sk

where ask is the dispersion parameter, μsk the location pa-
rameter and � the gamma function. The parameters ask and
μsk are fixed for samples of a same biological condition. The
function g has mean E(xi) = μsk and variance

Var (xi) = μsk(1 + askμsk). (1)

If ask = 0, the mean equals the variance and the distribu-
tion results in a Poisson distribution. For ask > 0, variance
increases with mean as usual when dealing with NGS data
containing replicates (29). This HMM model is the same
as used by ODIN (25). ODIN is based on a Binomial dis-
tribution and only supports two signals (D = 2). The Bi-
nomial distribution approximates a Poisson distribution for
large n, where n is the number of reads in the ChIP-seq li-
braries. Therefore, by fixing ask = 0, we obtain a ODIN ver-
sion supporting multivariate signals that cannot deal with
over-dispersion. We refer to this method as Poisson-THOR.
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HMM training. The HMM is estimated with the Baum–
Welch algorithm (44). Initial state and transition probabil-
ities are based on standard estimates (44). Concerning the
emission distribution parameters μsk and ask, we estimate
them based on a moment approach. We constrain location
parameters of Gain 1 (s = 1) and state Gain 2 (s = 2)
associated to enriched signals to be equal μ1G1 = μ2G2 =
μhigh. We also constrain location parameters of low values
and background states to be equal μ1G2 = μ2G1 = μ3G1 =
μ3G2 = μlow (see Supplementary Figure S2). This avoids la-
bel switching problems in the HMM (44). It can be easily
shown that the these constraints lead to the following esti-
mates (Supplementary Section 1):

μ̂high =
∑

i∈G2

∑L
j=0 r2jxij + ∑

i∈G1

∑L
j=0 r1jxij

|G2|
∑L

j=0 r2j + |G1|
∑L

j=0 r1j
and

μ̂low =
∑

i∈G2

∑L
j=0 r1jxij + ∑

i∈G1

∑L
j=0 r2jxij + ∑

i∈G2

∑L
j=0 r3jxij + ∑

i∈G1

∑L
j=0 r3jxij

|G2| ∑L
j=0 r1j + |G1| ∑L

j=0 r2j + |G2| ∑L
j=0 r3j + |G1| ∑L

j=0 r3j

To obtain reliable variance estimates on small sample sizes,
we assume that the variance can be described by a smooth
function based on the mean estimates similar as described
by Anders and Huber (29). We use for this a quadratic func-
tion

vk(x) = c1k · x2 + x + c2k, (2)

which is estimated for the ChIP-seq data on samples of con-
dition k previous to the Baum–Welch algorithm. The dis-
persion parameter ask is derived from Equation 1 and given
by

ask = vk(μsk) − μsk

μ2
sk

.

We apply the Viterbi algorithm to estimate a state sequence
for the complete genomic signal. Finally, we merge consecu-
tive bins associated to states Gain 1 or Gain 2 to obtain
the candidate DPs.

Initial HMM parameter. We initialize the HMM by using
an initial set of candidate DPs based on two simple criteria.
For state Gain 1, we select bins if there is a difference in
counts between two signals (t1)

xG1j − xG2j > t1,

or if there is a high fold change t2 and minimum signal sup-
port t3

xG1j/xG2j > t2 and xG1j + xG2j > t3.

DPs associated to stateGain 2 are defined accordingly. We
use these DPs to obtain posterior probabilities and then per-
form a single M-Step of the Baum–Welch algorithm to ob-
tain HMM’s parameters.

Postprocessing. We developed a pipeline for post-
processing candidate DPs. First, we ignore all DPs with
a size smaller than the mean of estimated fragment sizes
f̂ . Moreover, false positive DPs may be caused by a high

strand lag (45). For each DP, we therefore count the for-
ward and reverse reads, normalize the ratio by computing
the z-scores and filter out all DPs that exhibit a high/low
z-score. By default, we choose a z-scores threshold of 2
that corresponds to a 2-fold standard deviation from the
normalized ratio distribution. Also, THOR allows filtering
of DPs falling into blacklisted genomic regions. These are
regions with unstructured, high signals in next generation
experiments independently of cell lines and the type of
experiment (2). Finally, we perform an exact statistical test
to assign a P-value to each DP (25). We use a Negative
Binomial distribution whose parameters are based on
estimates from the Back states. Then, we merge significant
DPs that have a distance less than the mean of all estimated
fragment sizes f̂ . P-values are re-estimated after merging
and corrected for controlling the False Discovery Rate (46).

Materials

Biological data sets dendritic cell (DC) differentiation.
Dendritic cells (DC) are professional antigen presenting
cells that develop from haematopoietic stem cells in bone
marrow. We have developed a two-step culture system that
recapitulates DC development in vitro (36). This system al-
lows to differentiate ex vivo multipotent progenitors (MPP)
to DC progenitors (CDP). CDP cells are further differen-
tiated to either classical DC (cDC) or plasmacytoid DC
(pDC). We performed ChIP-seq with two technical repli-
cates for the histone modification H3K27ac. ChIP was per-
formed with minor modifications (1,47).

Briefly, sorted cells were cross-linked at a concentration
of 2 million cells/ml with 1% formaldehyde for 6 min at
room temperature. Cross-linking was stopped with 0.125 M
glycine. Chromatin sonication into fragments of 200-400 bp
in size was done in Bioruptor with cooling device (Diagen-
ode) at 4◦C with 30 s pulse/pause cycles until a fragment
size of 200 bp was obtained. Sheared lysates were clarified
by centrifugation at 12 000g (10 min, 4◦C). Dynabeads Pro-
tein A (Life Technologies) (10 �l) were preincubated with 1
�g anti-H3K27ac antibodies (Abcam). For immunoprecip-
itation, 10 �g sheared chromatin was added to the preincu-
bated beads overnight at 4◦C. Chromatin complexes were
isolated by magnetic bead selection and washed with RIPA
and TE buffer. Chromatin complexes were digested with
50 �g/ml RNase (Roche) at 37◦C for 30 min. The ChIP
procedure was repeated five times (50 �g chromatin in to-
tal) and immunoprecipitated DNA was purified using QI-
Aquick PCR Purification Kit (Qiagen). DNA concentra-
tion of immunoprecipitated DNA was determined by using
Qubit dsDNA HS Assay kit (Life Technologies). Libraries
were prepared and subjected to deep-sequencing on the Il-
lumina platform according to the manufacturer’s protocols.

We performed total RNA sequencing for evaluation of
DPs with DCA. RNA was isolated using RNeasy Plus Mini
Kit with DNaseI digestion (Qiagen) (36). Libraries were
prepared and subjected to strand-specific RNA-seq on the
Illumina platform according to the manufacturer’s proto-
cols. DCA evaluation was complemented with H3K4me1
ChIP-seq without replicates previously generated by us
(25,33). On this data set, we compare DPs following the lin-
eage commitment steps (MPP to CDP, CDP to cDC, CDP
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to pDC) and DC subset specification (cDC and pDC) that
lead to four DPs experiments. RNA-seq and ChIP-seq of
dendritic cell differentiation samples are deposited in Gene
Expression Omnibus with accession number GSE73143.
This study represents a scenario with potentially very low
variability within the biological conditions.

Epigenomics effects of cocaine (CO). Feng et al. (6) anal-
yse epigenetics changes after cocaine intake on mouse nu-
cleus accumbens. The study measures histone modifications
of three biological replicates after treatment with a cocaine
or saline solution (control). We use data from histone mod-
ifications H3K4me1 and H3K36me3 as well as Pol2, which
lead to three DPC experiments. We also analyse RNA-seq
data matching the samples for DCA evaluation (GEO ac-
cession number GSE42811 and GSE24850). No input DNA
was provided. This study represents a scenario with biolog-
ical replicates with similar genomic background. Therefore,
we expect a low variance within biological conditions.

Monocyte and macrophages (MM). This study provides
samples of monocytes (MONO) activated to macrophages
(MAC) in up to 8 human samples (37). Here, we con-
sider the histone modifications H3K4me1, H3K27ac and
H3Kme3. For H3K4me1, there are 6 MONO and 10 MAC,
for H3K27ac there are 5 MONO and 8 MAC samples and
for H3K4me3 6 MONO and 10 MAC samples. We perform
DP estimations between MONO and MAC for both his-
tone modifications. Condition specific RNA-seq data (36
MAC and 25 MONO samples) are used for DCA evalua-
tion. The study does not provide input-DNA data for the
ChIP-seq experiments. The data are available with restricted
access at EGA (EGAD00001001011). This study represent
a scenario with human biological replicates with a moderate
within group variability.

B cell lymphoma (LYMP). Koues et al.(7) performed the
most comprehensive analysis of regulatory genomic fea-
tures in lymphomas up to date. We use ChIP-seq data of
the histone modification H3K27ac on follicular lymphoma
cells (FLs), as well as distinct populations of B cells from
healthy donors: proliferative centroblasts (CC) and periph-
eral blood B cells (PBBA). We only consider samples with a
matching input-DNA, gene expression (measured with mi-
croarrays) and H3ac ChIP-seq: CC samples 1-5, FL sam-
ples 1,2,5,8,10,11,14,16 and PBBA sample 1-3 (GSE62246).
We detect DPs by comparing: FL versus CC, FL versus
PBBA and CC versus PBBA. Evaluation was performed
with microarray gene expression and H3ac histone modi-
fications. This data set contains human biological replicates
and disease samples and is expected to have a high within
group variability.

We use BWA (48) version 0.6.1 − r104 with default pa-
rameters for read mapping on either mouse genome (mm9)
or human genome (hg19). Table 1 gives an overview of the
DPC experiments.

Evaluation of biological data sets. Evaluating DPs is still
an open problem as there is no gold standard for DPC. We
have previously developed a strategy to associate changes
in protein–DNA with fold changes in gene expression in re-
gions (or genes) in the vicinity of the DPs (25). For this, we

require gene expression (RNA-seq or microarrays) for the
same cellular conditions. This idea is based on the fact that
the level of histone modifications correlate with the expres-
sion of the surrounding genes (2,38,39). We expand this idea
by using histone modifications, which were not used in the
DPC problem itself, to evaluate the DPs. This is based on
the fact that histones with similar code, i.e. activating his-
tone marks, are known to correlate (40).

First, we associate each DP of an ‘evaluated histone’ with
either gene expression or ‘validating histones’ for each con-
dition. For RNA-seq or ChIP-seq data, we count the reads
of these sequencing libraries into the DPs. We then perform
a differential analysis with DESeq (29) on the RNA-seq and
validating ChIP-seq values. This step, which provides us a
P-value for each list of DPs, differs from our previous ap-
proach (25) that only considered the fold change ratio be-
tween gene expression data. For microarray data (only ap-
plies to the Lymphoma Study), DPs are assigned to genes if
(i) they are located in the gene or close to the promoter of a
gene, (1000 bp upstream) or (ii) if the peaks are located 50
Kbps away from the TSS without a TSS of another gene fol-
lowing (49). The average expression value of genes assigned
to a peak is used. Peaks not assigned to genes are ignored.
Finally, limma (50) is used to obtain P-values.

Next, we compare the DP P-values pi1 for each DPC al-
gorithm A with the P-value pi2 based on the gene expression
or ‘validating histone’ data. For this, we compute the Spear-
mann correlation between the list of both P-values pi1 and
pi2 for the top k ranked DPs

e(k) = cor(〈pi1〉, 〈pi2〉)Spearmann

for all i < k. For increasing k, we obtain DCA curves that
indicates the association of gene expression or ‘validating
histones’ and DPs for distinct number of peaks called. Fur-
thermore, we obtain a single score per method by estimating
the area under the DCA curve

DCA =
∑H

k=h max
(
0, e(k)

) · h

H

for k ∈ [h, 2 · h, . . . , H], where h is the step size and H the
maximum number of DPs used.

Given that we only evaluate activating histone modifi-
cations, higher DCA scores indicates higher agreement of
DPs with changes in expression and other activating his-
tone modifications. We assume here that good DP predic-
tions should have a higher DCA scores than poor DP pre-
dictions. We can therefore use DCA scores to rank DP pre-
dicted by evaluated methods. Note also that while this as-
sumption does not hold for all transcription factors (51),
the general transcription factor Pol2 is also known to cor-
relate with gene expression and can therefore be evaluated
with the DCA approach as well. See Table 1 for a listing of
histone modification marks used in the DCA evaluation.

We use the Friedman–Nemenyi test (52) to rank the per-
formance of evaluated DPCs methods by DCA values. This
test allows the evaluation of several methods applied to
multiple data sets. The Friedman–Nemenyi test indicates
whether one of the methods has higher DCA values than
others.
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Simulated data sets. There is so far no publicly available
framework for simulating ChIP-seq data in the scenario of
DPC with replicates. We extensively expand a simple sim-
ulator previously proposed by us (25) for the simulation of
DPs to account for replicates. In short, the algorithm works
in five steps. (i) Initially, we define protein domains (regions
with proteins) in the genome; and (ii) assign fragments to
each protein in a domain. The number of reads follows a
Negative Binomial distribution NB(m, p). (iii) Next, we as-
sign reads to biological conditions using a B(�) distribution;
and then assign reads to replicates within conditions using
a Dirichlet distribution Dir(�). (iv) We include background
noise to the data by assigning reads to randomly selected ge-
nomic regions. (v) Finally, true positive DPs are defined by
a fold change criteria. Note that ODIN’s simulator did not
contain steps (iii) and (iv). Moreover, steps (i) and (ii) have
been extensively refined. See Supplementary Section 2 for
details about the simulation algorithm and Supplementary
Figure S3 for an schematic of the algorithm.

We evaluate the simulated predictions by evaluating the
ratio of true and false predicted DPs. Let T be the genomic
region set of true positive DPs given by the simulation.
Moreover, let PA = {p1, . . . , pm} be the genomic region set
of DPs (sorted by increasing P-value) that are predicted by
algorithm A. Let

Ŷi = |pi ∩ T|
|T|

describe the ratio of the true called DPs and

X̂i = |pi − T|
|genome − T − PA|

describe the ratio of false called DPs. Note that operations
∩ and − are based on interval algebra and give therefore a
basepair overlap statistics for DPs predictions. See Supple-
mentary Section 2 for details about the evaluation. We com-
pute the cumulative sum D(i ) = ∑

j≤i〈X̂j, Ŷj〉 by element-
wise addition of the list of tuples. We can then generate
Area Under the Curve (AUC) statistics by the integral of
the function D. The higher the value, the better is the DP
prediction of algorithm A.

We are particularly interested how methods perform
when the number of reads of each protein in a domain,
the number of replicates and the variance within replicates
changes. We therefore simulate the following parameter set-
tings: (m, p) ∈ {(100, 200), (100, 400)} to obtain peaks with
distinct sizes and variance; (r1, r2) ∈ {(2, 2), (4, 4)} to eval-
uate experiments with 2 and 4 (r1 = r2) replicates; and � ∈
{5, 10, 15} to obtain data with low (5) to high (15) variance
within a biological condition. For each parameter setting,
we repeat the simulation 25 times. We simulate proteins with
histone like characteristics (147 bps contact with the DNA
and an average protein spacing of 202 bps) in the DNA.
DNA Fragments of 200 bps are sampled around the pro-
tein contact area. See Supplementary Figures S4 and S5 for
examples of simulated data.

Reads are sampled from the chromosome 1 of mm9 and
aligned with BWA with default parameters.

THOR parametrization and implementation. For the ini-
tialization of THOR, we use t2 = 1.6 as fold change cri-

teria, t1 = 〈x〉.95 as minimum difference between signals,
where 〈x〉.95 is the value in the 95% percentile of X, and
t3 = t1/2. If these parameters yield a training set smaller
than tmin = 100, we decrease t2 by 15 and t1 by 0.1, and
repeat the training set construction procedure. To estimate
the mean/variance function for each biological condition k,
we randomly choose 20 000 bins, estimate mean and vari-
ance for each bin and fit the quadratic model described in
Equation 2 using an non-linear least squares approach (53).

We evaluated different parameter settings for t2 ∈ {1.3,
1.6} and t1 ∈ {〈x〉.95, 〈x〉.99} by predicting DPs for chromo-
some 1 for all 12 experiments. The Friedman–Nemenyi test
on DCA statistics for h = 100 and H = 1000 shows no statis-
tical significant difference, which indicates that THOR is ro-
bust against distinct initial parameter definitions (see Sup-
plementary Table S1 and S2). We used the parametrization
with highest ranking for further experiments. Chromosome
1 was left out of the comparative method analysis. See Sup-
plementary Section 3 for details about the parametrization
of competing methods and Supplementary Table S3 for an
description of the methods’ characteristics.

THOR is available at the Regulatory Genomics Toolbox
www.regulatory-genomics.org/thor. Scripts for evaluation
of differential peaks, ChIP-seq simulation as well as peak
predictions are available at www.costalab.org/thor. For the
data set with the largest number of ChIP-seq samples (MM-
H3K4me3), THOR required 4 h and 16 GBs of memory on
a 2.4GHz machine.

RESULTS AND DISCUSSION

Comparative analysis on simulated data

First, we evaluate 6 distinct DPCs [THOR, DiffReps,
MACS2, DiffBind, DESeq-IDR and DESeq-JAMM (Csaw
was not included in this analysis, as it failed to execute with
simulated data)] with simulated data. Our simulator gen-
erates ChIP-seq reads from ‘virtual proteins’ positioned in
the genome. First, proteins with histone-like characteristics
(147 bps contact with DNA, occurring in domains with an
average of 8 proteins and with an average spacing between
these proteins of 202 bps) are placed in the DNA. DNA
Fragments of 200 bps are sampled around the protein con-
tact area. Next, fragments are distributed to one of the two
biological conditions and then to the replicates of each con-
dition. The first positions of the fragments define the ChIP-
seq reads. The original positions of the proteins and the pro-
portion of fragments assigned to each of the two conditions
are used to define the true DPs. See Supplementary Section
2 for more details and Supplementary Figures S3, S4 and
S5 for a schematic of the method and examples of the sim-
ulated data.

We investigate three characteristics that are important for
the differential peak calling problem. The first characteristic
is the number of replicates (2 or 4) per biological conditions.
Experiments with 2 replicates are obtained by discarding
2 ChIP-seq experiments from each biological condition of
the experiments with 4 replicates. Second, we evaluate dis-
tinct variance levels (moderate and high) of peak sizes for
a given biological condition to model distinct types of his-
tone modifications that have either uniform or varying peak
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sizes. Finally, we evaluate the level of variance within repli-
cates in a given biological condition (high, medium and low
variance). This parameter will control the consistency be-
tween replicates: higher variance will impose lower consis-
tency and more difficult scenarios. For each of the 12 exper-
imental combinations, we simulated 25 data sets.

Methods were evaluated with Area Under the Receiver
Operating Characteristic Curves (AUC) statistics by esti-
mating the overlap fraction of predicted and true DPs (see
Section Simulated Data Sets). Figure 2 shows the AUC val-
ues for all methods and experimental combinations. Con-
cerning the number of replicates (red versus green lines),
we observe that most methods have lower AUC values in
experiments with 2 replicates (red line) then with 4 repli-
cates (green line) (P-value < 0.05; one-sided Wilcoxon test).
Exceptions are Poisson–THOR and DESeq-IDR. IDR re-
turns very few peaks on cases with 4 replicates (green line),
even when using an lenient threshold for the SPC method
used as input for IDR. Poisson–THOR’s poor performance
on 4 replicates possibly stems from its simple distribution
that does not cope with overdispersion.

The second characteristic is the variance of the peak sizes,
where we evaluate scenarios with moderate and high vari-
ance (Figure 2). Two methods have higher AUC values in
scenarios with moderate peak variance: THOR in case of
low and medium within variance and 2 replicates (P-value
< 10−4, one-sided Wilcoxon test) and DiffBind in the case
of low, medium and high within variance and 2 replicates
(P-value < 4.7 × 10−8, one-sided Wilcoxon test). All other
tools show no significant changes in AUC values. The last
characteristic is the level of variance within the replicates.
DESeq-JAMM, DiffReps and DESeq-IDR show decrease
in AUC values for increasing variance. Interestingly, the per-
formance of THOR, MACS2 and DiffBind shows increase
in AUC values with increasing variance for respectively 5,
3 and 6 of the 8 cases on the comparison of low versus
medium and medium versus high within condition variance
(P-value < 0.05; one-sided Wilcoxon test).

Finally, we apply the Friedman–Neymeni test to eval-
uate the statistical significance in AUC value differences
for distinct methods. Considering all data together, THOR
has significantly higher AUC scores than all competing
methods. MACS2 has significant higher AUC values than
DiffReps, DESeq-IDR, DiffBind and Poisson–THOR; and
DESeq-JAMM and DiffReps have significantly higher
AUC values than DiffBind and Poisson–THOR (P-value
< 0.05; Supplementary Table S4 and S5). Evaluating spe-
cific conditions, THOR has significantly higher AUC val-
ues than DiffReps, DiffBind and Poisson–THOR for all 12
cases (P-value < 0.05, Supplementary Table S6–S17). In the
case with 2 replicates, THOR additionally has significantly
higher AUC values than DESeq-JAMM (P-value < 0.05,
Supplementary Table S6–S11) and in the case with 4 repli-
cates significantly higher AUC values than DESeq-IDR (P-
value < 0.05, Supplementary Table S12–S17). THOR is
ranked top in all of the 12 cases.

Quality analysis on biological data sets

To better understand the characteristics of ChIP-seq ex-
periments evaluated in our study, we first perform a qual-

ity check. For this we use the fractions of reads in peaks
(FRIP) score from the ENCODE consortia (16) that gives
an estimate of the signal-to-noise ratio of ChIP-seq experi-
ments. We also propose the novel use of the quadratic coef-
ficient (c1k of the function modelling the mean versus vari-
ance relationship, see Equation 2) for a given biological
condition as an indicator for ‘overdispersion’. Example of
overdispersion estimates and mean versus variance distri-
butions of selected experiments are displayed in Figure 3A
and B and complete statistics are provided in Supplemen-
tary File 1. As expected, overdispersion positively correlates
with the number of replicates in the condition (R = 0.74, ad-
justed P-value = 0.0001; Spearman Correlation). Moreover,
higher overdispersion is associated to lower FRIP scores (R
= −0.78; adjusted P-value = 2.9 × 10−5).

As depicted in Figure 3C, average FRIP versus overdis-
persion space separates the experiments by their expected
complexity. The DC differentiation experiments, which
were obtained by in vitro differentiation of cells with techni-
cal replicates, have highest FRIP values and lowest overdis-
persion values. The follicular LYMP, which arise from
patients/donors with distinct genetic background and with
potential tissue heterogeneity, have both highest overdisper-
sion scores and lowest average FRIP. This indicates that
the experiments evaluated here covers a large spectra of
peak size variance within biological conditions. Moreover,
it demonstrates the potential value of the overdispersion
metric as a statistic for quality analysis of ChIP-seq data
with replicates.

Comparative analysis on biological data sets

We evaluate THOR and six competing methods [csaw,
MACS2, DiffReps, PePr, DiffBind, DeSeq-IDR, Poisson-
THOR (we were not able to execute JAMM on these data
sets that was therefore left out for this analysis)] on 13
DPC problems using data from the cocaine intake on mouse
(CO), dendritic cell differentiation (DC), B cell follicular
lymphoma (LYMP) and monocyte differentiation (MM)
study (see Section Biological Data Sets and Supplementary
Section 3 for details). We also evaluate the application of
THOR with either the TMM (THOR-TMM) or the house-
keeping genes (THOR-HK) normalization approach.

The performance of methods was evaluated by compar-
ing DPs with differential expression and activating histone
modifications of neighboring genomic regions. This eval-
uation methodology is justified by previous work indicat-
ing the correlation of activating histone marks with gene
expression (2,38,39) and other activating histone modifica-
tions (40). As a sanity check, we measured the correlation of
all pairs of histones and RNA-seq signals from a single sam-
ple of each of the 11 individual cell types (Supplementary
File 1). We observed significantly positive Spearman corre-
lations (average R = 0.52) between all 39 pairs of sequencing
libraries measured in the same conditions. The correlation
between activating histone modification marks are higher
(average R = 0.66) than the correlation between histones
and RNA-seq (average R = 0.38).

In short, the DCA is based on the Spearman correla-
tion between the P-values of top k DPs (estimated by the
evaluated DPC) and P-values of differential expression of
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Figure 2. Results for simulated data. We show the AUC distribution for 25 repetitions of each scenario. Simulated data were based on (A) moderate and
(B) high condition peak size variability and 2 (red lines) and 4 (green lines) replicates. Each boxplot is divided by the level of within condition variance
(low, medium and high). Methods (x-axis) are ordered by decreasing median AUC values for the cases with 4 replicates.

Figure 3. Association between average FRIP and overdispersion scores �. (A–B) We show the relation between mean and variance of replicates on two
selected experimental conditions (LYMP-CC) and (DC-cDC). (C) FRIP and overdispersion scores for the 26 biological conditions analysed: cocaine intake
(CO), monocyte differentiation (MM), lymphoid cancer (LYMP) and dendritic cell differentiation (DC). Higher FRIP indicates higher signal-to-noise ratio
and better ChIP-seq experiments. Higher overdispersion scores indicates higher within condition variability.

regions neighboring the top k DPs (estimated by DESeq
(29) or limma (50)). Higher values indicate higher associa-
tion between the histone modifications and gene expression
and therefore better performance of the DPC method. The
DCA curves are obtained by evaluating the DCA for in-
creasing k (see Section Evaluation of Biological Data Sets).
Selected DCA curves are seen in Figure 4 and the complete
results are shown in Supplementary Figures S6–S13.

We use the Friedman–Nemenyi test to check for signif-
icant differences in the area under the DCA curves. Con-
cerning the gene expression based DCA, THOR variants

are the best ranked methods and have significantly higher
DCA values than DESeqIDR, csaw and Poisson-THOR
(Supplementary Table S18–S19, adjusted P-value < 0.05).
THOR-HK has also significantly higher DCA scores than
DiffBind and DiffReps (adjusted P-value < 0.1). As PePr
requires input-DNA data and therefore cannot be executed
for MM and CO, we repeated the Friedman–Nemenyi test
on DCA values from DC and LYMP only. In this case,
THOR variants have significantly higher DCA score than
csaw and Poisson–THOR (P-value < 0.05, Supplementary
Table S20 and S21). There is no significant differences for
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Figure 4. DCA curves for selected DP problems. We show DCA curves for peaks detected in H3K4me1 of the Cocaine Response study (CO-H3K4me1),
which were evaluated by (A) RNA-seq and (B) H3K36me3; or H3K27ac peaks of the Lymphoma study (LYMP-FL-CC-H3K27ac), which were evaluated
by (C) microarrays and (D) H3ac histone. Higher DCA values indicate higher association between differential peaks and differential expression or validating
histones.

all other competing methods. For the histone based DCA
scores, THOR variants are the best ranked methods and
have significantly higher DCA values than csaw, DESe-
qIDR, macs2, DiffReps and Poisson–THOR (Supplemen-
tary Table S22 and S23, adjusted P-value < 0.05). In the
scenario containing PePr (and therefore no MM and CO
data sets), only THOR-TMM has significantly higher DCA
scores than PePr (Supplementary Table S24 and S25, ad-
justed P-value < 0.05).

Impact of overdispersion on differential peak calling

As previously described, the overdispersion score indicates
LYMP experiments has higher within peak variability, while
the dendritic cell differentiation study has the lowest (Fig-
ure 3). Interestingly, the DCA scores support the notion
that THOR has better relative performance than compet-
ing tools in data with high overdispersion such as LYMP-
FL-CC (Figure 4C), while it performs comparatively well
with other competing methods in differential peak prob-
lems from the DC data set (Supplementary Figure S7). In-
deed, we observe a moderate association between � DCA
and the overdispersion score (R = 0.38 for expression based
DCA and R = 0.30 for histones based DCA; adjusted P-
value < 0.1; Supplementary Figure S14C).

Another important question is the performance of the
two normalization approaches supported by THOR. The

difference in ranks between the TMM and HK approaches
based on gene expression or histone modification DCA are
not statistically significant (Supplementary Table S18–S25).
Considering the difference in expression based DCA scores
for THOR-HK and THOR-TMM (Supplementary Figure
S14A and B and Supplementary File 1), we observe that
both methods perform similarly in most data sets. How-
ever, expression based DCA of THOR-HK are higher than
THOR-TMM in four conditions from LYMP (LYMP-CC-
PBBA gain, LYMP-CC-PBBA loose, LYMP-FL-CC loose
and LYMP-FL-PBBA loose Supplementary Figure S8 and
Supplementary File 1). These experiments have the worst
quality scores among all analysed data sets, i.e. FRIP < 0.05
and large overdispersion > 0.03 as shown in Figure 3C. This
suggests the use of house keeping gene normalization for
data sets with lower quality.

Example of differential peaks

As an example, we show DPs in the vicinity of regions dis-
cussed in the original publications providing the ChIP-seq
data (6,7,37). In Figure 5A, we display PDK2 and IRAK3
that show respectively an increase (decrease) in expression
during monocyte to macrophage differentiation. THOR
calls a combination of gain (green) and lost (red) DPs in
H3K4me3 levels in the promoter of IRAK3 and PDK2.
MACS2 only detects a small peak in the IRAK3 promoter
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Figure 5. Example of differential peaks. We depict H3K4me3 and RNA-
seq signals for monocytes (red) and macrophages (green) around the pro-
moter of (A) IRAK3 and PDK2; (B) H3K27ac signals around CRCX4 for
Follicular Lymphoma (FL) and control (CC) individuals; and (C) Pol2 sig-
nal around Dvl1 for mouse treated with cocaine (green) and saline (red);
Below the ChIP-seq signals, we depict differential peaks of all evaluated
methods. Methods that do not detect peaks for a given experiment are not
listed.

and DiffReps identifies rather large lost peaks (red) in both
promoters. Csaw misses regions with largest histone losses
in both genes. DESeq-IDR and PePr do not call any DPs in
this region. In Figure 5B, we show H3K27ac signal around
the chemokine receptor CXCR4, which is a marker for def-
inition of B cell sub-populations. CXCR4 was discussed in
(7), as it has increased expression and H3K27ac marks in
patients with Follicular Lymphoma (FL). THOR detected
three FL gain peaks (red) in the promoter of CXCR4 and
four FL lost peaks (green) in the gene body. MACS2 and
PePr detected similar peaks with sizes smaller than sup-
ported by the ChIP-seq signals. DiffReps and csaw fail to
detect FL gain peaks in the promoter of CXCR4, while
DESeq-IDR and DiffBind detected rather large lose peaks
(green).

Finally, Figure 5C depicts Pol2 ChIP-seq signals in
chronic cocaine study around the Dvd1 gene that is shown
to have increased expression in response to cocaine (6). We
observe a typical DNA binding protein ChIP-seq profile
for Pol2, i.e. a small well defined peak. THOR and Diff-
Bind detects a peak gained (green) in cocaine treated mice
that nicely fits the ChIP-seq profile. DiffReps and csaw call
larger and MACS2 calls smaller gain peaks than the ChIP-
seq signal supports. PePr and DESeq-IDR do not detect
any peak in this region. Altogether, we observe that THOR
peaks nicely delineate changes in ChIP-seq profiles. In all
cases, we observed a tendency of MACS2 to detect small
peaks, and of DiffReps to call large peaks. Indeed, the av-
erage peak size of all biological data supports the fact that
DiffReps tends to call larger (1893 bps) and MACS2 smaller
DPs (296 bps) than the average peak size of all other tools
(1133 bps) (Supplementary Figure S15).

CONCLUSION

There are very few methods dealing with the integrative
analysis of multiple ChIP-seq signals. In particular, no study
has previously evaluated DPC methods with replicates of
histone modifications ChIP-seq experiments with distinct
data characteristics. Our evaluation analysis based on simu-
lated and read data sets evaluates all DPC methods natively
dealing with replicates. Overall, THOR outperformed com-
peting methods for most simulated and biological data sets.
This was particularly the case for data with high overdis-
persion and low quality. The best performance of THOR is
justified from methodological aspects of THOR, as it is the
only method that intrinsically analyses windows of varying
size during the detection of DPs. Other competing methods
are based on fixed window searches (PePr, DiffReps, csaw)
or pre-defined peaks (DESeq-JAMM, DESeq-IDR, Diff-
Bind). This makes THOR unique in the analysis of ChIP-
seq data of histone modifications that usually occurs in do-
mains with small changes of ChIP-seq signal. Moreover, as
indicated in Supplementary Table S3, which lists features
of all evaluated tools, THOR is the most complete differ-
ential peak caller concerning support of typical computa-
tional steps for ChIP-seq analyses (31). For example, some
methods do not provide input-DNA normalization (csaw),
while other methods are only able to run on data without
input-DNA (PePr).

The performance of competing tools varied across dis-
tinct experiments. While DESeq-IDR performed well on
simulated data cases with low within condition variance and
low number of replicates, it failed to call peaks on data with
large variance. This is expected as IDR was conceived for a
conservative peak detection on technical replicates. JAMM
(with DESeq) had good performance on simulated data
(2nd rank) and is the only framework performing integra-
tive analysis of SPC problems with replicates. Some meth-
ods, such as PePr and DiffReps, had a tendency to call peaks
larger than other tools and the observed histone changes.
This explains the below average performance of these meth-
ods in our evaluation. MACS2 was ranked third on sim-
ulated data and second on expression based DCA. How-
ever, visual inspection indicates that its peaks are covering
smaller regions than indicated by the ChIP-seq signal. Fi-
nally, Poisson–THOR, which can be seen as a version of
ODIN supporting replicates with a distribution not coping
with overdispersion, has poor results in most evaluated sce-
narios. This reinforces the importance of support to overdis-
persion on the presence of replicates.

ChIP-seq experiments still requires protocol improve-
ments for allowing comparable signals (54). Here, we ex-
plore computational approaches for ChIP-seq normaliza-
tion and alternatives to the TMM approach. This normal-
ization strategy, which is usually employed in gene expres-
sion analysis, is based on the assumption that the number
of reads in most peaks does not change over conditions. We
propose here the use of housekeeping genes as a strategy
to normalize ChIP-seq signals for activating histone marks.
As indicated by our analysis, this approach leads to the best
ranked method on the expression based DCA. In particu-
lar, DCA values for THOR with housekeeping genes nor-
malization were higher for experimental conditions from
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the follicular lymphoma study. This study has overall lowest
quality statistics (FRIP) and highest within condition vari-
ance scores (overdispersion). Indeed, THOR framework in-
cludes the estimation of overdispersion quality measures
that can be used to guide the choice of normalization strat-
egy.

Despite a great number of methods for the detection of
differential peaks in ChIP-seq experiments, there has been
few efforts on benchmarking strategies or studies (9,30).
This work contains the most comprehensive evaluation
study on differential peak calling with replicates with focus
on histone modifications. We evaluate 10 differential peak
calling methods using three evaluation strategies: DCA with
gene expression, DCA with histone modifications and sim-
ulated data. These methods are evaluated on 13 differential
peak calling problems based on ‘real’ ChIP-seq data and
150 problems on simulated data. The code for evaluation
of methods and resulting statistics are available for the re-
search community. This provides a useful resource for fu-
ture work proposing differential peak calling methods.
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52. Demšar,J. (2006) Statistical comparisons of classifiers over multiple
data sets. J. Mach. Learn. Res., 7, 1–30.

53. Levenberg,K. (1944) A method for the solution of certain problems in
least squares. Quart. Applied Math., 2, 164–168.

54. Arrigoni,L., Richter,A.S., Betancourt,E., Bruder,K., Diehl,S.,
Manke,T. and Bönisch,U. (2016) Standardizing chromatin research: a
simple and universal method for ChIP-seq. Nucleic Acids Res., 44,
e67.


