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Neural substrates of cognitive biases during
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Decision making often requires simultaneously learning about and combining evidence from

various sources of information. However, when making inferences from these sources,

humans show systematic biases that are often attributed to heuristics or limitations in

cognitive processes. Here we use a combination of experimental and modelling approaches to

reveal neural substrates of probabilistic inference and corresponding biases. We find

systematic deviations from normative accounts of inference when alternative options are not

equally rewarding; subjects’ choice behaviour is biased towards the more rewarding option,

whereas their inferences about individual cues show the opposite bias. Moreover, inference

bias about combinations of cues depends on the number of cues. Using a biophysically

plausible model, we link these biases to synaptic plasticity mechanisms modulated by reward

expectation and attention. We demonstrate that inference relies on direct estimation of

posteriors, not on combination of likelihoods and prior. Our work reveals novel mechanisms

underlying cognitive biases and contributions of interactions between reward-dependent

learning, decision making and attention to high-level reasoning.
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N
aturalistic decision making and judgment often require
simultaneously learning about and combining evidence
from various sources of information. Learning the

evidence provided by each source is a non-trivial task when
multiple sources are presented at once and feedback is binary
(reward versus no reward, success versus failure). For example,
examining patients requires a doctor to attend to a variety of
symptoms and utilize previous correct/incorrect diagnoses to
make proper decisions. Such naturalistic decision making and
reasoning situations can be simulated in the laboratory environ-
ment using various probabilistic inferences and learning tasks1–3.
Studies using these tasks have yielded invaluable insights into
learning and memory2,4–6, decision-making processes7–9, as well
as corresponding neural representations and underlying neural
mechanisms6,9–14.

Interestingly, humans often exhibit systematic biases in their
judgment as measured by deviations from normative accounts of
inference (for example, computing posteriors by combining
evidence and prior information using Bayes theorem). Although
these biases have been attributed to heuristics or limitations in
cognitive processes15, they could reveal neural mechanisms
underlying learning, decision making and inference. For
example, humans tend to attribute too much predictive power
to individual cues preceding the rare outcome when presented
with multiple cues simultaneously (a judgment bias known as
base-rate neglect16). Recently, we proposed a biophysically
plausible model that performs probabilistic inference through
dopamine (DA)-dependent synaptic plasticity14. This model,
which was validated by behavioural and electrophysiological data
in monkeys9, linked base-rate neglect to simultaneous learning of
evidence provided by multiple cues. However, it is unclear
whether this or other cognitive biases occur in humans due to
similar low-level mechanisms, or rather, due to imperfect learning
or an inaccurate combination of various sources of information.

Moreover, an important and often neglected aspect of decision
making and probabilistic inference is the influence of existing
information on what is processed and subsequently updated
when reward feedback is received. For example, during a flu
epidemic, a doctor may first try to identify a few symptoms that
strongly predict a correct diagnosis. For future patients, however,
she would not only focus on those symptoms, but also attribute
the resulting diagnosis success/failure to those symptoms, rather
than the unattended ones. Existing information could influence
what should be processed via attentional selection, which in turn
could influence future learning and decision processes. Therefore,
interactions between reward-dependent learning, decision-mak-
ing and attentional processes could be crucial for probabilistic
inference and could contribute to cognitive biases. Currently, little
is known about how these processes interact17,18, mainly because
of the difficulty of separating them19; therefore, it is unclear how
and to what extent these interactions influence probabilistic
inference.

Here we used a combination of experimental and modelling
approaches to reveal neural mechanisms underlying probabilistic
inference and related biases. First, we used a novel experimental
paradigm to precisely measure cognitive biases during both
choice and inference. The experiment involved predicting reward
on two alternative options based on simultaneously presented
cues and subsequently receiving reward feedback. This decision
task was followed by an inference task where subjects provided
their estimates of the predictive power of individual cues or
combinations of cues. Second, we developed a biophysically
plausible model of probabilistic inference to simulate subjects’
behaviour during our experiment. We find that when alternative
options are not equally rewarding, choice behaviour of individual
subjects is biased towards the more rewarding option, whereas

their inferences about individual cues show the opposite bias.
Moreover, inferences about combinations of cues show a bias that
depends on the number of cues, contradicting any normative
accounts of inference. Our results indicate that inference relies on
direct estimation of posteriors and not on combination of
likelihoods and prior. We show that reward-dependent learning,
decision-making and attentional processes occur concurrently
and interact dynamically to determine probabilistic inference and
corresponding cognitive biases.

Results
Cognitive biases during probabilistic inference. To measure
cognitive biases during both choice and inference, we used a
novel experimental paradigm in which human subjects simulta-
neously learned about and combined information from multiple
cues through reward feedback, and subsequently provided esti-
mates about the predictive power of individual cues or combi-
nations of cues. Specifically, each subject performed a choice
session followed by an estimation session. During each trial of the
choice session, the subject was presented with four shapes
(selected from a set of 4 shapes with the possibility of repetition)
and chose between two alternative options (red or blue targets) to
receive reward points (Fig. 1). Subjects learned the information
provided by each shape (that is, the probability of collecting
reward on the two options) while making decisions about which
option is rewarding given a combination of shapes, and subse-
quently receiving reward feedback. However, for a given subject,
either the red or blue target was more often assigned with reward,
corresponding to the prior for blue, P(B), equal to 0.25 and 0.75,
respectively. During each trial of the estimation session, the
subject estimated the probability that the red or blue target would
be rewarded given a shape or a combination of shapes (two or
four shapes). Importantly, there was no feedback during the
estimation session, so subjects relied solely on what they had
learned during the choice session when providing estimates.

Even though four shapes were presented on each trial, most
subjects performed the task well, as shown by their choice
behaviour, and learned the evidence provided by individual
shapes (see Methods section for inclusion criteria). Estimation of
posteriors for individual shapes matched the order of evidence
carried by those shapes in 30 out of 37 subjects, and the
remaining 7 subjects missed the order only between 1 pair of
shapes. Figure 2a,b shows the behaviour of two example subjects
during the choice session. Choice behaviour of each subject was
biased towards the more rewarding option in each case: the red
target when P(B)¼ 0.25 and the blue target when P(B)¼ 0.75. We
quantified this bias by measuring the indifference point of the
psychometric function (PF; see equation 3 in Methods section), m,
which was positive for the subject with P(B)¼ 0.25 and negative
for the subject with P(B)¼ 0.75.

However, the same subjects showed an unexpected pattern of
biases during the estimation session as revealed by the estimation
psychometric function, ePF (Fig. 2c,d). More specifically, even
though posterior estimates provided by both subjects were
proportional to the log posterior odds, these estimates exhibited
systematic biases that depended on the number of shapes used for
estimation. In contrast to the bias exhibited during the choice
session, one-shape estimates were biased towards the less
rewarding option (Fig. 2c,d; note a leftward shift in the ePF for
P(B)¼ 0.25 and rightward shift for ePF for P(B)¼ 0.75). Never-
theless, estimated posteriors were smaller (respectively, larger)
than the evidence (shown by grey squares in Fig. 2c,d insets) for
P(B)¼ 0.25 (respectively, P(B)¼ 0.75), indicating that what was
learned about individual shapes was influenced by the prior
probability but not as strongly as prescribed by Bayes theorem.
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The subjective weight of evidence (SWOE) for individual shapes,
which quantifies the influence of each shape on choice (see
Methods section), showed a similar bias towards the less
rewarding option (Fig. 2a,b, insets). Finally, the ePF showed a
gradual shift towards the more rewarding option as the number
of shapes used for estimation increased.

The aforementioned patterns of systematic biases were
observed across all subjects as revealed by the average data
across all subjects (Fig. 3) or the distribution of individual
subjects’ biases (Fig. 4). First, subjects showed contradictory
biases during choice and one-shape estimation. More specifically,
there was a significant bias in choice towards the more rewarding
option (m¼ � 0.54±0.70; two-sided sign test P¼ 4� 10� 5,
N¼ 37; Figs 3a,b and 4c) and this bias was present for 31 out of
37 subjects (mchoice¼ 0.50±0.78 for P(B)¼ 0.25; mchoice¼
� 0.58±0.64 for P(B)¼ 0.75). At the same time, one-shape
estimates were biased towards the less rewarding option
(m¼ 0.74±0.30; two-sided sign test P¼ 6� 10� 10, N¼ 37;
Figs 3d-f and 4a) for all subjects except one (m1-shape¼ � 0.72±
0.34 for P(B)¼ 0.25; m1-shape¼ 0.76±0.27 for P(B)¼ 0.75).
Similar to example subjects (Fig. 2), most subjects estimated
posteriors for individual shapes that were smaller (respectively,
larger) than the evidence when the red (respectively, blue) target
was more rewarding, indicating that what was learned about each
shape was influenced by the prior probability but not as strongly
as it should be optimally (Fig. 3f). Therefore, although subjects
biased their choice towards the more rewarding option, their
estimates for individual shapes were biased towards the less
rewarding option.

Second, there was a progression of estimation biases towards
the more rewarding option as the number of shapes used for
estimation increased. The biases for one-shape estimates towards
the less rewarding option were larger than those for two-shape
estimates (two-sided sign test P¼ 10� 8, N¼ 37; Figs 3d,e and 4a)

and this was true for all but two subjects (m2-shape¼ � 0.33±0.37
for P(B)¼ 0.25; m2-shape¼ 0.29±0.51 for P(B)¼ 0.75). Moreover,
the biases for two-shape estimates towards the less rewarding
option were larger than those for four-shape estimates (two-sided
sign test P¼ 4� 10� 5, N¼ 37; Figs 3d,e and 4b) and this was
true for all but five subjects (m4-shape¼ 0.16±0.59 for P(B)¼ 0.25;
m4-shape¼ � 0.37±0.63 for P(B)¼ 0.75). Interestingly, four-shape
estimates were biased towards the more rewarding option
(m¼ � 0.27±0.61; two-sided sign rank test P¼ 0.02, N¼ 37),
and this bias was slightly less than the bias in choice behaviour;
however, the difference between those biases was not statistically
significant (two-sided rank-sum test P¼ 0.09, N¼ 37; Fig. 4c).
Therefore, subjects’ estimates exhibited systematic biases that
depended on the number of shapes used for estimation.

We further examined one-shape estimates corresponding to
the extent that individual shapes predicted the reward on a given
option, which revealed an important aspect of our data (Fig. 3f).
Overall, subjects overestimated the posteriors towards the less
rewarding (that is, rare) option, the blue target for P(B)¼ 0.25
and the red target for P(B)¼ 0.75 (m¼ 0.12 across all shapes,
two-sided sign test P¼ 8� 10� 4, N¼ 148). This phenomenon
has been reported before1,16,19 and is usually referred to as base-
rate neglect (that is, a cue that is equally predictive of each
outcome is perceived to be more predictive of the less probable
outcome) because it is attributed to neglecting the prior
probability (that is, base rate) when computing posteriors.

Our data revealed two novel aspects of base-rate neglect, in
addition to demonstrating this effect in individual subjects. First,
there was a significant overestimation towards the less rewarding
option only for two out of four shapes (S3 and S4; two-sided sign
test P¼ 1� 10� 6 for S3 and P¼ 6� 10� 10 for S4, N¼ 37;
Figs 3f and 4a). Note that the logLR associated with individual
shapes indicates that when P(B)¼ 0.75 (respectively, P(B)¼ 0.25),
S1 and S2 were presented more often when the blue (respectively,
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Figure 1 | Experimental paradigm and task design. (a) The set of all shapes used in the experiment. Insets show an example set of shapes and associated

values of logLR for one subject, the rule used to assign reward, an example combination of shapes, and reward probability associated with choosing the blue

target for that combination. (b) Timeline of a trial during the choice session. The trial starts with the presentation of a fixation point followed by four shapes

and two choice alternatives (red and blue targets). A circle appeared around the chosen target followed by the presentation of reward feedback (‘correct’ or

‘incorrect’) and an update of the reward bar, showing the recent accumulation of reward points. (c) Timeline of a trial during the estimation session and the

three types of estimates (one-shape, two-shape and four-shape). The subjects used the keyboard to select 1 of 10 values representing the probability that a

given shape predicted reward on the red or blue target.
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red) target was assigned with reward, whereas S3 and S4 were
presented more often when the red (respectively, blue) target was
assigned with reward (see Methods section). The overestimation
of both S3 and S4 towards the less rewarding option was robust
(present in 32 out of 37 subjects) and large (m¼ 0.23±0.17), and
was similar in strength for these shapes (two-sided rank-sum test
P¼ 0.7, N¼ 37; Fig. 5a). Second, most subjects (25 out of 37)
overestimated the predictive power of S3 to the extent that they
assumed this shape was predictive of the less rewarding option
(that is, larger than 0.5 for P(B)¼ 0.25 and smaller than 0.5 for
P(B)¼ 0.75; one-sided sign test P¼ 0.04, N¼ 37; Figs 3f and 5a),
while it was actually predictive of the more rewarding option. All
these biases occurred while individuals were aware of the base
rate (prior) as revealed by their answers to a short survey on
completion of the task (Supplementary Fig. 1c).

Finally, the precise nature of our experimental design allows us to
quantify the stochasticity in choice behaviour and estimation,
measured by the s values extracted from the PF of the choice
session or the ePFs of the estimation session (Equation 3 in Methods
section). Overall, the distribution of s values was similar between the
two groups of subjects who performed the experiment with different
priors (two-sided rank-sum test P¼ 0.4, 0.9, 0.2, and 0.6 for choice,
one-shape, two-shape and four-shape estimates, respectively, N¼ 37).
However, we found a gradual increase in s from one-shape to
two-shape estimates (s1-shape¼ 0.49±0.28, s2-shape¼ 0.79±0.35) for
32 out of 37 subjects (two-sided rank-sum test P¼ 3� 10� 4,
N¼ 37; Fig. 4d), and from two-shape to four-shape estimates

(s4-shape¼ 1.22±0.50) for 33 out of 37 subjects (two-sided rank-sum
test P¼ 6� 10� 5, N¼ 37; Fig. 4e). Interestingly, the amounts of
stochasticity in choice behaviour (schoice¼ 1.11±0.57) and in four-
shape estimates were statistically indistinguishable across all subjects
(two-sided rank-sum test P¼ 0.1, N¼ 37; Fig. 4f). Therefore, the
stochasticity in estimation increased (or equivalently the sensitivity to
evidence, 1/s, decreased) as the number of shapes used for estimation
increased.

Observed cognitive biases are not errors. All of the described
systematic contradictory biases resulted from the unequal prob-
ability of reward for the two choice alternatives. In the case of
equal prior (P(B)¼ 0.5), we did not observe any systematic biases
in choice behaviour or in the estimation (see the Supplementary
Note 1 and Supplementary Figs 2 and 3a–c). However, similar to
the experimental condition with unequal prior, we observed an
increase in s as the number of shapes used for estimation
increased (Supplementary Fig. 3d–f).

The opposite patterns of bias for one-shape estimates and for
choice behaviour, as well as the dependence of bias on the
number of shapes used for estimation, are not errors and do not
correspond to inconsistency between what subjects report and
how they make decisions. To illustrate these points more clearly,
we compared the SWOE for individual shapes with one-shape
estimates given by each subject and found a similar pattern
between the two (compare Fig. 3c,f, and see Supplementary
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Figure 2 | Individual subjects’ behaviour during different sessions of the experiment. (a,b) Choice behaviour of two example subjects for whom the red

(a) or blue (b) target was more rewarding. The psychometric function plots the probability of choosing blue as a function of the actual log posterior odds

(for blue) for a given combination of shapes (each symbol represents one such combination). The solid curve shows the fit using a sigmoid function. The

inset shows the subjective weight of evidence (SWOE) as a function of the actual log posterior odds for individual shapes, and the diagonal line is shown in

solid grey. Both subjects’ choice behaviour was biased towards the more rewarding option. (c,d) Behaviour during the estimation session for the same

subjects as in a and b. The estimation psychometric function (ePF) plots the estimated posteriors as a function of the actual log posterior odds separately

for individual shapes or a combination of shapes (the solid curves show the fit using a sigmoid function). The inset shows the estimated posteriors as a

function of the actual posterior for individual shapes, and the diagonal line is shown in solid grey. For both subjects, one-shape estimates were biased

towards the less rewarding option (note a leftward shift in the ePF for P(B)¼0.25 and rightward shift for the ePF for P(B)¼0.75), and the ePFs showed a

gradual shift towards the more rewarding option as the number of shapes used for estimation increased.
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Fig. 4c), indicating that subjects used these shapes to make
decisions consistent with their estimations. That is, the same
information was used for both choice and estimation. Another
evidence for this comes from two sets of observations. First, the
bias during the choice session was correlated with the bias for one-
shape (Pearson’s correlation, r¼ 0.34, N¼ 35, P¼ 0.04), two-shape
(Pearson’s correlation, r¼ 0.39, N¼ 35, P¼ 0.02) and four-shape
estimates (Pearson’s correlation, r¼ 0.43, N¼ 35, P¼ 0.01;
Fig. 5b). Second, although there was no correlation between s
during choice and estimation (Pearson’s correlation, r¼ � 0.22,
0.11 and � 0.10, P¼ 0.2, 0.5 and 0.6, for one-shape, two-shape and
four-shape estimates, respectively, N¼ 35), s for one-shape and
two-shapes estimates and for one-shape and four-shape estimates
were strongly correlated (Pearson’s correlation, r¼ 0.63, N¼ 35,
P¼ 10� 4 and r¼ 0.51, N¼ 35, P¼ 0.002, respectively; Fig. 5c).
Overall, these results demonstrate that the opposite patterns of the
biases for one-shape estimates and choice are not due to subjects
relying on different sources of information or errors, and instead,
caused by how posteriors for combinations of shapes are computed
based on the information from individual shapes.

Therefore, our experimental results reveal that probabilistic
inference does not follow a normative approach where likelihoods
and prior information are combined optimally (or combined
at all) to make decisions and to give estimates (see the last Results
section for more proof). Instead, we argue that what is learned
about each cue also contains information about the prior as these
two pieces of information are not and cannot be separated during
learning.

Replicating data with a new model of probabilistic inference.
We hypothesized that the cognitive biases observed during
probabilistic inference are strongly influenced by interactions
between reward-dependent learning, decision-making and
attentional processes. To link these interactions to observed
cognitive biases, we extended our previous model of probabilistic
inference14. The previous model suggests that probabilistic
inference can be performed by plastic synapses that learn cue–
outcome associations via a stochastic, Hebbian plasticity rule
modulated by the presence or the absence of reward. Specifically,
on a given trial only synapses from active cue-encoding neurons
onto active value-encoding neurons are potentiated if the choice
on that trial was rewarded, or depressed if the choice was not
rewarded (Supplementary Fig. 5). To extend this model, we
incorporated three new components into the model (Fig. 6a;
Methods section): (1) inclusion of a concave f-I response function
for value-encoding neurons; (2) modulation of decision-making
and learning processes by attentional selection; and (3)
modulation of the learning rates by reward expectation.

The model simulated subjects’ behaviour during both choice
and estimation sessions and exhibited patterns of biases similar to
those shown by our subjects, as demonstrated by the model’s
behaviour using one set of parameters replicating the average
behaviour (Fig. 6b–d), and the model’s behaviour using a wide
range of parameters capturing inter-subject variability (Fig. 6e–g).
More specifically, the model’s choice behaviour was biased toward
the more rewarding option, whereas one-shape estimates were
biased towards the less rewarding option (Fig. 6b–f). Similar to
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Figure 3 | Contradictory biases in choice and estimation. (a,b) The average psychometric function over all subjects for which the red (a) or blue target (b)

was more rewarding. Conventions are similar to those in Fig. 2. Overall, choice behaviour was biased towards the more rewarding option. (c) The SWOEs

extracted from individual subjects’ behaviour during the choice session are plotted against the actual log posterior odds for each shape (empty symbols).

The filled symbols show the average SWOE for each shape across all subjects, and the error bars are the s.e.m. The dashed lines are only to guide the eyes,

the grey solid line is the diagonal line, and grey squares show the logLR associated with each shape. Overall, the SWOEs were biased towards the less

rewarding option; SWOEs were above the diagonal line for P(B)¼0.25 and were below the diagonal line for P(B)¼0.75. (d,e) The average estimation

psychometric function over all subjects for which the red (d) or blue target (e) was more rewarding. Overall, 1-shape estimates were biased towards the

less rewarding option. However, the estimation bias shifted towards the more rewarding option as the number of shapes used for estimation increased. (f)

Estimated posteriors for individual shapes as a function of the actual posteriors, provided by each subject. The filled symbols show the average posteriors

for each shape across all subjects, and the error bars are the s.e.m. The dashed lines are only to guide the eyes, grey solid line is the diagonal line, and grey

squares show the evidence associated with each shape.
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experimental observations, the overestimation of the predictive
power of individual shapes towards the less rewarding option was
prominent for two of the four shapes, S3 and S4 (Fig. 6d).
Moreover, with certain parameters the model overestimated the
predictive power of S3 to the extent that it attributed this shape to
be predictive of the less rewarding option, while it was actually
predictive of the more rewarding option (Fig. 6e).

Similar to the experimental data, the model also showed a
progression of estimation biases, starting from a bias towards the
less rewarding option for one-shape estimates to a bias towards

the more rewarding option for four-shape estimates (Fig. 6b,c,f).
Finally, the sensitivity to evidence decreased as the number of
shapes used for estimation increased (Fig. 6b,c,g). Interestingly,
the above simulations using a wide range of parameters also
exhibited correlations between the biases during estimations and
choice (Fig. 6f) and between the sensitivity to evidence during
estimations (Fig. 6g), similar to our experimental data (Fig. 5b,c).
The qualitative similarity between our modelling and experi-
mental results revealed the robustness of the model in capturing
our novel experimental results. Overall, the model replicated all
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aspects of the experimental data and captured inter-subject
variability using a wide range of parameters.

Neural mechanisms underlying cognitive biases. To demon-
strate why all the three aforementioned components are necessary
to capture the experimental data (that is, to avoid over fitting) and
to gain further insights into the model’s behaviour, we show next
the results of simulating the experiment using our previous
model14 (Supplementary Fig. 5) and models with successive
addition of the three components. We found that the previous

model learned evidence associated with each shape and showed a
bias towards the more rewarding option (negative mchoice values in
Fig. 7b). Similar to the experimental data, however, the model’s
estimates were biased towards the less rewarding option when
one shape was presented (Fig. 7a,b). This observation does not
mean that information stored in each set of synapses is not biased
towards the more rewarding option (which it is since most
estimates are smaller than the evidence provided by the
corresponding shape; Fig. 7a). Instead, it indicates that what is
learned about individual shapes is not biased towards the more
rewarding option as strongly as it should be optimally. This
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happens in the model since during the choice session, when the
subject learns about shapes, four shapes together determines
choice on each trial and, therefore, the bias in each set of synapses
approximately constitutes one fourth of the overall bias required
by the prior probability.

Moreover, as the number of shapes increased, the model’s ePF
shifted towards the more rewarding option (Fig. 7b). The shift
happens because each set of synapses contains a piece of prior
and, therefore, when more shapes are presented, the estimates are
more biased towards the more rewarding option (that is, the
choice alternative with higher prior). This also predicts that the
shift between two-shape and four-shape estimates would be
exactly twice the shift between one-shape and two-shape
estimates (Fig. 7b, inset). These results were obtained for a wide
range of the model’s parameters (see Methods section for details).

Despite the previous model’s success in performing the task,
the model’s behaviour did not match experimental data in three
specific ways. First, the model predicted the sensitivity to evidence
to be independent of the number of shapes used for estimation
(Fig. 7c). Second, the model exhibited a shift in estimation bias
that depended on the number of shapes used for estimation, but
the shift between two-shape and four-shape estimates was twice
the shift between one-shape and two-shape estimates (Fig. 7b). In
contrast, this ratio was variable and about 1.5 on average in our

experiment. Third, the model correctly estimated that shape S3 is
predictive of the more rewarding option (Fig. 7a). In contrast,
most subjects (25 out of 37) overestimated the predictive power of
this shape to the extent that they attributed it to be predictive of
the less rewarding option (Fig. 5a).

To show ‘pedagogically’ how the aforementioned additional
components can eliminate the above discrepancies and enable the
model to replicate the experimental data, we successively
incorporated the following components into the model. First,
after considering a concave f-I response function for value-
encoding neurons, we found that the sensitivity to evidence
decreased as the number of shapes increased (Fig. 7d–f). A
concave f-I curve (that is, a function with a monotonically
decreasing derivative) has smaller slopes (gains) for higher values
of input, which occurs when more shapes are presented. Second,
introducing the possibility for learned evidence to control
attentional deployment—ignoring the less predictive shapes (S2
and S3) when four shapes are presented (see Methods section)—
enabled the model to reduce the difference in bias between two-
shape and four-shape estimates (Fig. 7h, inset). As mentioned
earlier, the size of the estimation bias is directly related to the
number of shapes presented. Therefore, the possibility of ignoring
less-informative shapes reduces the bias for four-shape estimates.
During the choice session, such attentional modulation slightly
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reduced the bias towards the less rewarding option and increased
the stochasticity in choice.

Third, by incorporating the modulation of DA-dependent
plasticity by reward expectation for the chosen option (see
Methods section), the model exhibited a larger overestimation for
S3 such that it estimated this shape to be predictive of the less
rewarding option (Fig. 6e). This increased overestimation
happened because the potentiation rate for synapses from cue-
encoding neurons selective for S3 onto value-encoding neurons
selective for the less rewarding option was increased due to less-
than-chance expectation of reward on this option (Equation 8). In
contrast, the potentiation rate for synapses onto value-encoding
neurons selective for the more rewarding option was reduced due
to greater-than-chance expectation of reward on this option. This
adjustment in the potentiation rate resulted in stronger synapses
onto neurons encoding the value of the less rewarding option,
leading to a greater overestimation of S3 (and of S4 for the same
reason) towards that option (compare Figs 6e and 7g).

Overall, these results show that the inclusion of all aforemen-
tioned components is crucial for capturing nuances of our
experimental observations, and shed light on the contribution of
interactions between cognitive processes to probabilistic inference
and related contradictory biases. First, choice is biased towards
the more rewarding option since selection of that option is more
frequently accompanied by reward; therefore, cue–outcomes
associations stored at plastic synapses are biased towards that
option. That is, what is learned about each shape contains a piece
of prior information (compare estimated posteriors with evidence
shown by grey squares in Fig. 6d,e). However, because choice is
determined by the neural response invoked by presentation of
four shapes, this bias is only a fraction (approximately 1

4) of what
prior information dictates. Therefore, information learned about
individual shapes (posterior) is biased towards the less rewarding
option. That is, similar to our experimental observations
(Fig. 5a,b), what was learned about each shape was influenced
by the prior probability, but not as strongly as prescribed by
Bayes theorem. Second, as the number of shapes increases,
multiple pieces of prior information bias the response of value-
encoding neurons towards the more rewarding option, reducing
the amount of bias for two-shape and four-shape estimates such
that the latter bias becomes similar to the bias in choice (Fig. 6f).

Third, a concave f-I response function for value-encoding
neurons causes those neurons to have smaller gains as their inputs
increase; therefore, the estimation is less sensitive to the evidence.
Fourth, modulation of decision making and learning by attentional
selection reduces the impact of the prior probability encoded in
each set of plastic synapses and the resulting shift in estimation.
Finally, modulation of DA-dependent plasticity by reward
expectation increases the bias towards the less rewarding option;
on trials when this option is selected and rewarded, the
potentiation rate is larger, increasing the bias of cue–outcome
associations towards that option. Even though contradictory biases
can occur due to decision-making and learning mechanisms alone,
the interactions between decision and reward processes strongly
affect these biases (compare Figs 7a–c and 6e–g).

Comparisons with alternative models. Our model suggests that
the computation of posteriors does not involve combining the
prior probability and likelihoods. Instead, the computation is
performed directly by learning cue–outcome associations via DA-
dependent synaptic plasticity. These synaptically stored associa-
tions can approximate posteriors because learning is affected by
the overall probability of reward on the two options (that is,
prior). In essence, what is learned about a given shape is inher-
ently a mixture of the prior probability and the likelihood pro-
vided by that shape, and this information is combined using the

sum of the output currents through corresponding synapses when
more than one shape is presented14. The observed overestimation
of individual shapes and the dependence of estimation bias on the
number of shapes provide strong evidence for our proposal.
Nevertheless, to provide an additional proof for the basic
assumptions of our model, we fit the behavioural data using
three parameter-free models: the normative, heuristic and
reduced circuit model (see Methods section). This parameter-
free approach involved predicting two-shape and four-shape
estimates based on one-shape estimates using different
underlying assumptions. We used this approach for two
reasons: (1) fitting results could be sensitive to the number of
parameters used in different models; and (2) it is unclear how a
normative model learns the task and, therefore, what the evidence
provided by individual cues is in this model.

Briefly, the heuristic model assumes that subjects perform the
probabilistic inference task by assigning a probability of
predicting reward on red (or blue) for each shape, and using
the average of the assigned probabilities for the presented shapes
to make a decision or give an estimate. The normative model
assumes that subjects separately learn the likelihood (equivalently,
logLR) associated with individual shapes, as well as the prior
probability for reward on red and blue. To make decisions or to
give estimates, subjects optimally combine the prior probability
and likelihoods from presented shapes using Bayes theorem.
Finally, the reduced circuit model assumes that what is learned
about each shape is an estimation of posteriors (that is, contains a
piece of prior as in the neural circuit model), which is combined
(in log space) to make decisions or provide estimates when more
than one shape is presented.

Overall, the reduced circuit model provided the best fit (mean
squared error (MSE)¼ 16.6, 15.3 and 8.6 for the normative,
heuristic and reduced circuit model, respectively). Figure 8 shows
the results of predicted bias and stochasticity for two-shape and
four-shape estimates for individual subjects (top panels), as well
as the average predicted ePF for all subjects with P(B)¼ 0.75
(bottom panels), using the three models. As expected, the
heuristic model exhibited a strong decrease in the sensitivity to
evidence (equivalently, increase in the stochasticity corresponding
to larger s values or shallower ePFs) as the number of shapes used
for estimation increased (also see Supplementary Fig. 6).

The normative model predicted biases that changed with the
number of shapes; however, the direction of these changes was
the opposite of experimental observations. More specifically, two-
shape and four-shape estimates were biased towards the less
rewarding option, similar to one-shape estimates. This happens
because in the normative model, the prior probability is similarly
combined with evidence independent of the number of shapes
used for estimation. Importantly, the discrepancy between this
model’s predicted biases and subjects’ biases increased with the
number of shapes (Fig. 8). In contrast, the reduced circuit model
captured the experimental data and predicted a shift in estimation
bias towards the more rewarding option as the number of shapes
increased. Note that the observed discrepancy between the
reduced circuit model and experimental observations can be
attributed to lack of inclusion of a concave f-I response function,
as well as lack of modulation of decision and learning processes
by attention in this model (both of which are present in the
neural circuit model). Nevertheless, the similarity between
predicted and observed biases provides support for the main
assumptions of our model regarding what is learned about each
cue. That is, what is learned about each cue is a mixture of the
likelihood and prior probability. As a result, when this
information is combined to make decisions or provide estimates
when more than one cue is presented, the inference exhibits
biases that depend on the number of shapes.
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Discussion
Cognitive biases are often attributed to heuristics or limitations in
cognitive processes15. Instead, we propose that these biases could
depend on interactions between multiple cognitive processes and
therefore, provide a window into better understanding cognition.
To reveal neural mechanisms underlying cognitive biases during
probabilistic inference, we measured behaviour during a modified
version of the so-called weather prediction task and simulated
this behaviour using a biophysically plausible computational
model. Specifically, we investigated similarities and differences
between what is learned implicitly (reflected in choice) and what
is reported explicitly during inference within individual subjects.
Our experimental results showed that when alternative options
were not equally rewarding, subjects’ choice behaviour was biased
towards the more rewarding option, whereas their estimates for
individual shapes that more often preceded reward on the less
rewarding option (that is, rare outcome) were biased towards that
option (base-rate neglect). Moreover, biases and accuracy of
estimation systematically depended on the number of shapes used
to provide those estimates, contradicting any normative accounts
of probabilistic reasoning.

The base-rate effect has been shown before1,16,20, but our
experiment is the first to demonstrate this effect within individual
subjects, even though the same individuals learned the base rate
of reward for each option (that is, prior) and biased their choice
behaviour towards the more rewarding option. Although
connectionist models have previously accounted for the overall
pattern of base-rate neglect, their proposed mechanisms require
access to all connection weights in the network1,20,21.
Interestingly, in a set of experiments designed to understand
base-rate effects, Estes et al.20 concluded that none of the
considered models could explain how subjects’ awareness of base
rate failed to affect their performance during test trials. In
contrast, our biophysically inspired model accounts for the exact

pattern of base-rate effect based on a simultaneous learning
of all cue–outcome associations via DA-dependent plasticity
modulated by reward expectation, and modulation of decision
and learning processes by attention.

The fundamental outcome of the synaptic plasticity rule of our
model is that evidence learned about individual cues is
contaminated by the prior probability. This predicts that biases
in estimated posteriors systematically depend on the number of
cues used for estimation (which was observed in our experiment),
contradicting any notion of a normative calculation of posteriors.
Note that we did not add a separate set of synapses to our model
to learn the prior probability because such a component would
equally bias choice and estimation towards the more rewarding
option. Overall, our results do not suggest that the brain fails to
track the prior probability and instead, indicate that the
computation of posteriors does not involve combining prior
and likelihoods.

Furthermore, the model assumes that information stored in
plastic synapses can be accessed to provide explicit estimations
about the predictive power of individual cues and/or their
combination. This assumption is supported by the strong
correlation between the SWOEs extracted from choice behaviour
and one-shape, two-shape and four-shape estimates
(Supplementary Fig. 4), as well as the similar patterns of biases
in the SWOEs and one-shape estimates (Fig. 3c,f). These findings
indicate that to give estimates, subjects accessed the same
information that they learned implicitly to make decisions.
However, because both decision making and estimation are
determined by the output of value-encoding neurons, the f-I
response function of these neurons influences these processes as
supported by an increase in the stochasticity as the number of
shapes used for estimation increases. In addition, we tested the
possibility of using a simple averaging strategy for performing the
task and found that such a strategy is incompatible with our
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Figure 8 | Alternative models fail to capture the experimental data. (a,b) The predicted bias in two-shape and four-shape estimates by two alternative

models (heuristic and normative) and the reduced circuit model. Each point shows the prediction for one subject by a given model. (c,d) The predicted

stochasticity in two-shape and four-shape estimates by the three alternative models. (e–g) Comparison of the ePFs predicted by the heuristic, normative,

and reduced circuit models (solid) and the fit of average experimental data (dashed) across subjects for whom the blue target was more rewarding. The

heuristic and normative models fail to predict either the bias or stochasticity, whereas the reduced circuit model provides a reasonable fit for both. Note

that the averages for one-shape estimates are identical to those of experimental values because the same values were used for fitting.
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experimental data. Therefore, complementing our previous
proposal for synaptic substrates of probabilistic inference14, the
current study identifies additional neural mechanisms.

Previous works using the weather prediction task have revealed
important aspects of human learning and memory2–8,10–13,
namely, the existence of two memory/learning systems that
contribute to probabilistic inference at different time points
during learning. Our modelling results shed light on the
differential role of brain areas previously implicated in these
two systems6,13. Specifically, our results highlight the importance
of neurons with mixed selectivity22 for an action and a shape,
since such neurons (for example, in medial temporal lobe) could
quickly encode reward value and guide attentional selection to
allow decision making based on a single cue early in the task6,8,11.
Moreover, our results suggest that slower learning in value-
encoding neurons selective for action alone are necessary for
proper learning, which explains why areas containing such
neurons (for example, basal ganglia) become more active later in
the task6. Considering the crucial role of DA in synaptic
plasticity23 underlying any type of value encoding24, the model
also accounts for Parkinson’s patients’ slowness both early in
learning and later in adopting optimal strategy4, due to their
impaired DA system25. Interestingly, a recent model of category
learning was able to explain the pattern of learning in Parkinson’s
patients based on interactions between prefrontal and striatal
areas mediating different types of learning26.

Even though the contribution of attention to cognitive biases
has not been extensively explored26, most models of multi-
attribute, multi-alternative choice assume a role for attention to
explain various aspects of human choice behaviour, such as
context-dependent effects. For example, the elimination by
aspects model27, the decision field theory28,29, and the leaky
competing accumulator model30 all assume that attentional
selection determines which of many attributes are attended to,
consequently affecting decision making processes at a given point
in time. More recently, this idea has been extended to choice
related to food items, assuming that fixation guides the
comparison process31. However, these models do not consider
the effect of reward feedback and focus only on how decision
making is affected by attentional selection in the absence of
learning.

We showed that modulation of DA-dependent synaptic
plasticity by reward expectation is crucial for capturing the
patterns of overestimation and base-rate neglect. Although this
assumption resembles the reward prediction error (RPE), it only
applies to the DA signal when the reward is present (the DA
signal in the absence of reward is always set to zero); that is, when
outcomes are better than expected. This assumption is not only
supported experimentally32, but also proves more plausible than
the mediation of negative RPE by below-baseline activity of DA
neurons in the absence of reward. In contrast, modulation of the
DA signal by reward expectation for rewarded trials resembles the
unsigned RPE33,34, which has been linked to attentional learning
models35.

The biophysically inspired nature of our model allows us to
make further behavioural and neural predictions that can be
tested in future experiments. First, the model suggests that the
prior probability cannot be separated from evidence when both
have to be learned through reward feedback, and, therefore,
neurons or areas representing the reward value of individual
shapes could show a modulation by the prior probability as well.
This modulation can be measured and tested by varying the prior
without changing the evidence associated with individual shapes.
Second, sensory neurons representing shapes could show
attentional modulation, while the evidence for shapes is being
learned. Importantly, the degree of such modulation is correlated

with the amount of shift in the bias between two-shape and four-
shape estimates. Third, the model predicts that overestimation of
individual shapes towards the less rewarding option should
correlate with the influence of reward expectation on the learning
rates, which can be measured using reward expectation as a
regressor for neural response. In addition, one could use data
from human subjects and look for within-subject correlation
between measures of dopaminergic activity (for example, reward
reactivity, gene expression) and the amount of overestimation for
individual shapes. Finally, the decision-making circuit relies on
the difference between the inputs to its selective populations
(differential input) to determine a choice, and the reaction times
are inversely proportional to this differential input. This means
that during the choice session, decisions are faster for trials on
which the evidence provided by a combination of shapes is
farther from zero. Moreover, the model assumes that estimation
relies on the same sets of synapses used for making decisions.
Therefore, one prediction would be that reaction times for one-
shape estimates for S3 and S4 is inversely correlated with the
deviation of the estimation from 0.5, which could be tested,
considering the large variability in subjects’ estimations.

Altogether, our results suggest that probabilistic inference is
performed by directly estimating posteriors and not by combin-
ing likelihoods and prior, resulting in deviations from the
normative accounts of inference (that is, cognitive biases).
Moreover, these cognitive biases are influenced by interactions
between reward-dependent learning, decision-making and atten-
tional processes that dynamically determine probabilistic
inference.

Methods
Subjects. A total of 60 (34 female) Dartmouth college undergraduate students
participated in this experiment. Eleven subjects were excluded from data presented
here for the following reasons: five subjects for not learning the task properly,
defined as having the stochasticity during choice or estimation session three s.d.
larger than the mean of all subjects; six subjects for giving three (out of four) or
more inconsistent estimates for blue and red targets during one-shape estimation
(two of whom could also be excluded based on the first criterion). The consistency
criterion during one-shape estimation was used as a test for trusting all estimates,
since for two-shape and four-shape estimates either the blue or red target was
probed for each combination of shapes. The results from 37 (21 female) subjects
who performed the main experiment are reported here, 19 of whom performed the
experiment with the prior probability of the blue target being rewarded, P(B), equal
to 0.75. The remaining 18 subjects performed the experiment with P(B)¼ 0.25. For
the control experiment, we recruited 12 subjects (6 female) and ran the experiment
with equal probabilities of reward on the red and blue targets (equal prior,
P(B)¼ 0.5). All subjects were naive to the experiment and the goal of our study.

Experimental procedure. After receiving and signing the consent form, subjects
received instructions and then played a few mock trials to learn about the two
sessions of the experiment (choice and estimation), as well as different types of
trials, timing of trials and how to submit their responses using a keyboard. This was
followed by a training phase consisting of 120 choice trials in which subjects
learned about the predictive power of 4 randomly assigned shapes (from a set of 10,
Fig. 1) through reward feedback (with P(B)¼ 0.5), followed by 18 estimation trials.
During the choice session of the training phase, various combinations of two
shapes (chosen randomly from a set of four shapes with replacement) were pre-
sented together on each trial. During the estimation session of the training phase,
subjects provided their estimates about the predictive power of individual shapes
and two-shape combinations of shapes.

The training phase was followed by the main experiment during which subjects
performed a similar task using four new shapes. In the main experiment, however,
various combinations of four shapes were presented on each trial during the choice
session. During the estimation session, subjects provided their estimates about the
predictive power of individual shapes, two-shape and four-shape combinations of
shapes. The main experiment consisted of 212 choice trials (divided into 4 equal
blocks of 53 trials) followed by 53 estimation trials.

The subjects were informed that their payment in the experiment depended on
the number of reward bars they collected, as well as how closely their estimates
resembled the actual values. Moreover, the subjects were told that presented shapes
on each trial predicted reward on the red or blue targets, and the rule used for
assigning reward did not depend on the location of the shapes. Subjects were
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randomly assigned to experimental conditions with an unequal prior probability
(P(B)¼ 0.25 or P(B)¼ 0.75).

Overall, we used 10 unique, geometric shapes as visual cues in our experiment
(Fig. 1a). For each subject, 8 (4 for training and 4 for the main experiment) out of
10 shapes were randomly selected and assigned with one of the four log likelihood
ratios (logLR) towards the blue target:

log LRi ¼ log
P Si jBð Þ
P Si jRð Þ

� �
; logLRi 2 log 4ð Þ; log

3
2

� �
; log

2
3

� �
; log

1
4

� �� �
ð1Þ

where P Si jBð Þ represents the likelihood that shape i was presented, given the blue
target was assigned with reward. In our analysis, we refer to shapes assigned with
above logLR values in descending order, S1 to S4 for P(B)¼ 0.5 and P(B)¼ 0.75,
and S4 to S1 for P(B)¼ 0.25. To determine which shapes would be presented
on each trial of the experiment, we first randomly assigned reward to one of the
two options according to the prior probability, P(B) (equal to 0.25 or 0.75 for
subjects in the main experiment, and 0.5 for training and for the control subjects).
Subsequently, depending on the assigned reward on a given trial, the computer
program used the logLRs to determine which of four shapes should be present.
This procedure was repeated two (for training) or four times (for the main
experiment) to assign all shapes on each trial. Note that in the case of unequal
prior, four shapes were not presented equally often.

During each trial of the choice session, subjects were presented with two
(during the training phase) or four shapes (during the main experiment) and chose
between the two colour targets by pressing the letters ‘F’ or ‘J’ to select the left or
right target, respectively. A circle appeared around the chosen target, followed by
the presentation of reward feedback (correct/incorrect) and an update of the
reward bar that showed recent accumulation of reward points (Fig. 1b). When the
reward bar reached a certain length, its colour changed to gold and a message, ‘You
earn 25 cents’ was displayed above the bar, followed by resetting the length of
reward bar to zero.

During each trial of the estimation session, subjects estimated the probability that
the red or blue target would be rewarded given a shape or a combination of shapes
(Fig. 1c). This session started with 8 trials of one-shape estimates (4 for blue and 4 for
red) followed by 10 unique two-shape estimates and 35 unique four-shape estimates.
The two-shape and four-shape estimates were obtained for either the red or blue
target to reduce the overall length of the experiment. In contrast, one-shape estimates
were obtained twice for each shape (once for red and once for blue) and a
discrepancy between the two numbers was used to detect subjects who either did not
understand the estimation procedure or did not pay attention to the colour of the
target.

After completion of the experiment, the subjects were asked to write down the
overall probability that the blue target was rewarded during the training as well as
during the main experiment. All experimental procedures were approved by the
Committee for the Protection of Human Participants of Dartmouth College, and a
written consent was obtained from each subject before participating in the experiment.

Data analysis. To quantify each subject’s behaviour during the choice session, we
computed the PF by calculating the probability that the blue target was selected for
a given combination of shapes as a function of the log posterior odds for that
combination. Using Bayes theorem, the log posterior odds for reward being on blue
versus red is equal to

log
PðB j CkS

l Þ
P R jCkS

l

� �
 !

¼
Xk

i¼1

log LRi þ log
PðBÞ
PðRÞ

� �
ð2Þ

where PðB j ðCkS
l Þ (respectively, PðR j CkS

l

� �
) is the posterior probability that the

blue (respectively, red) target was assigned with reward given a combination of
shapes, CkS

l , consisting of k shapes, was presented on a given trial. We fit this PF
with a sigmoid function to extract m (the log posterior odds at which two choice
alternatives are selected equally or the indifference point) that measures the sub-
ject’s bias, as well as s that measures stochasticity in the subject’s choice behaviour
(inversely proportional to the sensitivity to evidence):

PB ¼
1

1þ exp � log posterior oddsð Þ�m
s

� 	 ð3Þ

where PB is the probability of choosing the blue target. Note that based on
Equation 2, the optimal behaviour is obtained with m¼ 0 and very small values of
s. To quantify behaviour in the estimation session, we computed the ePF that show
the relationship between estimations provided by the subject and the actual log
posterior odds for each shape or combination of shapes. A fitting procedure similar
to one used for the PF was applied for estimating m and s for the ePF.

Moreover, we used a logistic regression model to extract the influence of
individual shapes on choice behaviour:

PB ¼
eQ

1þ eQ
; where Q ¼

X4

i¼1

qiNi ð4Þ

where Ni is the number of appearances of shape i in a given combination. We call
the regression coefficients (qi’s) from this fit the SWOE for individual shapes. Note
that we did not include a bias term here because there is a fixed number of shapes

on each trial, and therefore, an additional bias term would cause degeneracy in
fitting (that is, the sum of regression coefficient can absorb the bias term).
Extracted SWOEs from subjects showed that subjects learned most of the
information after around 60 trials (Supplementary Fig. 7). Therefore,
we limited our data analysis for the choice session to the last three (out of four)
53-trial blocks.

Description of the model. The model is an extended version of our previous
biophysically based model of probabilistic decision making14. More specifically,
we incorporated three new components into the previous model. First, because
information stored in plastic synapses onto value-encoding neurons is accessible
only via activating postsynaptic neurons, the response properties of these neurons
could influence probabilistic inference. Therefore, instead of a linear f-I response
function, we incorporated a more realistic concave function for value-encoding
neurons. Second, we assumed that existing information about the predictive power
of cues (stored at the synaptic level) affects attentional selection to determine which
cues are registered on a given trial and used to make a decision. Later in the trial
when reward feedback is received, only neurons selective to the registered/attended
cues are active and therefore, only synapses from those neurons onto value-
encoding neurons selective to the chosen target are updated. Finally, we assumed
that DA-dependent plasticity is modulated by the expectation of reward on the
chosen option on each trial. For simplicity and because here we were not concerned
with neural activity in different parts of the brain, we used a mean-field reduction
of the decision-making and attention circuits to simulate the behaviour in the
probabilistic inference experiment (see below).

The model consists of five circuits (Fig. 6a): cue-encoding, value-encoding,
decision-making, attention and reward. The cue-encoding circuit contains sensory
neurons that are selective for individual visual cues (shapes), and can be located in
the inferotemporal cortex, where shape-selective neurons have been found36,37.
The cue-encoding neurons project to the value-encoding circuit (Fig. 6a). The
value-encoding circuit contains two pools of neurons that represent the reward
value of the two alternative responses (action values), and separate pools of
neurons that encode the reward value of an alternative response associated with a
given shape (selective to both action and shape). The former pools contribute to
decision making, whereas the latter contribute to attentional selection (see below).
These neurons acquire such representation through their afferent plastic synapses
that undergo reward-dependent Hebbian modifications14,38–40 (see Learning rule).
Moreover, we assumed that the output of value-encoding neurons is determined
by the strength of plastic synapses as well as the f-I response function of these
neurons. Neurons encoding action values can be found in the basal ganglia41–43

or frontal cortices such as the anterior cingulate44 or dorsolateral prefrontal
cortex45,46. Value-encoding neurons that are selective to action and shape
can be found in the medial temporal lobe or dorsal frontal cortex6,47.

The decision-making circuit receives inputs from neurons encoding action
values (Fig. 6a). This circuit contains two competing neural pools that are selective
for alternative responses (B and R, corresponding to blue and red targets,
respectively), and an inhibitory pool of neurons. As we have shown before14,38,39,
the choice on each trial is stochastic due to neural fluctuations but the probability
of choice is a sigmoid function of the difference in inputs to the two selective pools.
The responses of cue-encoding neurons are similar; therefore, unless neural activity
is modulated by attention (see below), the only factor that differentiates the inputs
to two selective pools of decision circuit is the strength of plastic synapses between
cue-encoding neurons and value-encoding neurons. As a result, decision making is
simulated by first calculating the choice probability using the synaptic strengths
onto value-encoding neurons:

PB CkS
l

� �
¼ 1

1þ exp �
Pk

i¼1
ciB tð Þ� ciR tð Þ
sD

� � ð5Þ

where (PBðCkS
l Þ) is the probability of selecting B given a combination of shapes CkS

l
that is presented on trial t, 1/sD quantifies the sensitivity of the decision network to
the difference in its inputs, ciB(t) represents the average strength of synapses (that
is, fraction of synapses in the strong state) between neurons encoding shape i to
neurons encoding the value of the blue target, and the sum is over all shapes
presented in that combination (the current evoked by a repeated shape is
multiplied by the number of repetition). Importantly, the convergence from cue-
encoding neurons enables value-encoding neurons to combine information from
various cues presented on a given trial. Moreover, to give estimates, the overall
output from the value-encoding neurons evoked by the presentation of a shape or
combination of shapes is passed through an equation similar to Equation 5 but
with sE.

The attention circuit also receives inputs from value-encoding neurons that are
selective to action and shape (Fig. 6a). We assumed that attentional deployment
depends on how informative a shape is independent of which target the shape
predicts. Therefore, the difference between the outputs of value-encoding neurons
that are selective to action and shape (see (R-B)S4 and (B-R)S4 pools in Fig.6a) drives
neurons in the attention circuit to generate a signal for attending/registering
(respectively, ignoring) the informative (respectively, less informative) shapes using a
competitive process. Only synapses from attended shapes are updated when reward
feedback is received (see Learning rule). For simplicity, here we assumed that on a
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fraction of trials, only one of the two less-informative shapes is ignored throughout a
trial (with the probability pign), but this mechanism could be generalized to include
the possibility of ignoring any shapes with a probability that depends on the
predictive power of that shape. Finally, the reward circuit signals the presence or
absence of reward at the end of each trial. We assumed that the absence of reward is
signalled with no DA release (and therefore, cannot be modulated by reward
expectation), whereas the presence of reward is signalled by DA release modulated by
the expectation of reward on the chosen target (see Learning rule).

Learning rule. The inputs to the decision circuit are determined by the activity of
sensory neural pools encoding the presented shapes, and by the strength of plastic
synapses from these populations onto value-encoding populations. Similar to our
previous work14,38,39, we assumed that these plastic synapses are binary (that is,
they only have two stable states). The average strength of these synapses can be
defined as the fraction of synapses in the potentiated state, denoted by ciB and ciR

(for synapses from cue-encoding neurons selective for shape i onto value-encoding
neurons selective for the blue and red targets, respectively).

At the end of each trial, plastic synapses were modified according to a stochastic,
reward-dependent, Hebbian learning rule. First, Hebbian plasticity required a high
level of activity in both pre- and post-synaptic neurons so only synapses from active
cue-encoding neurons onto the value-encoding neurons selective for the chosen target
were modified. Neurons encoding the reward value of a given shape are assumed active
only if that shape was registered/attended. We assumed value-encoding neurons
selective to shape and action behave similarly. Second, depending on the outcome
(reward or no reward) on a given trial, plastic synapses were either potentiated or
depressed. However, the potentiation rate depends on the concentration of DA, which
itself depends on reward expectation (see below). In the absence of reward, DA
neurons fire at a very low rate (DA concentration is very low) and therefore,
modulation of the depression rate by reward expectation is not meaningful. Third,
these synaptic modifications occur stochastically.

Specifically, at the end of an unrewarded trial where the blue target was selected,
synaptic strengths (that is, fraction of synapses in the strong state) for all registered/
attended shapes onto value-encoding neurons selective for this target were updated
as (assuming there is a large number of synapses to consider synaptic strengths as
continuous variables)

ciB tþ 1ð Þ ¼ ciB tð Þ� q� ciB tð Þ if shape i is attended ð6Þ
where q� is the depression rate. On rewarded trials, synaptic strengths are updated
as follows

ciB tþ 1ð Þ ¼ ciB tð Þþ qþ 1� ciB tð Þð Þ�f rBð Þ if shape i is attended ð7Þ
where qþ is the potentiation rate, and f rBð Þ incorporates the influence of reward
expectation for the selected target on DA release and on synaptic plasticity (see
below). All other plastic synapses (synapses from neurons selective for unattended/
ignored shapes, or synapses onto neurons selective for the unchosen target) remain
the same. Here we have assumed that the learning rates (qp and qd) do not depend
on the number of repetitions of a presented shape, but qualitatively similar results
were obtained if the learning rates monotonically increase with this number.

The effect of reward expectation on the potentiation rate (via changes in DA
release) is computed as:

f rBð Þ ¼
2

1þ expð rB � 0:5ð Þ=srÞ
ð8Þ

where rB denotes the local average reward (computed by other sets of synapses
described below) when the blue target was chosen, and 1/sr determines the
sensitivity of DA release to reward expectations. The local average of reward on the
blue target (and similarly for the red target) is updated as:

rB tþ 1ð Þ ¼ rB tð Þ� qrrB tð Þ if option B is not rewarded or not selected

rB tþ 1ð Þ ¼ rB tð Þþ qr 1� rB tð Þð Þ if option B is selected and rewarded ð9Þ
Because the chance level of reward for binary choices is 0.5, this value is used as a
baseline in Equation 8, and qr was set to 0.1 in all simulations. Synapses onto value-
encoding neurons selective for both action and shape undergo a similar learning
rule, but with larger learning rates. The faster learning allows the attention circuit
to selectively process individual shapes early in the experiment.

Models parameters. For simulations shown in Figures 6 and 7 we used a wide
range of parameters to show the robustness of our results and capture inter-subject
variability. For those simulations, the model’s behaviour was measured over
100,000 simulated trials to accurately capture the average behaviour for a given set
of parameters. For simulations of the original model (Fig. 7a–c), we sampled all
combinations of parameters (total four parameters) from the following values with
the constraint that qpo2.5qd : qp¼ [0.02, 0.04, 0.06, 0.08, 0.10]; qd¼ [0.02, 0.04,
0.06, 0.08, 0.10, 0.12]; sD¼ [0.05, 0.10, 0.20, 0.30]; sE¼ [0.10, 0.20, 0.30]. We
limited the range to the above values to avoid extreme biases towards the more
rewarding option during the choice session, which occurs when the learning rates
are greater than 0.12, or when qp and qdare comparable in magnitude. For simu-
lations of the original model with the additional concave f-I response function for
the value-encoding neurons (Fig. 7d–f), we used an f-I curve function that captures

the average behavioural data and sampled all combinations of other parameters
(total seven parameters) from the following values: qp¼ [0.02, 0.04, 0.06];
qd¼ [0.04, 0.06, 0.08, 0.10, 0.12]; sD¼ [0.05, 0.10, 0.20, 0.30]; and sE¼ [0.05, 0.10,
0.15]. For simulations of the model which has all components of the full model
except the modulation of the potentiation rate by reward expectation (Fig. 7g–i),
we sampled all combinations of parameters (total eight parameters) from the
following values: qp¼ [0.02, 0.04, 0.06]; qd¼ [0.04, 0.06, 0.08, 0.10, 0.12];
sD¼ [0.05, 0.10, 0.20, 0.30]; sE¼ [0.05, 0.10, 0.15]; and pign¼ [0.2, 0.4, 0.6, 0.8].
For simulations of the complete model, we fixed qr at 0.1 and sampled all com-
binations of parameters (total ten parameters) from the following values:
qp¼ [0.02, 0.04, 0.06]; qd¼ [0.04, 0.06, 0.08, 0.10, 0.12]; sD¼ [0.05, 0.15, 0.25];
sE¼ [0.05, 0.10, 0.15]; pign¼ [0.3, 0.6]; and sr¼ [0.1, 0.2, 0.3, 0.4, 0.5].

Heuristic model. The heuristic model assumes that subjects perform probabilistic
inference by assigning a probability of predicting reward on the blue (or red) target for
each shape and updating these probabilities using reward feedback. Specifically,
subjects use the average of the assigned probabilities for the presented shapes to
estimate the predictive power of a combination of shapes. To make a choice, we
assumed that the average of reward probabilities assigned to the presented shapes are
mapped to a sigmoid function to allow a wide range of behaviour (from probability
matching to optimal and so on)

PB CkS
l

� �
¼ 1

1þ exp � ð
Pk

i¼1
piB tð ÞÞ=k� 0:5

sD

� � ð10Þ

where piB is the probability of reward on blue if shape i is presented alone, and sD is a
model parameter. The assigned probabilities are updated after receiving feedback on
every trial using equations similar to Equations 6 and 7, where synaptic strengths (ciB)
are replaced with reward probabilities (piB). Similar to our neural circuit model, we
assumed that the potentiation rate could be modulated by reward expectation based
on Equation 8 to reduce a strong bias in choice towards the more rewarding option,
which would otherwise occur. For simulations of the heuristic model (Supplementary
Fig. 6), we fixed qr at 0.1 and sampled all combinations of parameters (total six
parameters) from the following values: qp¼ [0.02, 0.04, 0.06]; qd¼ [0.02, 0.04, 0.06,
0.08, 0.10, 0.12]; sD¼ [0.025, 0.05, 0.10, 0.15]; sr¼ [0.05, 0.10, 0.15].

Parameter-free fitting. To test the basic assumptions of our model regarding
what information is learned about individual shapes and how information from
multiple shapes is combined to make decisions and give estimates, we fit the
experimental data using three models: the heuristic, normative, and reduced circuit
model. More specifically, we used one-shape estimates given by individual subjects
to predict their two-shape and four-shape estimates. We used this fitting method
because it is parameter-free and avoids any assumptions about learning in the
normative model.

First, the heuristic model assumes that subjects perform probabilistic inference
tasks by assigning a probability of predicting reward on the blue (or red) target for
each shape, and using the average of the assigned probabilities for the presented
shapes to give an estimate. To fit the data using the heuristic model, we predicted
two-shape and four-shape estimates for each subject by simply averaging one-
shape estimates for the presented shapes on a given trial (including repetition).

Second, the normative model assumes that subjects separately learn the
likelihood (equivalently, logLR) associated with individual shapes, as well as the
prior probability for reward on red and blue. Moreover, to make decisions or give
estimates, subjects optimally combine the prior probability and likelihoods from
presented shapes using Bayes theorem. Although it is unclear how such learning
could be performed in the brain (or even by a Bayesian learner) and whether these
computations can be done without any bias, we wanted to test predictions of this
model regarding changes in estimation as the number of shapes used for estimation
increased. To calculate predictions for the normative model, we first used the prior
probability and one-shape estimates provided by a given subject to extract the
logLR associated with each shape for that subject. Following this, two-shape and
four-shape estimates were predicted by summating the log prior odds and logLRs
of the presented shapes to obtain the log posterior odds, and then converting the
resulting log posterior odds to posteriors.

Finally, we used the main assumption of our model to arrive at the reduced
circuit model. That is, what is learned about each shape is a mixture of prior and
evidence and this information is used to provide estimates about a combination of
shapes. To compute predictions for the reduced circuit model, we first calculated
the log posterior odds for individual shapes using one-shape estimates for a given
subject. The two-shape and four-shape estimates were calculated by adding log
posterior odds for shapes presented in a given combination, which were then
converted to posteriors.
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