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Abstract
Biodiversity is a complex, yet essential, concept for undergraduate students in ecol-
ogy and other natural sciences to grasp. As beginner scientists, students must learn 
to recognize, describe, and interpret patterns of biodiversity across various spatial 
scales and understand their relationships with ecological processes and human influ-
ences. It is also increasingly important for undergraduate programs in ecology and 
related disciplines to provide students with experiences working with large ecologi-
cal datasets to develop students’ data science skills and their ability to consider how 
ecological processes that operate at broader spatial scales (macroscale) affect local 
ecosystems. To support the goals of improving student understanding of macroscale 
ecology and biodiversity at multiple spatial scales, we formed an interdisciplinary 
team that included grant personnel, scientists, and faculty from ecology and spa-
tial sciences to design a flexible learning activity to teach macroscale biodiversity 
concepts using large datasets from the National Ecological Observatory Network 
(NEON). We piloted this learning activity in six courses enrolling a total of 109 stu-
dents, ranging from midlevel ecology and GIS/remote sensing courses, to upper- level 
conservation biology. Using our classroom experiences and a pre/postassessment 
framework, we evaluated whether our learning activity resulted in increased stu-
dent understanding of macroscale ecology and biodiversity concepts and increased 
familiarity with analysis techniques, software programs, and large spatio- ecological 
datasets. Overall, results suggest that our learning activity improved student un-
derstanding of biological diversity, biodiversity metrics, and patterns of biodiversity 
across several spatial scales. Participating faculty reflected on what went well and 
what would benefit from changes, and we offer suggestions for implementation of 
the learning activity based on this feedback. This learning activity introduced stu-
dents to macroscale ecology and built student skills in working with big data (i.e., 
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1  | INTRODUC TION

It is essential that undergraduate students in ecology and other nat-
ural sciences develop a solid understanding of the concept of bio-
logical diversity. The Earth is undergoing a biodiversity crisis, with 
loss of species occurring at an unprecedented rate, largely from 
human impacts (IPBES, 2019; Ceballos et al., 2015), and under-
standing patterns and drivers of biodiversity is vital to developing 
potential solutions (Luque et al., 2018; Brooks et al., 2008; Medail 
& Quezel, 1999). Although biodiversity is a complex concept with 
multiple levels of organization, species diversity is the most typical 
way biodiversity is measured and assessed. However, species diver-
sity can be difficult to comprehend because it can be measured in 
multiple ways (e.g., species richness, diversity indices), and several 
different metrics are used by scientists to interpret the distribution 
of biological diversity and how humans influence biodiversity pat-
terns (Colwell, 2009; Hughes et al., 2008; Loreau, 2010; Petchey & 
Gaston, 2002; Tscharntke et al., 2012; Zimmermann et al., 2010).

Successfully teaching biodiversity metrics presents several chal-
lenges (Navarro- Perez & Tidball, 2012). Species biodiversity is typically 
assessed at three spatial scales: local (alpha diversity), change in spe-
cies composition across habitats within a region (beta diversity), and 
regional or landscape scale (gamma diversity, Angeler & Drakare, 2013; 
Loreau, 2010; Magurran, 2004; Tuomisto, 2010). Beta diversity is per-
haps the most confusing of these three metrics because definitions of 
beta diversity vary (e.g., turnover in species, changes in species com-
position) and beta diversity metrics can appear disconnected from the 
definitions (Loreau, 2010; ShengBin et al., 2010). In fact, experts in the 
field debate methods for measuring beta diversity and their interpre-
tation (Tuomisto, 2010). Furthermore, spatial scale is intrinsic to un-
derstanding beta diversity, and traditional biology programs often lack 
explicit instruction in spatial reasoning such as is gained from course-
work in geography or geographic information systems (GIS) (Steinberg 
& Steinberg, 2015; Tilman & Kareiva, 2018).

Scale is fundamental to several disciplines, but defined in dif-
ferent ways, making it another challenging concept to teach (Cheek 
et al., 2017). Scale can be used to address space and/or time, or 
taught as a magnitude of a dimension or relationship between two 
objects or events. Because of the difficulties associated with teach-
ing concepts related to scale, it may rarely be included as a topic in 
biology courses. In fact, Cheek et al. (2017) found only three studies 
that examined teaching and learning of scale in biology and ecology 
classrooms, indicating that more research is needed in this area.

It is increasingly important for undergraduate programs in ecology 
and related disciplines to teach students how to analyze large eco-
logical datasets (Langen et al., 2014). Although there are challenges 

to incorporating big data into the undergraduate classroom (Langen 
et al., 2014), such as managing student frustration, there are many 
benefits. Skills and experience gained from participating in projects 
that use big data will help prepare a generation of ecologists to collab-
orate with colleagues from multiple disciplines (e.g., climate science, 
remote sensing) to solve global- scale problems (Carey et al., 2019; 
Shiklomanov et al., 2019). Analysis of large datasets can help students 
understand how broad- scale (macroscale) ecological processes affect 
local ecosystems (Carey et al., 2020; Heffernan et al., 2014), while gain-
ing competence in big data management and analysis methods that 
are essential for future scientists in the field (Hampton et al., 2017). 
Using real, open- access data collected at multiple spatial scales 
through observatory networks (e.g., National Ecological Observatory 
Network (NEON), Long- term Ecological Research (LTER) sites, Critical 
Zone Observatories (CZOs)) can involve students in authentic science 
(Styers, 2018) as they engage with large datasets to understand biodi-
versity at multiple spatial scales.

To support the goals of improving student big data skills and their 
understanding of macroscale ecology and biodiversity at multiple spa-
tial scales, we formed an interdisciplinary team to design a learning ac-
tivity to teach macroscale concepts related to biodiversity using NEON 
data. Scientists and faculty from various fields (e.g., ecology, remote 
sensing, geography) who are associated with the Ecological Research 
as Education Network (EREN, erenweb.org) worked cooperatively to 
design and test a learning activity with sufficient flexibility to be incor-
porated into a variety of courses (e.g., ecology, conservation biology, 
GIS, remote sensing) across a range of student skill levels. We piloted 
this learning activity in six courses enrolling a total of 109 students, 
ranging from midlevel ecology and GIS/remote sensing courses to 
upper- level conservation biology. While the majority of students were 
STEM majors, students had a diverse set of specialties within STEM 
and different background knowledge, ranging from environmental 
studies or natural resource management to biology. Our goal was to 
determine how to best use our learning activity to improve student 
understanding of macroscale ecology and biodiversity concepts, un-
derstanding of NEON’s large spatio- ecological datasets, and skills in 
data management and use of software programs (e.g., spreadsheets, 
GIS, statistical software).

2  | METHODS

2.1 | Classroom learning activity development

Our team included grant personnel, NEON scientists, and EREN fac-
ulty from primarily undergraduate institutions (PUIs) specializing in 

large datasets) and performing basic quantitative analyses, skills that are essential for 
the next generation of ecologists.

K E Y W O R D S
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both ecology and spatial sciences, all of which facilitated important 
knowledge sharing (Figure 1). This interdisciplinary team approach 
had several benefits, including providing support to faculty who may 
be less familiar with spatial tools and big data and adding important 
skills in spatial reasoning and ecological concepts to more traditional 
GIS classes (Bearman et al., 2016). The team approach brought some 
challenges as well— for example, the computing systems and com-
puting support at our different colleges vary broadly, so we had to 
develop multiple versions of some of the course materials— but the 
benefits in making complex learning activities more accessible out-
weighed the drawbacks.

A workshop was designed and organized by Dr. Jessica Mitchell 
(University of Montana) and funded as part of an NSF- sponsored 
research project, which the participants titled the Joint EREN- 
NEON project (PI: Jessica Mitchell; NSF Grant No. 1916896). The 
workshop agenda and timeline, and classroom teaching and learn-
ing activity materials are available for download at https://drive.

google.com/drive/ folde rs/1Cinm rXQ- KCVqb tR6YL FNVd5_VgV8X 
AoY?usp=sharing. After introductions and overviews of EREN, 
NEON, biodiversity, and the NSF- sponsored research project, par-
ticipants were led through an exercise using plant presence and 
percent cover (PPPC) field data from the NEON Harvard Forest site 
(HARV) to calculate alpha and beta diversity. A NEON scientist famil-
iar with the internal R scripts for downloading and organizing NEON 
data was available for questions and assistance (Lunch et al., 2020). 
The R code and workflow provided (see Figure 2) allowed partici-
pants to easily access the NEON data and prepare it for use in the 
dry run of the learning activity. The R code was tweaked on- site 
based on real- time feedback and is now available on NEON’s online 
data portal for anyone to use. The first day of the workshop ended 
with participants developing learning objectives for the classroom 
learning activity (Table 1).

On the second day of the workshop, participants completed bio-
diversity calculations for six additional NEON field sites, all located 

F I G U R E  1   Conceptual diagram of the process for developing our classroom learning activity. Grant personnel designed and organized 
the workshop and pulled together the team of scientists. The workshop was conducted over two and a half days, in which a majority of the 
learning activity and associated materials were developed. The remaining work was completed over the following three weeks, and then, IRB 
review for the assessment of student learning was initiated. The learning activity was implemented in six different classrooms during the fall 
2018 semester

https://drive.google.com/drive/folders/1CinmrXQ-KCVqbtR6YLFNVd5_VgV8XAoY?usp=sharing
https://drive.google.com/drive/folders/1CinmrXQ-KCVqbtR6YLFNVd5_VgV8XAoY?usp=sharing
https://drive.google.com/drive/folders/1CinmrXQ-KCVqbtR6YLFNVd5_VgV8XAoY?usp=sharing
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in the eastern deciduous forest biome. In total, there were two sites 
each from the Northeast (D01) and Mid- Atlantic (D02) NEON do-
mains and three sites from the Appalachians and Cumberland Plateau 
domain (D07). In addition to calculating alpha and beta diversity, par-
ticipants calculated and compared gamma diversity for each of the 
seven sites. Faculty then used the afternoon to collectively develop 
the classroom learning activity, teaching materials, and assessment 
tools according to the agreed- upon learning objectives. The final day 
of the workshop was used to perform a test run through the learn-
ing activity, develop a timeline for implementation, data sharing, and 
management, and discuss future collaborative opportunities.

Workshop participants developed a set of work assignments 
with deadlines to be completed over the three weeks following the 
workshop (Figure 1), so the learning activity could be implemented in 
classrooms in the fall 2018 semester. The workload was distributed 

among the workshop participants and included tasks such as devel-
oping student instructions for data manipulation and analysis, final-
izing GIS/remote sensing figure overlays, completing biodiversity 
and NEON PowerPoint teaching slides, writing R code for merging 
NEON data, creating Excel files with PPPC data, and producing the 
final student and faculty assessment tools. All draft products were 
submitted to a document sharing site and were reviewed by all fac-
ulty. Once the learning activity products were finalized, they were 
submitted with an application for IRB review for the project assess-
ment work focusing on student learning (WCU Project Approval #s 
1309846- 1 and 1309846- 2). Finally, participants developed a plan 
for data management and writing of the manuscript.

Given the wide range of faculty expertise and institutional char-
acteristics, it was important to our team that individual instructors 
be permitted to adjust the learning activity to the needs of their 

F I G U R E  2   Conceptual diagram of the process for getting started with NEON data. Primary methods for accessing NEON organismal data 
include (1) download from the NEON Data Portal and (2) programmatic access from within the NEON application programming interface 
(API). Data via the manual download occurs at the NEON Data Portal (https://data.neons cience.org/data- produ cts/explore), requires a 
NEON data product name and/or number (e.g., “Plant presence and percent cover,” DP1.10058.001), date and location (state, NEON domain, 
or site), specification on inclusion of documentation such as protocol that guided data collection, and selection of the “basic” (primary 
measurements) or “expanded” package (related data and samples). These data download as a compressed folder with a nested by month and 
location folder structure. These are best organized programmatically with a NEON- developed function (stackByTable()) in the neonUtilities 
package for the R programming language. Accessing the NEON data programmatically is accomplished through the NEON API also in R with 
the neonUtilities package. The function loadByProduct() requires the same data product, date range, location, documentation, and package 
specifications. The neonUtilities package is available via GitHub (https://github.com/NEONS cience), a code hosting platform for version 
control and collaboration. Detailed instructions for the download of NEON data can be found in the NEON tutorials library (https://www.
neons cience.org/resou rces/learn ing- hub/tutor ials/downl oad- explo re- neon- data)

TA B L E  1   Learning objectives for the learning activity and minimum concepts covered by each faculty member that implemented the 
activity for the three topics covered in the activity

Topic Learning objectives Minimum concepts

Biodiversity metrics 1. Differentiate alpha, beta, and gamma diversity.
2. Recall the strengths and weaknesses of diversity metrics.
3. Calculate plant field diversity metrics (alpha, beta, and gamma 

diversity) for NEON plots/sites.

Alpha diversity
Beta diversity
Gamma diversity

Spatial scale 1. Describe the concept of multiple spatial scales in ecology.
2. Describe how ecological data collected at one scale can be “scaled up” 

or “scaled down” to describe ecological patterns.
3. Recognize the benefits of analyzing diversity metrics at multiple spatial 

scales.
4. Describe macroscale, differentiating it from other scales of inquiry.
5. Describe the nested plot sampling method for generating species– area 

curves.
6. Plot and interpret species– area curves.

Macrosystems
Macroscale
Scaling up and scaling down
Value of analyzing multiple spatial 

scales when applying biodiversity 
metrics for conservation

Nested plot sampling
Species– area curves

NEON 1. Summarize how the objectives of the National Ecological Observatory 
Network (NEON) support macroscale science

Mission of NEON
Application to macroscale science

https://data.neonscience.org/data-products/explore
https://github.com/NEONScience
https://www.neonscience.org/resources/learning-hub/tutorials/download-explore-neon-data
https://www.neonscience.org/resources/learning-hub/tutorials/download-explore-neon-data
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own classrooms, an approach that mirrors how most instructors 
use teaching modules. In addition to being realistic, this approach 
has four advantages: (a) It acknowledges that students across class-
rooms and colleges have different backgrounds and learning needs; 
(b) it allows individual instructors to adapt the learning activity 
based on their own backgrounds and their specific course learning 
outcomes; (c) it allows individual instructors to adjust the learning 
activity to fit within the time allocated for the activity; and (d) it 
promotes more in- depth reflection among instructors about the 
best ways to adjust the activity to enhance student learning in dif-
ferent settings.

2.2 | Description of learning activity

The learning activity begins by introducing students to the NEON 
data portal (https://data.neons cience.org/data- produ cts/explore) 
for general exploration and then practice downloading a PPPC 
field dataset (DP1.10058.001) collected under the Terrestrial 
Observation System (TOS) for the HARV example site. Students are 
introduced to the format of NEON field data and the nested plot 
structure of PPPC sampling design. The exercise includes instruc-
tions for either downloading and stacking multiple NEON data files 
using the “neonUtilities” and “stackByTable()” R code packages or 
for accessing the data through the NEON API using the “neonUtili-
ties” and “loadByProduct()” R code packages (Figure 2). The exercise 
also includes an explanation of vegetation variables and biodiver-
sity metrics, and step- by- step instructions for manually manipulat-
ing Excel spreadsheets to calculate biodiversity indices using Pivot 
Tables. Workshop participants from the PUI institutions under-
stood the importance of creating versions of the activity with dif-
ferent entry points due to the differing skill sets of our students, 
software available at our institutions, and the wide range of classes 
that we teach in any given year. We also wanted to ensure that we 
created a learning activity that could be adapted for a wide variety 
of classrooms, ranging from introductory ecology or environmental 
science courses, to upper- level GIS, remote sensing, or conservation 
biology courses. Therefore, in addition to creating instructions that 
assumed students would be starting by downloading the data from 
the NEON portal, workshop participants also created Excel files for 
each of the seven NEON sites, both with and without alpha diversity 
already calculated. To help instructors in both ecology and spatial 
science classes link site- level data with macroscale data, workshop 
participants also compiled the available spatial data into plot- level 
and site- level shapefiles that could be linked to the Excel files using 
a common attribute.

2.3 | Project implementation and assessment data 
compilation

Of the ten faculty who participated in the workshop, six imple-
mented the learning activity in their classrooms in fall 2018. These 

faculty used the learning activity in a variety of majors courses at the 
sophomore to senior (i.e., 200– 400) level (i.e., Plant Communities 
and Ecosystems, Ecosystem Ecology, Conservation Biology, Ecology, 
Advanced GIS, and Introduction to Remote Sensing). While all of the 
participating faculty agreed to present certain minimum concepts 
developed as part of this learning activity (see below; Table 1), the 
degree of detail in which concepts were covered varied consider-
ably, as did the amount of ancillary material, activities, and software 
used (Table 2). For example, one of the classes went into greater de-
tail about nested plot designs by including field activities focused 
on these methods. Other classes implemented additional geospatial 
analysis activities in ArcGIS and/or used the learning activity within 
the context of a larger class project.

Regardless of the context within which the learning activity was 
introduced, there was a set of standardized material presented by 
each faculty member that included an IRB- required recruitment 
flyer and subsequent consent form, the student preassessment test 
and survey, lecture material on macrosystems biology and the NEON 
project, the classroom learning activity, and the postassessment test 
and survey. Although the order in which each of these steps was 
implemented was set, the time period over which they occurred was 
not. The timing of pre/postassessments relative to the use of the 
learning activity ranged from a minimum of 7 days to a maximum 
of 12 days, with a mean of 9 days. To provide a unified structural 
framework across all classrooms, all faculty used the same “mini-
mum concepts list,” which included concepts related to biodiversity 
metrics, spatial scaling, and NEON (Table 1). The assessment tools 
were focused on this list, and therefore, all students took the same 
assessment.

The student pre-  and postassessment tools (hereafter referred 
to as pretest and post- test) were identical. They were created in 
Google Forms and administered in class online. The tests com-
prised 10 multiple- choice questions (Table 3; supplemental ma-
terial) testing student understanding of concepts related to the 
activity learning objectives and 13 questions in which students 
ranked (1– 5; very poor, poor, moderate, good, and very good, re-
spectively) their perceived knowledge of various concepts (alpha 
diversity, beta diversity, gamma diversity, macrosystems, mac-
roscale, scaling up/down, species– area curves, nested plots, and 
NEON as an organization) and their perceived skills in Excel, R, 
and ArcGIS. The majority of students in all courses completed and 
answered all questions in the pretest and post- test, and students 
that did not complete both tests were not included in the analy-
ses. In some courses, these assessments were graded, while some 
were not graded, and others offered “points” for completion re-
gardless of the correctness of their answers. The authors recognize 
this disparity could introduce bias into the dataset, but believe the 
students’ answers are relevant. After the semester was completed 
and course grades had been submitted, nonconsenting responses 
were removed from the class datasets and personal identifying in-
formation was removed from all remaining student pre-  and post- 
test responses in the master dataset provided to the full faculty 
team.

https://data.neonscience.org/data-products/explore
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Lastly, participating faculty completed the faculty project as-
sessment survey and consent form. The purpose of this survey was 
to collect information about which EREN- NEON learning activities 
each faculty member used in their courses; how much time was 
spent on lecture, laboratory, and homework; what software pro-
grams were used; and information about the course itself (e.g., name, 
level, and prerequisites).

2.4 | Statistical analyses

We analyzed differences in overall student performance on the pre-
test and post- test using a Wilcoxon signed- rank test with continu-
ity corrections. We compared student performance on the pretest 
and post- test for individual questions using McNemar's tests with 
continuity corrections using the gmodels package in R (Warnes 
et al., 2015). We analyzed differences in students’ self- reported un-
derstanding of concepts and data skills (using Excel, R, and ArcGIS) 
on the pretest and post- test using Wilcoxon signed- rank tests with 
continuity corrections. Two courses did not cover the NEON nested 
plot sampling design (either in lecture or lab), so students in these 
courses were not included in the analysis for understanding of the 
nested plot concept. All other concepts were covered in all courses. 
Five courses used Excel, one course used R, and three courses used 
ArcGIS (Table 2); students were included in skills analyses only for 
the programs they used. Wilcoxon's signed- rank tests were con-
ducted in R version 3.4.1 (R Core Team 2017). For all Wilcoxon's 
signed- rank tests, we determined the standardized test statistic (z) 
using IBM SPSS Statistics version 24.0 (IBM Corp 2016) and calcu-
lated Pearson's correlation coefficient (r) as a measure of effect size 
following Field (2009).

3  | RESULTS

We present results from the analysis of our student assess-
ment data as a “proof of concept” that the learning activity we 
developed was effective. Due to the diversity of our classroom 

settings, we focused our assessment on broad concepts. Overall, 
we found gains in student understanding of macroscale ecology 
and biodiversity concepts, NEON’s datasets, and skills in data 
management and use of software programs (spreadsheets, GIS, 
statistical software), thus meeting the goals of our collaborative 
effort.

3.1 | Evaluation of student learning

Students’ scores were significantly higher on the post- test 
(mean = 53.94%, Mdn = 50%, IQR = 30) than on the pretest 
(mean = 43.58%, Mdn = 40%, IQR = 20) across all courses com-
bined (N = 109; 85 nonzero differences: V+ = 3,064.5, p <.001, 
r = 0.37). Student performance was significantly better on the 
post- test than the pretest on one question about biodiversity 
(Q1; χ2 = 16.57, df = 1, p < .001), one question about scaling (Q7; 
χ2 = 17.52, df = 1, p < .001), and the question about NEON (Q10; 
χ2 = 13.78, df = 1, p < .001). Student performance did not signifi-
cantly differ between the pretest and post- test for the other seven 
questions (Figure 3).

Students’ self- reported understanding of all concepts increased 
significantly after completing the learning activity (Table 4). For 
most concepts, students reported a “poor” (level 2) median under-
standing of concepts prior to the learning activity and a “moderate” 
(level 3) median understanding after completing the learning activ-
ity. However, students reported a median “moderate” understanding 
of species– area curves both before and after the learning activity. 
Students reported the largest increase in understanding of nested 
plots and NEON (Table 4).

For students that used R and ArcGIS, their self- reported skills 
using these programs increased significantly after completing the 
learning activity (Table 4). Only 41% of responding students re-
ported a change in their perceived knowledge of Excel (41 nonzero 
differences). Although there was no change in the median perceived 
knowledge of Excel between the pretest and post- test, there was a 
borderline significant increase in individual students’ self- reported 
ability to use Excel (Table 4).

TA B L E  3   Topics, concepts, and the level of Bloom's Taxonomy for pre/post- test assessment questions for the classroom learning activity

Question # Topic Concept(s) Bloom's level

1 Biodiversity metrics Alpha, beta, and gamma diversity Remember

2 Biodiversity metrics Alpha and gamma diversity Understand

3 Biodiversity metrics Alpha, beta, and gamma diversity Apply

4 Spatial scale Value of analyzing multiple spatial scales Understand

5 Spatial scale Scaling up and scaling down Understand

6 Spatial scale Scaling up Understand

7 Spatial scale Nested plot sampling Understand

8 Spatial scale Macroscale Apply

9 Spatial scale Species– area curve Apply

10 NEON Application to macroscale science Apply
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3.2 | Evaluation of approaches to 
teaching the activity

After piloting the learning activity in a wide variety of courses, the 
participating faculty met to reflect on what went well across our 
classes and what we would change in the future. We compiled our 
notes from this discussion into broad suggested strategies for imple-
mentation of our learning activity.

• Given the conceptual challenges presented by biodiversity and 
scaling concepts, the highest gains in learning are likely to occur 
when students are given sufficient class time to fully develop their 
understanding.

• Delivering the material over more than one class period helped 
students better digest the material (as opposed to being over-
loaded with new material all at once).

• In classes that had a field component, introducing the concepts of 
nested plots and measuring vegetation in nested plots in the field 
before the learning activity helped enhance the ability of students 
to understand how the NEON data were gathered as well as bio-
diversity and scaling concepts.

• The timing of the pre-  and post- tests could be important to stu-
dent performance (e.g., Anderson et al., 2020). For example, it is 
likely better to avoid giving the postassessment tool immediately 
after spending several hours in class on the learning activity when 
students are drained.

• If administering the pre-  and post- tests online, it may improve 
student performance to encourage them to use scrap paper so 
they can write notes or perform calculations to flesh out their 

answers. Completing the higher- level quantitative and conceptual 
questions on the assessment may be difficult for many students 
without using scrap paper.

• When administering the skills portion of the assessment tool, we 
recommend revising it to ask about specific skills to obtain more 
fine- grained information about self- reported student learning. 
For example, instead of asking “On a scale of 1 to 5, please rate 
your ability to use Excel,” as we did in our generalized assessment 
tool, ask “…please rate your ability to calculate a mean in Excel” or 
“… please rate your ability to use Pivot Tables,” an Excel function 
that was unknown to most students prior to the learning activity 
and that many students struggled with during the activity.

While some of these observations may seem obvious, we believe 
their thoughtful implementation would result in improved learning 
and assessment.

4  | DISCUSSION

Our learning activity improved student understanding of biological 
diversity, biodiversity metrics, and patterns of biodiversity across 
several spatial scales— concepts that can be challenging for under-
graduates (Navarro- Perez & Tidball, 2012). The learning activity 
introduced students to macroscale ecology and built student skills 
in working with large datasets and performing basic quantitative 
analyses, skills that are essential for the next generation of ecolo-
gists (Bauerle et al., 2011; Austin, 2018). Our pre-  and post- test re-
sults demonstrated statistically significant student knowledge gains 
in biodiversity and scaling concepts, as well as self- reported techni-
cal skills gains in using R and ArcGIS. Students also gained a strong 
awareness of NEON’s support of macroscale science.

4.1 | Developing large dataset learning activities

We have several broad recommendations for others to consider 
when creating similar learning activities to share widely with the 
larger teaching community. It is important to make the learning ac-
tivity easily adaptable to individual classrooms (Gould et al., 2014; 
O’Reilly et al., 2017). To achieve this goal, we suggest providing guid-
ance on various entry points into and exit points out of the exercise, 
background information in a form that can be easily modified (e.g., 
slides with notes) for different types of courses, and recommenda-
tions on how to implement the activities. Providing teaching ma-
terials with varying entry points not only allows for their adoption 
across a wide variety of courses, but also improves accessibility for 
faculty who may have varying degrees of comfort working with large 
datasets, NEON data, or certain software programs (e.g., R, ArcGIS; 
Bonner et al., 2017; O’Reilly et al., 2017). For example, in classes 
that focus on learning R, instructors can use the resources provided 
by NEON to download and organize the data prior to use, while in 
classes that may instead focus on learning Excel, instructors can use 

F I G U R E  3   Percent of students that answered each question 
correctly on the pretest and post- test. For question topics, 
BM = biodiversity metrics, SS = spatial scale, and NEON = National 
Ecological Observatory Network. Q1: χ2 = 16.57, p < .001; Q2: 
χ2 = 0.74, p = .391; Q3: χ2 = 0.55, p = .458; Q4: χ2 = 0.76, p = .383; 
Q5: χ2 = 0.32, p = .571; Q6: χ2 = 1.56, p = .212; Q7: χ2 = 17.52, 
p < .001; Q8: χ2 = 1.02, p = .312; Q9: χ2 = 0.23, p = .635; Q10: 
χ2 = 13.78, p < .001. Degrees of freedom = 1 for all questions. 
*Indicates a significant difference at α = 0.05
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the instructions for creating and working with Pivot Tables. Likewise, 
in traditional ecology courses the focus may be on the results of the 
biodiversity analyses, while in a GIS or remote sensing class, the 
focus may instead be on the relationships between biodiversity and 
broader- scale environmental variables.

Regardless of the focus or entry point, all documents should be in 
formats that are easily edited, which will make it simpler for instruc-
tors to adapt and modify the learning activities to fit their classes. In 
learning activities that involve lengthy descriptions of steps to take, 
students may get “lost” trying to follow the steps and forget the point 
of that part of the learning activity (Gould et al., 2014; O’Reilly et al., 
2017). An annotated, but brief, outline and summary of major and 
minor steps and what each step involves and accomplishes should 
help this issue. It is important, however, to provide the amount of 
step- by- step details necessary for students to achieve the specific 
learning outcomes for each project and/or course.

The expertise of both NEON staff scientists and PUI faculty was 
essential to developing this learning activity. NEON staff scientists 
provided invaluable guidance on downloading, managing, cleaning, 
and analyzing NEON data. Faculty experience in teaching difficult 
ecological and quantitative concepts to undergraduates helped guide 
the team toward a simpler, more accessible activity, with multiple 
entry and exit points. This collaboration highlights the importance of 
funding collaborative projects and workshops such as this, both to 
help interested faculty feel more comfortable using NEON data and 
to help NEON scientists understand the ways that their data are being 
utilized (Gould et al., 2014). After this workshop, many of the PUI fac-
ulty participants went on to work with additional NEON datasets in 
their research and other collaborative teaching projects, demonstrat-
ing the compounding nature of these investments in faculty training.

4.2 | Incorporating large datasets into 
undergraduate classrooms

Conducting classroom learning activities that use large datasets col-
lected over broad spatial scales may address the challenge of teach-
ing certain complex concepts, but these activities can be difficult for 
instructors to both develop and implement in the classroom (O’Reilly 
et al., 2017). Designing, teaching, and implementing data- intensive 
activities are time- consuming, both in preparation and instructional 
time. Using data collected and archived from real- world projects, 
such as NEON data, is often messy and can require significant pro-
cessing time to clean the data (e.g., finding and correcting missing 
values, selecting a subset of the data variables). This time can be 
spent by the faculty member in preparation for the activity, or by 
the students during class instructional time. Careful decisions are 
needed to determine how curated data should be before students 
use it and how to scaffold assignments to reduce student frustration 
and create a slightly more gradual learning curve (Langen et al. 2014; 
Kjelvik and Schultheis, 2019). We did not assess the costs/benefits 
of these various approaches in this project, but more work is needed 
to find the optimal point where the benefits of working with real data 

are outweighed by the costs in the form of class time used for data 
processing, student frustration, and lack of student engagement.

The significant time investment required to produce large data-
set learning activities can be exacerbated by faculty unfamiliarity 
with large datasets. Some faculty may not be comfortable with some 
of the newer methods or software (e.g., R) that may be required or 
recommended for authentic data analysis (Farrell & Carey, 2018; 
Hampton et al., 2017). The faculty participants in this project were 
enthusiastic about utilizing NEON data in our teaching, but we found 
that these data, although extremely rich, were not always accessible 
in a way that facilitated their use and adoption into our undergradu-
ate classrooms (Hernandez et al., 2012; Strasser & Hampton, 2012). 
Our collaboration with NEON staff and scientists was extremely 
fruitful, and helped to soften the learning curve for this project, 
but we would not have been able to develop this activity without 
their direct help. Our experience highlights both the need for addi-
tional training and mentorship opportunities for PUI faculty (Bonner 
et al., 2017) and the need for open- access data repositories such 
as NEON to consider ways to improve accessibility for faculty ex-
periencing technology constraints. For example, not all faculty are 
comfortable with how to download and run an R or Python code to 
compile data from the NEON portal, so although it is extremely help-
ful to have those tools, they may not be enough to provide access to 
NEON data for many PUI faculty (Auker & Barthelmess, 2020).

Some faculty also experience constraints to using large datasets 
in their teaching at the institutional level. College campuses have 
varying abilities to support processing of large datasets, as well as 
to purchase and support various types of software. Having all stu-
dents running R code simultaneously can sometimes slow classroom 
internet performance, leading to additional student frustration. Lack 
of faculty confidence or experience in the tools being used (Farrell 
& Carey, 2018) combined with inconsistent technology support at 
smaller colleges present a formidable barrier to the implementation 
of these activities, even if they are well- designed and easy to follow.

5  | CONCLUSIONS

We successfully used nested plot NEON vegetation data to develop 
a flexible learning activity to teach macroscale concepts related to 
biodiversity to undergraduates in a variety of courses. Learning ac-
tivities that use authentic field data and multiscalar analysis methods 
can facilitate undergraduate understanding of macroscale ecology 
and allow students to begin to understand biodiversity at multiple 
spatial scales, preparing them to solve pressing global- scale, in-
terdisciplinary environmental problems such as biodiversity loss. 
However, significant support may be needed for faculty to adopt 
such learning activities en masse.
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