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Novel metabolomic profile 
of subjects with non‑classic 
apparent mineralocorticoid excess
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Nonclassic apparent mineralocorticoid excess (NC-AME) is proposed as a novel clinical condition with 
a mild phenotypic spectrum that ranges from normotension to severe hypertension. This condition is 
mainly characterized by a high serum cortisol to cortisone ratio (F/E) and concomitant low cortisone 
(E), however further metabolic changes in NC-AME have not been studied. A cross-sectional study 
was performed in a primary-care cohort of 396 Chilean subjects, which were classified in two groups: 
NC-AME (n = 28) and healthy controls (n = 27). A discovery study based in untargeted metabolomics 
assay in serum samples from both groups was performed by UPLC-Q-TOF/MS. Global metabolomic 
variations were assayed by principal component analysis and further compared by orthogonal 
partial least-squares discriminant analysis (OPLS-DA). NC-AME subjects exhibited higher values 
of blood pressure, fractional excretion of potassium, and lower plasma renin activity and urinary 
sodium to potassium ratio. Metabolomic analyses showed 36 differentially regulated metabolites 
between NC-AME and control subjects. A ROC curve analyses identified eight metabolites with high 
discriminatory capacity between NC-AME and control subjects. Moreover, gamma-l-glutamyl-l-
methionine sulfoxide and 5-sulfoxymethylfurfural, exhibited significant association with cortisone, 
which are potential biomarkers of NC-AME, however further assays should elucidate its biological role 
in setup and progression of this phenotype.

Apparent mineralocorticoid excess (AME) syndrome is an infrequently occurring autosomal recessive disorder 
caused by mutations in coding regions of the HSD11B2 gene1, and AME is characterized by the activation of 
the mineralocorticoid receptor (MR) by cortisol. It is known that cortisol can bind to MR with equal affinity 
to aldosterone, leading to the same effects as primary aldosteronism (PA)2,3. However, under normal condi-
tions, activation of the MR by cortisol does not occur because the 11β-hydroxysteroid dehydrogenase type 2 
(11β-HSD2) enzyme inactivates cortisol in cortisone and thus prevents cortisol from binding to the MR4. In the 
literature, there is clear evidence demonstrating that a total deficiency of the 11β-HSD2 enzyme triggers severe 
arterial hypertension that is characterized by a childhood onset and is associated with suppressed plasma renin 
activity (PRA), low aldosterone levels and hypokalemic alkalosis5–8.

Recent studies by our group identified mild forms of AME syndrome that we named nonclassic apparent 
mineralocorticoid excess (NC-AME), which is proposed to be a condition with a wider and milder phenotypical 
spectrum than was identified for AME5,7,9–12 and is primarily characterized by a high F/E ratio and low cortisone9. 
In addition, NC-AME patients have higher levels of inflammatory markers, microalbuminuria and plasminogen 
activator inhibitor-1 (PAI-1), and they have high sensitivity c-reactive protein (hs-CRP). To date, the cause of 
NC-AME has not been elucidated. However, we recently determined that NC-AME could be associated with 
minor genetic defects (i.e., heterozygous pathogenic variant or polymorphisms)9 or epigenetic modifications 
such as miRNAs13. Moreover, salt intake, glycyrrhetinic acid-like factors (GALFs) and environmental factors5 
have been hypothesized to be factors that deregulate the expression and activity of the HSD11B2 gene.

Previous studies described the presence of inhibitor substances of the 11β-HSD2 enzyme in human urine that 
include glycyrrhetinic acid (GA) like-factors (GALFs), such as the licorice derivative, which affect the adequate 
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metabolism of cortisol14. A large proportion of patients with essential hypertension likely exhibit endogenous 
GALF-like inhibitors14, particularly endogenous allo-3α-5α-reduced pathway steroidal products, corticosterone 
and 11-dehydrocorticosterone15, derivatives of progesterone and adrenocorticosteroids16,17, 11β-OH-testosterone 
and 11-keto-testosterone, which are potent inhibitors of 11β-HSD2 dehydrogenase activity. Moreover, several 
publications have showed the effects of inhibition of 11β-HSD2 by others environmental inhibitors, including 
licorice, GA, carbenoxolone and others previously described17–20.

Metabolomics can be employed to detect global metabolite profiles21, which represent the endpoint of all 
metabolic activities and help to characterize various biological and physiological processes. Previous studies of 
untargeted metabolomics in resistant hypertension have shown changes in metabolite levels related to fatty acid, 
lipid, amino acid and purine metabolism22, showing that metabolomics helps to elucidate the metabolites that 
may influence the physiopathology associated with drug-resistant hypertension.

In the present study, we performed an untargeted metabolomic approach to elucidate novel metabolite profiles 
in subjects with NC-AME and also get insights into the biological mechanisms underlying NC-AME condition, 
which support prospective identification of novel biomarkers associated with this phenotype.

Subjects and methods
Subjects.  This study was designed as a cross-sectional study in a Chilean adult cohort of 396 subjects 
between 18–60 years of both genders, with a similar socioeconomic status and ethnicity; these subjects had been 
previously recruited from primary care centers in Santiago, Chile. The study was performed according to the 
principles of the Declaration of Helsinki. A written informed consent was signed by all participants. Consent 
and ethics approval for the recruitment of patients and samples is included in the certificate of approval CEC-
MEDUC 14-268 and 12-207 of the Faculty of Medicine, Pontificia Universidad Católica de Chile.

The subjects enrolled in this study meet the following criteria: absence of a history of chronic pathologies, 
such as renal failure, heart failure, diabetes mellitus, chronic liver damage, and endocrinopathies, and drugs 
affecting the PRA and aldosterone to PRA ratio (ARR)23,24. Subjects who received glucocorticoids (e.g., cortisol 
and prednisone) or mineralocorticoids (e.g., fludrocortisone) less than 2 months before the start of the study 
were also excluded, since both affect the aldosterone, PRA or urinary free cortisol (F) levels.

Clinical characteristics and biochemical assay.  All subjects in this study had a clinical record and 
physical examination that included age, height, weight, body mass index (BMI) and blood pressure (BP)13. BP 
measurements were obtained from the right arm at consecutive 5-min intervals using an oscillometric method 
(Dinamap CARESCAPE V100, GE Healthcare, Medical Systems Information Technologies, Milwaukee, WI), 
with the subjects remaining in a seated position. Hypertension-AHA guidelines were followed to identify blood 
pressure categories in our cohort25.

After overnight fasting, basal blood samples were obtained between 08:00 and 10:00 AM. A biochemical 
profile was performed, including measurements of urine and plasma creatinine, electrolytes (sodium and potas-
sium), aldosterone and PRA. Serum aldosterone and PRA were measured by radioimmunoassay using a com-
mercial kit (Coat-A-Count Kit; Siemens, Los Angeles, CA and DiaSorin, Stillwater, MN, respectively). Serum 
cortisol and cortisone were quantified using liquid chromatography associated with tandem mass spectrometry 
(LC–MS/MS) and were validated according to the parameters suggested by the FDA and the CLSI using deuter-
ated internal F and E standards (cortisol-d4 and cortisone-d2) in an Agilent 1200 Series HPLC unit coupled to 
an ABSciex 4500 QTrap mass spectrometer. All plasma, serum and urine (spot and 24-h collection) samples 
were used immediately or were stored at − 80 °C.

After the exclusion criteria were applied, we studied 28 NC-AME subjects (7.1%), who were identified accord-
ing to previously described parameters9. Briefly, NC-AME subjects have a low level of serum cortisone (E) 
(E ≤ 2.1 μg/dl) and a high cortisol to cortisone (F/E) ratio (F/E ≥ 4.4)9. The NC-AME subjects were compared 
with a control group of 27 normotensive subjects with BMI values less than 35 kg/m2, no clinical risk factors and 
no evident diagnosis of genetic diseases or secondary diseases. Statistical analyses were performed with both 
groups of subjects similar in age, gender and BMI.

Methods.  Sample preparation for metabolomic assays by LC–MS.  A volume of 100 µL of serum sample was 
thawed and extracted with 300 μL of methanol and 5 μL of DL-o-chlorophenylalanine (2.8 mg/mL) (internal 
standard (IS)) with 30 s of vortexing. Then, all samples were kept at − 40 °C for 1 h. After that samples were vor-
texed for 30 s and centrifuged at 12,000 rpm and 4 °C for 15 min. Finally, 200 μL of supernatant was transferred 
to a vial for LC–MS analysis. Quality control (QC) samples were used to evaluate the methodology. The same 
amount of extract was obtained from each sample and mixed as QC samples. The QC samples were prepared 
using the same sample preparation procedure26.

Untargeted metabolomics by UPLC–TOF–MS.  Analyte separation was performed by liquid chromatography 
in an Ultimate 3000LC combined with Q Exactive MS (Thermo) and screened with a ESI–MS (targeted MS/
MS mode). The LC system is composed of a Thermo Hyper gold C18 (100 × 2.1 mm 1.9 μm) with an Ultimate 
3000LC. The mobile phase is composed of solvent A (0.1% formic acid–5% acetonitrile–water) and solvent B 
(0.1% formic acid–acetonitrile) with a gradient elution (0–1.5 min, 100–80% A; 1.5–9.5 min, 80–0% A; 9.5–
14.5 min, 0% A; 14.5–14.6 min, 0–100% A; and 14.6–18 min, 100% A)27. The flow rate of the mobile phase was 
0.3 mL min−1. The column temperature was 40 °C, and the sample manager temperature was set at 4 °C26. The 
mass spectrometry parameters in ESI+ and ESI− mode are listed as follows: ESI+: Heater Temp 300 °C; Sheath 
Gas Flow rate, 45 arb; Aux Gas Flow Rate, 15 arb; Sweep Gas Flow Rate, 1 arb; spray voltage, 3.0 kV; Capillary 
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Temp, 350 °C; S-Lens RF Level, 30%. ESI-: Heater Temp 300 °C, Sheath Gas Flow rate, 45 arb; Aux Gas Flow Rate, 
15 arb; Sweep Gas Flow Rate, 1 arb; spray voltage, 3.2 kV; Capillary Temp, 350 °C; and S-Lens RF Level, 60%26,27.

At the beginning of the sequence, we run four QC samples to avoid small changes in both chromatographic 
retention time and signal intensity. The QC samples are also injected at regular intervals (every ten samples) 
throughout the analytical run.

Metabolomic data analysis.  The raw data were acquired and aligned using Compound Discover software ver-
sion 3.0 (Thermo Q Exactive Platform), which use mzLogic scoring algorithm that combines mzCloud™ similar-
ity searching (MS2 and MSn) with structure similarity matching to rank putative database results. The identi-
fication of Compound Discovery is based on retention time (RT), MS1 and MS2. Ions from both electrospray 
ionization negative (ESI−) and positive (ESI+) were merged and imported into the SIMCA-P program (version 
14.1) to enable multivariate analysis. The data was normalized by the area sum of all metabolites in each sample. 
The peak area percentage of each metabolite was calculated and the area percentage of each metabolite multiply 
by 1 million. After alignment and normalization, the relative standard deviation (RSD%) was applied to evalu-
ate the reproducibility of the metabolomics analysis by formula ((SD*100)/Mean) (Supplemental Fig. 1A,B,C).

Clustering analyses of metabolites.  Principal component analysis (PCA) is first used as an unsupervised method, 
providing an overview of the data. The outlier observed were not handled since were not considered influential 
points. Supervised regression modeling is then performed on the data set by use of partial least squares discri-
minant analysis (PLS-DA) or orthogonal partial least squares discriminant analysis (OPLS-DA). The OPLS-DA 
allow us to identify, which variables have the largest discriminatory power, i.e. which variables contribute to 
the model. Then, the metabolites are filtered and confirmed by combining the results of the variable impor-
tance in projection (VIP) values (VIP > 1.5) and a significant unpaired t-tests (p < 0.05)27. False Discovery rate 
(FDR) based on Benjamini Hochberg method was used for adjusting p values toward multiple hypothesis testing 
(FDR < 0.05).

The PLS-DA and OPLS-DA model were validated by performing permutation tests (n = 200) (Supplemen-
tary Table 1). The quality of the fitting model can be explained by R2 and Q2 values. R2 displays the variance 
in the model and indicates the quality of the fit. Q2 displays the variance in the data, indicating the model’s 
predictability28 (Supplementary Table 1).

Pathway analysis of metabolites.  Pathway analysis was performed based on the KEGG and MBRole databases. 
All significant metabolites were imported to obtain categorical annotations, including pathways, enzyme inter-
actions and other biological annotations.

Discriminatory analyses of NC‑AME condition by ROC curve.  A logistic regression (LR) with bootstrapping 
was performed with all significant metabolites (n = 36) in order to have a predictive model suitable to discrimi-
nate the NC-AME from controls. The most predictive and significant (p < 0.05) metabolites to identify this phe-
notype, beside the receiver operating characteristic (ROC) curve analyses (AUC > 0.65 and p < 0.0001) were used 
to build the model. To explore the predictive value of these metabolites, a supervised algorithm of LR with nested 
cross-validation (CV) were used to train and validate the model. A nested CV is a technique that creates multiple 
train-test splits. It was used to obtain robust estimates of model predictive performance and avoid overfitting. We 
used ten fold stratified nested CV, where at each iteration 9 of the folds were used in the inner loop to train the 
algorithm, and the 10th fold was used in the outer loop to test the trained model (Supplemental Fig. 2). Imple-
mentations were done by using the scikit-learn library version 23.0.029 and Python language programming. 
Model’s performance was evaluated according to the metrics of accuracy, sensitivity, specificity and area under 
the ROC curve. The 95% confidence intervals were estimated for all metrics.

To define the clinical significance of the metabolites in the NC-AME condition, the variables included in the 
final model was restricted to the significant metabolites and the most relevant clinical parameters (e.g., cortisone 
and cortisol to cortisone ratio)9. The association between the best clinical predictor (e.g., serum cortisone) and 
metabolites was also assessed using a multivariate linear regression analysis. The analyses were performed with 
SPSS 20 and GraphPad Prism v9.0 software.

Results
Clinical and biochemical profile of NC‑AME subjects.  The baseline characteristics of both 28 NC-
AME subjects and 27 healthy controls are shown in Table 1. NC-AME subjects had significantly higher values of 
SBP (p < 0.0001), DBP (p < 0.0001), fractional excretion of potassium (FEK) (p = 0.03) and serum F/E (p = 0.01) 
and a lower PRA (p = 0.005), serum cortisone (p < 0.0001) and urinary Na/K ratio (p = 0.004). Both groups exhib-
ited comparable serum aldosterone and cortisol levels (Table 1).

NC‑AME metabolomic profiling.  To identify metabolite changes in NC-AME, we acquired untargeted 
metabolomic profiling of all serum samples in the discovery setup based on UPLC-Q-TOF/MS in both posi-
tive and negative ion modes. The data were obtained with the m/z, RT and data matrix of the peak area. In 
the positive and negative ion modes, we obtained 2798 and 3503 metabolites, respectively. The ion features of 
the QC samples were employed to calculate the relative standard deviation (RSD). As shown in Supplemental 
Fig. 1C, the 76.8% of the variables among 3503 ions acquired in ESI negative ion mode from the QC sample had 
RSD% less than 30%, and 86.1% of variables among the 2798 ions acquired in ESI positive ion mode from the 
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QC sample had RSD% less than 30%. All these results suggested that the analytical method could be applied in 
metabolomics analysis with excellent repeatability and stability30 (Supplemental Fig. 3A/B).

Clustering analyses of metabolites.  To investigate the global metabolic variations, we first used PCA to 
analyze all samples acquired in both ion modes. The PCA plot (Supplemental Fig. 4A,B) presents an overview 
of all samples in the data and exhibits an unclear grouping trend between both groups (NC-AME and controls).

To obtain an improved separation and gain a better understanding of the variables responsible for the clas-
sification, a supervised clustering PLS-DA model analysis was applied. The score plot of PLS-DA analysis showed 
a distinct separation between the NC-AME and control groups (Supplemental Fig. 5A,B). The PLS-DA model in 
negative ion mode had an R2Y value of 0.99 and a Q2Y value of 0.815, and for model in positive ion mode had 
an R2Y of 0.90 and a Q2Y of 0.74 (Supplementary Table 1). To assess the model, a permutation test was applied 
(n = 200). The R2 and Q2 intercept values were 0.977 and 0.483 for negative ion mode, and 0.774 and 0.0389 for 
positive ion mode, respectively (Supplementary Fig. 5C,D). To refine the PLS-DA analysis, OPLS-DA analysis was 
performed to maximize the differences between groups in the model. OPLS-DA score plot (Fig. 1A,B) showed a 
clear separation of the control versus the NC-AME groups. The OPLS-DA model had an R2Y value of 0.991 (i.e., 
the model explained 99% of the variation observed within the data) and a Q2Y value of 0.499 for negative data, 
and an R2Y of 0.986 and Q2Y of 0.742 for positive data. Furthermore, a permutation test was applied. The R2 
and Q2 intercept values were 0.978 and − 0.19 for negative ion mode (Fig. 1C), and 0.958 and − 0.277 for positive 
ion mode (Fig. 1D). We determined which differentially expressed metabolites have the most important role in 
separating the two groups. We obtained VIP values from the OPLS-DA analysis, differential metabolites were 
selected when the variable importance of the projection values were greater than 1.5 (VIP > 1.5) (Supplemental 
Figs. 6A/B and 7A/B).

The significant differential metabolites of the NC-AME patients compared with the control subjects were 
visualized through volcano plots (Fig. 2) with further the false discovery rate (FDR) adjustment. The results 
showed that 21 (in the negative ion model) (Table 2) and 15 (in the positive ion model) (Table 3) differential 
metabolites distinguished the NC-AME from the healthy controls. Among these 36 metabolites from the NC-
AME, three metabolites were significantly upregulated, and thirty-three were downregulated (Tables 2 and 3), 
compared with the respective metabolites from healthy controls. The heatmap plot of the differential metabolites 
in NC-AME versus control subjects is presented in Fig. 3, in which color intensity correlates with the degree of 
increase (red) and decrease (green) relative to the mean metabolite ratio.

Enrichment and clustering of metabolites of interest.  To identify the relationships of the metabo-
lites, we constructed a correlation network diagram based on the KEGG databases and MBRole. Under the 

Table 1.   Clinical and biochemical characteristics of the studied subjects. Values correspond to median [Q1–
Q3]. BMI body mass index, SBP systolic blood pressure, DBP diastolic blood pressure, F/E cortisol to cortisone 
ratio, PRA plasma renin activity, Na sodium; K+ potassium, FENa fractional excretion of sodium, FEK 
fractional excretion of potassium. *p < 0.05, Mann–Whitney test.

NC-AME Controls p value

N 28 27 –

Male, n (%) 11 (39.3%) 12 (44.4%) 0.6

Age (years) 51.1 [37.7–58.0] 40.7 [33.2–49.8] 0.14

BMI (kg/m2) 27.7 [26.1–30.1] 26.5 [24.6–28.9] 0.13

SBP (mm Hg) 141.0 [120.0–154.2] 115.7 [108.7–119.0] < 0.0001*

DBP (mm Hg) 88.5 [78.7–97.5] 74.7 [70.0–75.7] < 0.0001*

Serum cortisol (ug/dL)
(nmol/L)

9.9 [8.6–12.5] 10.4 [7.4–16.7]
0.8

273.1 [237.2–344.8] 286.9 [204.1–460.7]

Serum cortisone (ug/dL)
(nmol/L)

1.9 [1.8–2.1] 2.4 [2.1–2.8]
 < 0.0001*

52.7 [49.9–58.3] 66.6 [58.3–77.7]

Serum F/E ratio 5.3 [4.7–6.1] 4.4 [3.7–5.9] 0.01*

PRA (ng/ml*h)
(ng/L/s)

1.0 [0.7–1.8] 1.5 [1.3–2.0]
0.005*

0.3 [0.2–0.5] 0.4 [0.4–0.6]

Aldosterone (ng/dl)
(pmol/L)

8.9 [5.4–13.6] 7.5 [5.6–11.7]
0.3

246.9 [149.8–377.4] 208.1 [155.4–324.6]

Serum Na (mEq/L) 141 [139–143] 140 [139–141] 0.2

Serum K (mEq/L) 4.1 [3.9–4.4] 4.3 [4.0–4.4] 0.4

FeNa (24 h %) 0.6 [0.4–0.8] 0.7 [0.6–0.9] 0.1

FEK (24 h %) 8.4 [6.3–10.7] 6.7 [5.7–8.3] 0.03*

Urinary Na (mEq/24 h) 124 [86–173] 141 [110–194] 0.2

Urinary K (mEq/24 h) 49.5 [38.0–62.8] 45.0 [27.0–59.0] 0.2

Urinary Na/K 2.4 [1.6–3.5] 3.5 [2.4–4.2] 0.004*
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limiting condition of p < 0.05 in the MBRole, there are primarily 25 enriched metabolic pathways, including 36 
highlighted metabolites, that were involved, while the methylhistidine metabolism and transfer of acetyl groups 
into mitochondria pathway ranked highest, which provides key information for constructing a metabolomic 
network diagram (Supplemental Fig. 8A/B).

Prediction regression model.  To assess the diagnostic capacity of the significant metabolites in the iden-
tification of the NC-AME phenotype, we applied ROC curve analysis to the data, which allowed to identify 8 
metabolites with an AUC greater than 0.650. The area under the ROC curve for the upregulated metabolites were 
l-dopachrome, gamma-l-glutamyl-l-methionine sulfoxide and 5-sulfoxymethylfurfural (SMF), was 0.95 (95% 
CI 0.89–1.0), 0.78 (95% CI 0.67–0.9), 0.67 (95% CI 0.53–0.8) respectively, in NC-AME subjects (Fig. 4A). The 
area under the ROC curve for downregulated metabolites, S-phenylmercapturic acid (SPMA), bilirubin, l-iditol, 
deoxyribose 1-phosphate, and citric acid, was 0.9 (95% CI 0.82–0.97), 0.86 (95% CI 0.77–0.95), 0.85 (95% CI 
0.75–0.94), 0.82 (95% CI 0.71–0.93), and 0.78 (95% CI 0.67–0.89) in NC-AME subjects, respectively (Fig. 4B).

To test the predictive value of these 8 metabolites we performed a logistic regression model with a ten fold 
nested cross-validation, which showed that all these metabolites are able to discriminate between the NC-AME 
and control subjects with an accuracy of 0.92 (95% CI 0.83–1.00), a sensitivity of 0.93 (95% CI 0.81–1.00), a 
specificity of 0.90 (95% CI 0.77–1.00) and a AUC of 0.92 (95% CI 0.82–1.00).

Since low serum cortisone has been reported to be one of the best predictors of MR activation in NC-AME 
subjects9, we performed linear regression analyses between serum cortisone and significant metabolites, adjusted 
for age, BMI, SBP and DBP we identified a negative association of cortisone with gamma-l-glutamyl-l-methio-
nine sulfoxide (r = − 0.29; p = 0.039) and 5-sulfoxymethylfurfural (r = − 0.39; p = 0.003).

Figure 1.   Discriminant analysis of groups NC-AME patients vs. control group. (A) OPLS-DA score scatter 
plots in ESI negative mode. X-axis and Y-axis represent score vectors summarizing all the variables entering 
the analysis. (B) Scatter plot of OPLS-DA in ESI positive data. (C) Validation plot for OPLS-DA model in ESI 
negative mode. A 200-time permutation test was used to assess the model. The y-axis intercepts were R2 (0.0, 
0.978) and Q2 (0.0, − 0.19). (D) Validation plot for OPLS-DA model in ESI positive mode. The permutation tests 
were carried out with 200 random permutations. The y-axis intercepts were R2 (0.0, 0.958) and Q2 (0.0, − 0.277).
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Discussion
This is the first report to describe a metabolomic study in NC-AME patients. The discovery study was based 
on an untargeted metabolomic analysis of serum samples from NC-AME patients and identified 36 differen-
tially regulated metabolites, specifically 3 upregulated metabolites and 33 downregulated metabolites. For these 
36 metabolites, we evaluated their diagnostic capacity as biomarkers for this phenotype. We observed that 
l-dopachrome and SPMA had the highest sensitivity and specificity to discriminate the NC-AME condition, 
followed by bilirubin, l-iditol, deoxyribose 1-phosphate, citric acid, gamma-l-glutamyl-l-methionine sulfoxide 
and 5-sulfoxymethylfurfural (SMF). The combination of these eight metabolites showed a high sensitivity (93%) 
and specificity (90%) to discriminate for NC-AME from control subjects.

The metabolites gamma-l-glutamyl-l-methionine sulfoxide, l-dopachrome and SMF were significantly 
increased in NC-AME patients (Table 2; Fig. 4). The gamma-l-glutamyl-l-methionine is an organic compound 
that belongs to the class of dipeptides and is generated in conditions of oxidative stress31,32. Methionine sulfox-
ide has been proposed as a physiological marker of oxidative stress, which is a key mechanism of endothelial 
dysfunction, as observed in NC-AME subjects and even more notably in hypertensive patients33. Recently, Zhao 
and colleagues in a urine metabolomic study revealed the involvement of oxidative stress metabolic pathways and 
amino acid metabolism in essential hypertension34. Additional evidence suggested that essential hypertensives 
(EH) may be a disorder of inherited amino acid metabolism35. However, the increased levels of these two metabo-
lites have never been explored in NC-AME. Similarly, l-dopachrome belongs to the class of organic compounds 
known as l-alpha-amino acids, and elevated levels of this metabolite indicate an increase in tyrosine metabolism, 
which includes the biosynthesis of melanin36,37. In this way, gamma-l-glutamyl-l-methionine, l-dopachrome 
or metabolites associated with this metabolic pathway should be further evaluated as endogenous inhibitors of 
11β-HSD2, and further research is required to reveal such effects.

Figure 2.   Volcano plot of differential abundance of metabolites found in metabolomics assay of NC-AME 
versus control subjects. The X-axis is the Log2 of metabolites levels (fold change) between subjects with 
NC-AME and control subjects. The Y-axis shows the − Log10(p value) obtained from comparison of control 
versus NCAME group by an unpaired student’s t test. The range of Y > 1.30 (equal to p value of 0.05) and X > 1 
were considered as significant increase; The range of Y > 1.30 and X < 1 were considered as significant decrease. 
(A) At negative ion mode (B) At positive ion mode.
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Along with the findings described above, we also observed that subjects with NC-AME have high levels of 
the organic compound SMF, which is also negatively associated with serum cortisone. SMF is generated from 
the metabolism of 5-hydroxymethylfurfural, a reactive metabolite that can bind to DNA and cause mutagenic 
effects38. SMF is toxic, since it accumulates in kidney proximal tubules by improper excretion due to renal 
reabsorption processes39, which leads to the above mentioned damage to DNA and proteins. In addition, we 
show that SPMA has a good diagnostic ability to identify this phenotype of NC-AME. SPMA belongs to the 
family of N-acyl-alpha amino acids and derivatives, and is a benzene metabolite that is catalyzed by glutathione 
S-transferases and has been considered a biomarker of oxidative damage. These findings may support the com-
plementary use of biomarkers associated with oxidative stress and renal damage, such as microalbuminuria, in 
NC-AME subjects.

On the other hand, bilirubin also has a good discriminatory capacity to identify the NC-AME phenotype 
and is decreased in these subjects. Bilirubin has previously been characterized as an antioxidative and anti-
inflammatory protective factor with respect to peripheral vascular diseases40,41, suggesting that NC-AME subjects 
with lower bilirubin levels may have lower protective antioxidant effects. Although various studies have shown 
some association of high bilirubin with a low incidence of hypertension, the present findings should be viewed 
with caution and should be further evaluated42.

Other metabolites that are decreased in NC-AME, such as l-iditol and deoxyribose 1-phosphate, also have 
a good discriminatory capacity to identify the NC-AME phenotype. l-Iditol is a sugar alcohol and is part of 
various metabolic reactions in organisms that include fructose and mannose metabolism. On the other hand, 
deoxyribose 1-phosphate is involved in pentose phosphate pathways (PPPs). PPP is a multienzyme pathway that 
shares a common starting molecule with glycolysis, glucose-6-phosphate. PPP plays a critical role in regulating 
cell growth by supplying cells with not only ribose-5-phosphate but also NADPH for detoxification of intracel-
lular ROS, reductive biosynthesis, and ribose biogenesis. Thus, the PPP can adapt to the needs of a particular 
cell at a time point when a change in the metabolism of a cell is required. However, these mechanisms may be 
affected in subjects with NC-AME.

Table 2.   Identified metabolites in negative ion model related to NC-AME based on UPLC-Q-TOF/MS. 
Q-values are the adjusted p values using an optimized FDR approach.

Retention time (min) Molecular weight (g/mol) Compound name Formula Pathway Fold change p value q value

Negative ion model

2.664 193.040 l-Dopachrome C9H7NO4 Tyrosine metabolism 2.754 0.000 0.000

1.706 294.088 gamma-l-Glutamyl-l-methionine 
sulfoxide C10H18N2O6S – 2.162 0.000 0.000

4.798 192.026 Citric acid C6H8O7

Transfer of acetyl groups into 
mitochondria
Citric acid cycle
Warburg effect

0.357 0.000 0.000

0.901 214.024 Deoxyribose 1-phosphate C5H11O7P
Pentose phosphate pathway
Pyrimidine metabolism
Purine metabolism

0.475 0.000 0.000

0.898 178.047 l-Gulonolactone C6H10O6 – 0.447 0.000 0.003

3.014 904.475 CL(8:0/8:0/8:0/8:0) C41H78O17P2 – 0.381 0.005 0.003

4.045 584.263 Bilirubin C33H36N4O6 Porphyrin metabolism 0.387 0.001 0.003

0.942 296.071 Gyrocyanin C17H12O5 – 0.018 0.006 0.026

0.923 246.050 Glycerophosphoglycerol C6H15O8P – 0.111 0.014 0.037

0.935 244.034 Fucose 1-phosphate C6H13O8P
Fructose and mannose degrada-
tion 0.362 0.015 0.037

0.891 182.078 Mannitol C6H14O6 – 0.002 0.000 0.037

2.212 205.987 5-Sulfoxymethylfurfural C6H6O6S – 2.868 0.02 0.037

4.282 496.230 Glaucarubin C25H36O10 – 0.135 0.04 0.040

11.369 540.438 TG(i-13:0/8:0/8:0) C32H60O6 – 0.585 0.016 0.040

3.891 244.003 (2E)-3-[3-(sulfooxy)phenyl]prop-
2-enoic acid C9H8O6S – 0.390 0.013 0.040

3.634 490.311 1-(13Z,16Z-docosadienoyl)-
glycero-3-phosphate C25H47O7P – 0.017 0.022 0.040

12.411 596.501 TG(8:0/13:0/12:0) C36H68O6 – 0.595 0.014 0.040

11.866 442.402 MG(24:0/0:0/0:0) C27H54O4 – 0.544 0.016 0.040

3.138 372.105 Dihydroferulic acid 4-O-glucu-
ronide C16H20O10 – 0.442 0.035 0.048

3.65 428.310 Glyceryl lactooleate C24H44O6 – 0.073 0.036 0.048

4.486 286.189 Androstenedione C19H26O2

Androstenedione metabolism
Androgen and estrogen metabo-
lism

0.011 0.034 0.048
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In this report, we found low levels of citric acid in NC-AME subjects. The citric acid cycle (CAC) provides 
precursors of certain amino acids, as well as the reducing agent NADH, that are used in numerous reactions. 
Regarding 11β-HSD2 enzymatic activity, it is known that this enzyme is highly dependent on cofactor NAD+6, 
which is essential for proper cortisol catabolic activity in the kidney and other nonepithelial tissues. Thus, a 
decrease in the activity of the citric acid cycle should affect the synthesis of NAD+, which is a critical cofactor 
for the 11β-HSD2 enzyme. The diminished CAC activity may be due to a reduction in overall mitochondrial 
biogenesis, reduced expression of the genes encoding citric acid enzymes, or reduced citric acid cycle substrate 
availability.

We observed a decrease in S-adenosyl-l-homocysteine (SAH), which is the metabolic precursor of homo-
cysteine and is a negative regulator of most cell methyltransferases associated with DNA hypermethylation43. 
Low SAH levels observed in NC-AME subjects are indicated to be associated with higher expression of DNA-
methyltransferase and hypermethylation of the HSD11B2 promoter44, which is expected to decrease HSD1B2 
expression and subsequently affect cortisol to cortisone metabolism in these subjects. Recently, Lana et al. in 
a similar untargeted metabolomics analysis in EH45, also detected a dysregulation in the urine levels of sulfur-
containing metabolites (thiocysteine and homomethionine), purines (SAH, AMP, allantoate, and hydroxyisour-
ate) and pyrimidines (dihydrothymine, uracil, and UDP), among others45, suggesting that NC-AME may be 
associated with impaired sulfur-containing metabolites, such as SAH.

Various publications17,20 have addressed the effects of the inhibition of 11β-HSD2 by endogenous and exog-
enous inhibitors. In this study, we identified also the presence of some of these endogenous inhibitors, such as 
cholic acid derivatives, and exogenous inhibitors, such as perfluorohexane sulfonic acid, perfluorooctanesulfonic 
acid, perfluorooctanoic acid, diethyl-phthalic acid, and monoethylphthalate. However, we did not observe sig-
nificant differences between the subjects with NC-AME and the healthy controls (data not shown).

Regarding the regression modeling to select and validate the marker metabolites able to discriminate NC-
AME from control subjects, we performed a logistic regression and ROC curve analyses. We found 8 metabolites 
including l-dopachrome, gamma-l-glutamyl-l-methionine sulfoxide, 5-sulfoxymethylfurfural (SMF), S-phe-
nylmercapturic acid (SPMA), bilirubin, l-iditol, deoxyribose 1-phosphate and citric acid, which contributed to 
the combined model and achieved the highest AUC value corresponding to 92%. These biomarkers have good 
diagnostic accuracy in distinguishing NC-AME from controls subjects with and accuracy of 92%, a sensitivity 
of 93% and a specificity of 90%. Moreover, two of them, gamma-l-glutamyl-l-methionine sulfoxide and SMF 
showed significant association with cortisone, the principal analyte associated to the NC-AME phenotype, using 

Table 3.   Identified metabolites in positive ion model related to NC-AME based on UPLC-Q-TOF/MS. 
Q-values are the adjusted p values using an optimized FDR approach.

Retention time (min) Molecular weight (g/mol) Compound name Formula Pathway Fold change p value q value

Positive ion model

4.047 584.265 Bilirubin C33H36N4O6 Porphyrin metabolism 0.339 0.000 0.000

3.011 904.478 CL(8:0/8:0/8:0/8:0) C41H78O17P2 – 0.417 0.001 0.027

2.822 239.062 S-Phenylmercapturic acid C11H13NO3S – 0.346 0.005 0.030

1.292 85.053 2-Pyrrolidinone C4H7NO – 0.086 0.012 0.008

5.989 308.184 (R)-1-O-b-d-glucopyranosyl-
1,3-octanediol C14H28O7 – 0.061 0.012 0.025

0.883 384.125 S-Adenosylhomocysteine C14H20N6O5S

Methionine metabolism
Histidine metabolism
Glycine and serine metabolism
Tryptophan metabolism
Tyrosine metabolism
Arginine and proline metabolism
Methylhistidine metabolism
Betaine metabolism
Carnitine synthesis
Nicotinate and nicotinamide 
metabolism
Estrone metabolism
Phosphatidylcholine biosynthesis
Catecholamine biosynthesis
Ubiquinone biosynthesis

0.095 0.013 0.027

2.833 430.123 Ketoprofen glucuronide C22H22O9 – 0.151 0.013 0.027

0.905 232.056 (2E,11Z)-5-[5-(Methylthio)-
4-penten-2-ynyl]-2-furanacrolein C13H12O2S – 0.096 0.015 0.027

1.018 192.090 Oxoamide C10H12N2O2 – 0.361 0.016 0.027

0.901 165.077 l-Phenylalanine C9H11NO2
Phenylalanine and tyrosine 
metabolism 0.426 0.021 0.027

5.988 132.079 6-Hydroxyhexanoic acid C6H12O3 – 0.152 0.024 0.030

3.629 426.296 Leupeptin C20H38N6O4 – 0.007 0.025 0.030

12.241 578.491 DG(15:0/18:2(9Z,12Z)/0:0) C36H66O5 – 0.391 0.027 0.030

0.9 182.079 l-Iditol C6H14O6 – 0.003 0.028 0.030

4.48 406.190 Carvedilol C24H26N2O4 – 0.140 0.045 0.045
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a linear regression model adjusted by age, BMI, and blood pressure. However, we are aware this is a discovery 
study, which should be further evaluated in another cohort of subjects to validate these metabolites and confirm 
these findings.

Figure 3.   Hierarchical cluster analysis of metabolome data from significant metabolites. (A) Negative ion mode 
(B) Positive ion mode.



10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:17156  | https://doi.org/10.1038/s41598-021-96628-6

www.nature.com/scientificreports/

In summary, we found by a metabolomic study 8 metabolites that are potentially useful as biomarkers associ-
ated with the NC-AME phenotype. Moreover, these metabolites and their respective metabolic pathways should 
help to identify the pathophysiological mechanism governing this condition. Here, we encourage future in vitro 
and in vivo assays involving these metabolites in order to define their roles in 11β-HSD2 expression and activ-
ity. Beside this knowledge, is necessary to advance in the development of dedicated assays for single or grouped 
metabolites in order to support novel algorithms for identification of NC-AME subjects.

Figure 4.   Evaluation of diagnostic efficacy using ROC curve for significant top 8 metabolites in serum 
differentially expressed in NC-AME and control subjects, as detected by UPLC–TOF–MS. (A) Upregulated 
metabolites; (B) Downregulated metabolites.
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