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Abstract
The transition from recreational drug use to compulsive drug‐seeking habits, the hall-
mark of addiction, has been shown to depend on a shift in the locus of control over 
behaviour from the ventral to the dorsolateral striatum. This process has hitherto been 
considered to depend on the aberrant engagement of dopamine‐dependent plasticity 
processes within neuronal networks. However, exposure to drugs of abuse also triggers 
cellular and molecular adaptations in astrocytes within the striatum which could po-
tentially contribute to the intrastriatal transitions observed during the development of 
drug addiction. Pharmacological interventions aiming to restore the astrocytic mecha-
nisms responsible for maintaining homeostatic glutamate concentrations in the nucleus 
accumbens, that are altered by chronic exposure to addictive drugs, abolish the pro-
pensity to relapse in both preclinical and, to a lesser extent, clinical studies. Exposure 
to drugs of abuse also alters the function of astrocytes in the dorsolateral striatum, 
wherein dopaminergic mechanisms control drug‐seeking habits, associated compul-
sivity and relapse. This suggests that drug‐induced alterations in the glutamatergic ho-
meostasis maintained by astrocytes throughout the entire striatum may interact with 
dopaminergic mechanisms to promote aberrant plasticity processes that contribute 
to the maintenance of maladaptive drug‐seeking habits. Capitalising on growing evi-
dence that astrocytes play a fundamental regulatory role in glutamate and dopamine 
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1  |   INTRODUCTION
Drugs of abuse induce a broad spectrum of central and sys-
temic effects that vary depending on their mechanisms of 
action (Nestler, 2005). Despite differences in their neurobi-
ological targets and associated subjective effects, addictive 
drugs share a common neurochemical mechanism, in that 
they all increase the extracellular concentration of dopamine 
in the striatum (Di Chiara & Imperato, 1988).

The striatum is the main entry point of the basal ganglia, 
receiving glutamatergic inputs from the cortex following a 
topographical organisation in parallel loops (Haber, 2016). 
Broadly, therefore the striatum is involved in motor control, 
motor learning, instrumental conditioning, executive func-
tions, emotion and motivation (Lanciego, Luquin, & Obeso, 
2012; Ward, Seri, & Cavanna, 2013). It is a cytoarchitectur-
ally heterogeneous structure (Kreitzer, 2009) composed of 
projecting GABAergic neurons, i.e. medium spiny neurons 
(MSNs), that form the first GABAergic node of the cortico‐
striato‐pallido‐thalamocoritcal loops (Kita, 1993), as well 
as GABAergic (fast spiking) and cholinergic (tonically acti-
vated) interneurons. MSNs are further subdivided function-
ally by the dopamine receptor subtype they express (D1‐like, 
D2‐like or both), and/or their efferent target.

This cytoarchitectural landscape is highly contrasted be-
tween the ventral and dorsal territories of the striatum, which 
have different cortical and limbic inputs and functionally dis-
tinct roles (Voorn, Vanderschuren, Groenewegen, Robbins, & 
Pennartz, 2004).

The nucleus accumbens (Acb), the most ventral territory of 
the striatum and long considered a “limbic‐motor interface” 
(Mogenson, Jones, & Yim, 1980), is part of the mesolimbic 
pathway, also known as the “reward pathway.” The mesolim-
bic pathway consists of midbrain dopaminergic neurons in the 
ventral tegmental area (VTA) that project to the shell (AcbS) 
and core (AcbC) sub‐territories of the nucleus accumbens, as 
well as the amygdala and the hippocampus (Ikemoto, 2010).

Dopaminergic neurons within the mesolimbic pathway 
are phasically activated in response to rewarding outcomes. 
Importantly, if the reward is preceded by a conditioned stimulus 
(CS) that reliably predicts the outcome, the firing of these neu-
rons shifts to the CS. Consequently, the activation of mesolim-
bic dopamine neurons has been suggested to convey a prediction 
error signal about the value of future outcomes (Schultz, 2010). 

Within the accumbens, the AcbS has been shown to contribute 
to the reinforcing properties of addictive drugs while the AcbC 
is involved, through its inputs from the orbitofrontal cortex and 
the amygdala, in bridging pavlovian influences over instrumen-
tal responding (Everitt & Robbins, 2005; Schultz, 1998, 2000; 
Wise, 2004). Consequently, the Acb has been suggested as an 
integrative region, encoding the incentive motivational proper-
ties of stimuli (Cardinal, Pennicott, Sugathapala, Robbins, & 
Everitt, 2001; Flagel et al., 2011) and the valence of outcomes. 
These are integrated with bodily information concerning cur-
rent and past internal states, as well as instrumental responses 
mediated by the medial or lateral dorsal territories of the stria-
tum on which action‐outcome or stimulus response associations 
depend or stimulus response associations respectively (Shiflett, 
Brown, & Balleine, 2010; Thorn, Atallah, Howe, & Graybiel, 
2010), to orchestrate adaptive motivated behaviours.

These complementary roles of the striatum have been for-
malised into a putative model, wherein the Acb is consid-
ered the “Critic,” whereas the dorsal striatum is considered 
the “Actor,” mapping relationships between states and action 
propensities (Le Masurier, Zetterstrom, Cowen, & Sharp, 
2013; Suri, Bargas, & Arbib, 2001). In this context, the dorsal 
striatum is considered to implement responses triggered by 
specific states or goals under the control of the critic. Chronic 
exposure to addictive drugs has been proposed to ‘hijack’ 
the functional orchestration of this relationship (Takahashi, 
Schoenbaum, & Niv, 2008), resulting in the development 
of maladaptive drug‐seeking habits (Belin, Belin‐Rauscent, 
Murray, & Everitt, 2013; Everitt & Robbins, 2005).

Acute, experimenter‐delivered exposure to, or short‐term 
history of self‐administration of addictive drugs results in 
increased dopamine concentration, primarily in the Acb (Di 
Chiara & Imperato, 1988). This increase in dopamine has 
been suggested to be the neurochemical basis of the rein-
forcing and motivational properties of drugs (Wise, 2008). 
The increase in Acb dopamine concentration following drug 
delivery has been suggested to contribute to the aberrant 
engagement of incentive learning mechanisms that ascribe 
excessive incentive value to drug‐paired cues, so‐called in-
centive sensitisation (Robinson & Berridge, 1993).

Critically, chronic exposure to cocaine, heroin or alco-
hol triggers within‐ and between‐systems adaptations that 
encompass the amygdalo‐striatal networks and result in the 

transmission in the striatum, we present an innovative model of a quadripartite synaptic 
microenvironment within which astrocytes channel functional interactions between the 
dopaminergic and glutamatergic systems that may represent the primary striatal func-
tional unit that undergoes drug‐induced adaptations eventually leading to addiction.
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progressive functional recruitment of dorsolateral striatum 
(DLS) dopamine‐dependent control over behaviour (Belin 
& Everitt, 2008; Belin, Jonkman, Dickinson, Robbins, & 
Everitt, 2009; Everitt & Robbins, 2005; Volkow et al., 2006) 
(Figure 1). Thus, exposure to drugs, such as cocaine, shifts 
the balance of associative encoding from the ventral to the 
DLS (Takahashi et  al., 2008). Similarly, in humans, non‐
human primates and rats, drug‐seeking behaviour is initially 
dependent on, and associated with, alterations of dopaminer-
gic mechanisms in the ventral striatum but progressively be-
comes dependent on dopaminergic mechanisms in the DLS 
(Corbit, Nie, & Janak, 2012; Cox et al., 2009; Letchworth, 
Nader, Smith, Friedman, & Porrino, 2001; Porrino, 2004; 
Volkow et al., 2006; Vollstadt‐Klein et al., 2010; Zilverstand, 
Huang, Alia‐Klein, & Goldstein, 2018).

The progressive transition from ventral to dorsolateral 
striatal dopamine‐dependent control over behaviour has been 
shown to be a gateway for the development of compulsive 
drug seeking (Giuliano, Belin, & Everitt, 2019) and, at the 

neural systems level, to be reliant on dopamine‐dependent 
functional connectivity between the AcbC and the DLS 
(Belin & Everitt, 2008).

This shift is dependent on the basolateral amygdala which 
indirectly influences the anterior DLS (aDLS) via antecedent 
glutamatergic mechanisms in the AcbC (Murray et al., 2015). 
The involvement of such glutamatergic mechanisms suggests 
that corticostriatal synapses may, alongside dopaminergic 
mechanisms, play a key role in these intrastriatal functional 
transitions (Figure 1).

At the level of the corticostriatal synapse, repeated expo-
sure to various drugs of abuse has been shown to disrupt glu-
tamate homeostasis, initially in the AcbC and subsequently in 
the aDLS (Ducret et al., 2015). Alterations in glutamate ho-
meostasis have also been repeatedly shown at the prelimbic 
(PL) cortex → AcbC synapses (Kalivas, 2009), which func-
tion has been suggested to support behavioural adaptations to 
changes in the environment and associated learning processes 
(Barnes, Kubota, Hu, Jin, & Graybiel, 2005; Kelley, 2004). 
Alterations at these synapses have been suggested to contrib-
ute to the aberrant synaptic plasticity observed in animals 
displaying addiction‐like behaviour for cocaine (Kasanetz 
et al., 2010).

Importantly, astrocytes, which chemogenetic activation in 
the AcbC reduces the motivation of rats to self‐administer 
alcohol after abstinence (Bull et  al., 2014), thereby reveal-
ing their role on motivational processes hitherto ascribed to 
dopamine‐dependent mechanisms in AcbC postsynaptic neu-
rons, play a key role in maintaining the physiology of these 
corticostriatal synapses.

Astrocytes are a subpopulation of glial cells whose function 
has long been considered to be limited to a “basic” support-
ive role towards central nervous system (CNS) homeostasis 
(Kimelberg & Nedergaard, 2010). Indeed, astrocytes contrib-
ute to the control of cerebral blood flow (Zonta et al., 2003), 
extracellular pH (Kimelberg, Biddlecome, & Bourke, 1979), 
potassium buffering (Dietzel, Heinemann, Hofmeier, & Lux, 
1980; Lothman & Somjen, 1975) and the exchange of gases 
through facilitation of water transport (Nielsen et al., 1997). 
Astrocytes have received particular attention for their pivotal 
role as a metabolic bridge between neurons and vascular glu-
cose, whereby they provide neurons with the energy “fuel” 
they need to sustain their energy‐demanding activity (Allaman, 
Belanger, & Magistretti, 2011; Magistretti & Allaman, 2015).

However, over the last decade, a wealth of evidence has 
challenged this restrictive view of the function of astrocytes 
and supports a much broader and complex role for these cells 
in the CNS. Thus, astrocytes are increasingly considered key 
players in the regulation of synaptic activity and plasticity 
(Chung, Allen, & Eroglu, 2015; Haydon & Nedergaard, 2014; 
Singh & Abraham, 2017), and associated behavioural and 
psychological functions (Oliveira, Sardinha, Guerra‐Gomes, 
Araque, & Sousa, 2015). Consequently, astrocytes have been 

F I G U R E  1   Neural systems model of the intrastriatal transitions 
that support the development of maladaptive compulsive drug‐seeking 
habits. The acquisition of cue‐controlled drug seeking depends on 
the interaction between the BLA and the AcbC as well as dopamine‐
dependent mechanisms in the pDMS. However, when cue‐controlled 
drug seeking becomes habitual, its neural locus of control devolves 
to anterior DLS dopamine‐dependent mechanisms, the recruitment of 
which depends on the AcbC and the striato‐nigro‐striatal (dopamine‐
dependent) ascending spiralling circuitry (involving the SNc). This 
functional recruitment of aDLS dopamine‐dependent control over 
behaviour is triggered by the BLA, but is eventually maintained 
by the CeN. We hypothesise that astrocytes (depicted in dark blue) 
may facilitate the drug‐induced intrastriatal functional transitions by 
bridging converging dopamine‐ and glutamate‐dependent mechanisms 
across several domains of the striatum. AcbC, core of the nucleus 
accumbens; BLA, basolateral amygdala; CeN, central nucleus of 
amygdala; VTA, ventral tegmental area; SNc, substantia nigra pars 
compacta; DLS, dorsolateral striatum; DMS, dorsomedial striatum. 
[Colour figure can be viewed at wileyonlinelibrary.com]
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associated with the pathophysiology of several neuropsy-
chiatric conditions including bipolar depression (Bowley, 
Drevets, Ongur, & Price, 2002; Cotter, Mackay, Landau, 
Kerwin, & Everall, 2001; Ongur, Drevets, & Price, 1998; 
Quesseveur et al., 2013; Sun, Liu, Yuan, Li, & Chen, 2012), 
schizophrenia (Feresten, Barakauskas, Ypsilanti, Barr, & 
Beasley, 2013; Toro, Hallak, Dunham, & Deakin, 2006) and 
drug addiction (Adermark & Bowers, 2016; Bull et al., 2014; 
Miguel‐Hidalgo, 2009; Scofield & Kalivas, 2014; Scofield 
et  al., 2015, 2016). The supply of lactate provided to neu-
rons by neighbouring astrocytes, long considered as merely a 
basic energetic supply, has recently been shown to modulate 
synaptic activity and to directly contribute to cocaine‐asso-
ciated appetitive Pavlovian mechanisms (Boury‐Jamot et al., 
2016a; Boury‐Jamot, Halfon, Magistretti, & Boutrel, 2016b).

Thus, astrocytes contribute to the influence of the incen-
tive motivational properties of drugs on behaviour mediated 
by the ventral striatum (Bull et al., 2014; Scofield & Kalivas, 
2014) and the aberrant learning dependent on corticostriatal 
circuits that contribute to the maintenance of drug addiction 
(Belin et al., 2009, 2013; Everitt & Robbins, 2005).

As further described below, several reviews have covered 
the crucial importance of astrocytic mechanisms in the ven-
tral striatum in the context of drug self‐administration (rein-
forcement) and reinstatement (Kalivas, 2009; Linker, Cross, 
& Leslie, 2018; Scofield, 2018; Scofield & Kalivas, 2014) 
which have been elucidated primarily at the PL → AcbC syn-
apse. The hypothesis developed subsequently in this review 
builds on these mechanisms identified at the level of the cor-
ticostriatal synapse to suggest that astrocytes may contribute 
to the intrastriatal functional shifts that underline the devel-
opment of addiction.

Thus, at the level of the synapse, upon an action poten-
tial reaching the presynaptic terminal, a sudden increase in 
calcium concentration triggers the release of glutamate into 
the synaptic cleft wherein glutamate binds to its postsynaptic 
ionotropic or metabotropic (mGluR1/5/6) receptors, thereby 
triggering depolarisation of the postsynaptic neuron and reg-
ulation of the function of that glutamatergic synapse respec-
tively (Niswender & Conn, 2010; Traynelis et al., 2010).

Extrasynaptic glutamate can also bind to presynaptic au-
toreceptors (mGluR2/3/4/7/8), the activation of which sup-
presses glutamate release by presynaptic terminals, thereby 
contributing to downregulate glutamatergic transmission 
(Niciu, Kelmendi, & Sanacora, 2012). Due to the highly exci-
totoxic nature of glutamate, its extracellular levels are tightly 
controlled and its clearance from the synaptic cleft is regu-
lated via astrocytic transporters, namely GLT‐1 (Glutamate 
Transporter) and GLAST (Glutamate Aspartate Transporter) 
(Perego et  al., 2000). In the intracellular compartment of 
astrocytes, the enzyme glutamine synthetase converts glu-
tamate into glutamine which is subsequently released in 
the extracellular space, making it available to neurons as a 

precursor for the synthesis of glutamate within presynaptic 
terminals (Rose, Verkhratsky, & Parpura, 2013).

In addition to terminating glutamatergic transmission, 
astrocytes also control basal levels of the neurotransmitter, 
which, under physiological conditions, are predominantly 
governed by release of glutamate by the astrocytic cystine‐
glutamate exchanger (xCT) (Baker, Xi, Shen, Swanson, & 
Kalivas, 2002). xCT couples the uptake of one molecule of 
cystine with the release of one molecule of glutamate at the 
membrane of astrocytes (Madayag et al., 2007).

Repeated exposure to various drugs of abuse, such as co-
caine and nicotine has been shown to trigger a disruption of 
xCT function (Baker et al., 2003). As a consequence, basal 
extracellular glutamate levels are decreased, resulting in a 
decreased glutamatergic tone on presynaptic mGluR2/3 and 
ultimately disinhibition of glutamate release by presynap-
tic terminals. Thus, disruption of the astrocytic xCT activ-
ity results in both a decrease in basal glutamate levels and 
a facilitated glutamatergic release by presynaptic terminals, 
thereby altering the physiology of the corticostriatal gluta-
matergic synapse (Moran, McFarland, Melendez, Kalivas, & 
Seamans, 2005). This alteration is exacerbated by a decrease 
in astrocytic buffering of extrasynaptic glutamate via drug‐in-
duced downregulation of GLT‐1 protein levels (Knackstedt, 
Melendez, & Kalivas, 2010; Knackstedt et al., 2009).

The functional significance of these physiological alter-
ations at the PL → AcbC synapse has been elucidated with 
behavioural procedures  in rodents, namely extinction/rein-
statement, aiming to operationalise relapse, one behavioural 
hallmark of drug addiction (O'Brien, 1997). Thus, the pro-
pensity of those suffering from an addiction to relapse, even 
after prolonged periods of abstinence, has been suggested to 
be operationalised by the reinstatement of an extinguished 
instrumental response for the drug, a procedure initially de-
veloped by De Wit and colleagues (De Wit & Stewart, 1981, 
1983).

In these procedures, rats are initially trained to self‐ad-
minister a drug for a short period of time (generally 12 days) 
under continuous reinforcement and are subsequently sub-
jected to several consecutive daily instrumental extinction 
sessions (often 12  days). Instrumental responding is then 
reinstated either by an injection of the drug (drug‐induced 
reinstatement) (Mahler et al., 2014; Shen, Gipson, Huits, & 
Kalivas, 2014), a conditioned stimulus (CS, e.g. a stimulus 
previously presented contingently with the delivery of the 
drug) (cue‐induced reinstatement) (Cannella et  al., 2013; 
LaLumiere, Smith, & Kalivas, 2012), stress (stress‐induced 
reinstatement) (Shalev, Erb, & Shaham, 2010) or by the con-
text in which drug self‐administration occurred (context‐in-
duced reinstatement) (Bossert, Marchant, Calu, & Shaham, 
2013). The neural basis of reinstatement of instrumental 
responding for cocaine and heroin involves the mesolimbic 
dopaminergic system as well as a broad neural network that 
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includes the basolateral amygdala (BLA), AcbC, prefrontal 
cortex (PFC) and particularly the PL  →  AcbC glutamater-
gic projections (Kalivas, 2009; Kalivas & McFarland, 2003; 
Knackstedt & Kalivas, 2009; LaLumiere & Kalivas, 2008; 
Shalev, Grimm, & Shaham, 2002). Thus, the propensity to 
reinstate instrumental responding for cocaine or heroin fol-
lowing extinction is associated with downregulation of xCT 
and GLT‐1 at the PL → AcbC synapse and the associated dis-
ruption of presynaptic mGluR2/3 and postsynaptic mGluR5 
receptor function (Knackstedt & Kalivas, 2009; Knackstedt 
et al., 2009; Moran et al., 2005; Moussawi et al., 2009).

Given the putative importance of these perturbations, ap-
proaches aiming to restore astrocytic control of glutamatergic 
homeostasis at the PL → AcbC synapse have been investi-
gated as potential strategies to prevent relapse.

2  |   TARGETING ASTROCYTES 
TO RESTORE GLUTAMATE 
HOMEOSTASIS: A VALID RELAPSE 
PREVENTION STRATEGY?

Many drugs targeting the mechanisms of astrocyte‐mediated 
glutamate homeostasis, such as the cephalosporin antibiotic 
ceftriaxone (Knackstedt et  al., 2010; Trantham‐Davidson, 
LaLumiere, Reissner, Kalivas, & Knackstedt, 2012) or N‐
acetylcysteine (NAC), have been shown to decrease instru-
mental responding in PL  →  AcbC‐dependent extinction/
reinstatement procedures, as previously reviewed (Kalivas, 
2009).

NAC, a cysteine prodrug which acts as a substrate for 
astrocytic xCT, restores basal glutamate levels in the AcbC 
and has shown some promise as potential treatment for 
addictive disorders. NAC administration has been shown 
to prevent drug‐ and cue‐induced reinstatement and to de-
crease levels of responding during extinction in rodents 
with a history of cocaine or heroin self‐administration 
(Kalivas, 2009).

The effects of NAC have been suggested to be depen-
dent on the restoration of presynaptic mGluR2/3 func-
tion. Indeed, administration of a mGluR2/3 agonist alone 
diminishes reinstatement of instrumental responding for 
both heroin and cocaine (Bossert, Gray, Lu, & Shaham, 
2006; Peters & Kalivas, 2006). Furthermore, the admin-
istration of a mGluR2/3 antagonist prevents the ability of 
NAC to inhibit cocaine‐induced reinstatement (Moussawi 
et al., 2009, 2011). NAC not only triggers an elevation of 
the basal glutamate levels within the synaptic cleft but it 
also restores the downregulated levels of GLT‐1. It is the 
restoration of the levels of GLT‐1 that contributes to the re-
mediation of presynaptic mGluR2/3 tone brought about by 
NAC (Knackstedt et al., 2010). NAC also contributes to the 
remediation of postsynaptic mGluR5 function (Moussawi 

et al., 2009), thereby influencing both pre‐ and postsynap-
tic metabotropic glutamate receptors.

Importantly, treatment with NAC does not influence basal 
glutamate levels in drug naïve animals, suggesting that NAC 
specifically targets synapses wherein astrocyte‐dependent 
glutamatergic homeostasis has been altered by exposure to 
addictive drugs.

NAC, used for the treatment of paracetamol overdose 
(Green, Heard, Reynolds, & Albert, 2013) and as a mu-
colytic therapy for respiratory conditions (Sadowska, 
2012), is safe and well tolerated in humans, and is there-
fore an excellent candidate for repurposing. Significantly, 
the preclinical studies discussed herein indicate NAC may 
be an efficacious therapeutic strategy for addictive disor-
ders. Interestingly, a single dose of NAC has been shown 
to yield similar effects on glutamate homeostasis in hu-
mans as those identified in preclinical studies: cocaine‐
induced disrupted glutamate levels were normalised by 
NAC (Schmaal, Veltman, Nederveen, van den Brink, & 
Goudriaan, 2012), although basal glutamate levels in this 
study were measured in the dorsal anterior cingulate cortex 
rather than in the striatum, which has been the focus of 
preclinical research. Importantly, treatment with NAC did 
not alter basal glutamate levels in healthy subjects, in line 
with the rodent literature.

From a therapeutic standpoint, initial clinical studies re-
ported promising outcomes, suggesting that NAC decreased 
self‐reported craving and relapse following abstinence in 
humans who suffered from an addiction (for review see 
Deepmala et al., 2015). However, the subsequent and better 
controlled clinical trials, e.g. double blind versus placebo, 
have yielded outcomes that mitigated the initial enthusiasm.

For instance, when the clinical outcome is self‐reported 
craving and promotion of abstinence (or decreased vulnera-
bility to relapse), NAC was shown to be mostly ineffective, 
except in a subset of individuals who had volitionally initi-
ated abstinence at the onset of the trial (LaRowe et al., 2013). 
This important observation highlights the relevance of a dis-
sociation to be made between the permeation by treatment of 
the psychological and associated neural mechanisms underly-
ing forced‐ versus self‐imposed abstinence. NAC may indeed 
promote abstinence, but seemingly only in individuals who 
have deliberately decided to abstain, not in ongoing users.

This hypothesis is of paramount importance with regard 
to the phenomenology of human addiction and the relatively 
poor heuristic value of extinction‐reinstatement procedures 
on which preclinical studies have, until recently, been based 
(Belin‐Rauscent, Fouyssac, Bonci, & Belin, 2015).

Indeed, preclinical studies that offered evidence for the 
therapeutic benefits of NAC treatment tended to instantiate 
forced‐abstinence through instrumental extinction training. 
This method arguably does not capture the self‐initiated na-
ture of abstinence in addicted individuals who stop taking 
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drugs in response to mounting negative consequences (Peck 
& Ranaldi, 2014).

Back translating these observations from bedside to 
bench, Ducret et  al. (2015) tested the hypothesis that in 
rats with a history of escalated cocaine self‐administration, 
NAC may facilitate self‐initiated abstinence in the face of 
negative consequences and help restore control over drug 
intake (Ducret et al., 2015). In that study, rats were trained 
to self‐administer cocaine under extended (6‐hr) (LgA) 
or short (1‐hr) (ShA) access. Extended access to cocaine 
has been shown to trigger a rapid increase in drug intake, 
also known as escalation (Ahmed & Koob, 1999, 2005). 

Rats were subsequently exposed to punishment of the in-
strumental response by contingent presentations of electric 
foot shocks. Chronic NAC treatment promoted self‐absti-
nence in the face of negative consequences in LgA rats as 
measured by a facilitated decrease in instrumental respond-
ing in the presence of punishment, as compared to vehi-
cle‐treated rats. The effect of NAC persisted when negative 
consequences were no longer present, thereby revealing the 
ability of NAC to restore control over drug intake at relapse 
in LgA rats (Figure 2a).

These data provide causal evidence that NAC promotes 
abstinence and restores control over intake in individuals who 
volitionally self‐abstain because of negative consequences. 
At the neural systems level, NAC rescued the cocaine‐in-
duced downregulation of the astrocytic GLT‐1 protein levels 
observed in LgA rats, not only in the AcbC, as had been pre-
viously described, but also in the aDLS, in which the drug‐
induced downregulation of GLT‐1 had not yet been described 
(Figure 2b).

This observation is consistent with the wealth of evidence 
for a progressive devolvement of control over behaviour to 
aDLS dopamine‐dependent mechanism over the course of 
drug exposure in humans, non‐human primates and rodents 
(Belin & Everitt, 2008; Ersche et al., 2012a, 2012b; Jonkman, 
Pelloux, & Everitt, 2012).

Considering the role of the aDLS in mediating drug‐seek-
ing habits (Belin‐Rauscent, Everitt, & Belin, 2012; Corbit 
et  al., 2012) and compulsive drug seeking (Giuliano et  al., 
2019; Jonkman et  al., 2012), these data suggest that astro-
cyte‐dependent alterations in the homeostasis of corticostri-
atal glutamatergic synapses span the different corticostriatal 
functional loops (Haber, 2016), far beyond the PL → AcbC 
synapse. Indeed, the PL also projects to the posterior dorsome-
dial striatum (pDMS) (Vertes, 2004), which is involved in me-
diating instrumental responses underlined by action‐outcome 
(A‐O) associations and early established cue‐controlled co-
caine seeking behaviour (Murray, Belin, & Everitt, 2012a). In 
contrast, aDLS‐dependent habits are controlled by another ter-
ritory of the mPFC, namely the infralimbic cortex (IL), which 
projects to the AcbS and the central amygdala (CeN) (Vertes, 
2004), another key component of the habit system (Belin et al., 
2013; Lingawi & Balleine, 2012; Murray et al., 2015).

Recent evidence showed that NAC markedly decreases 
cue‐controlled cocaine and heroin seeking behaviour in rats 
trained under a second order schedule of reinforcement. These 
effects were observed both at early and late stages of training, 
when the behaviour is controlled by aDLS‐independent and 
aDLS‐dependent mechanisms respectively (Hodebourg et al., 
2018; Murray, Everitt, & Belin, 2012b) (Figure 3).

Thus, in rats trained to seek cocaine or heroin for 
protracted periods of time under the control of contin-
gent presentations of drug‐paired CSs, acting as condi-
tioned reinforcers, drug seeking is initially impervious to 

F I G U R E  2   NAC promotes self‐maintained abstinence in the 
face of adverse consequences and rescues cocaine‐induced decreases in 
GLT‐1 levels in the ventral and dorsolateral striatum. (a) Punishment 
of cocaine self‐administration triggers a drop in responding both in 
rats with an history of short‐ or extended access to the drug (ShA 
and LgA respectively). Upon cessation of punishment, NAC‐treated 
LgA rats did not fully resume their pre‐punishment level of cocaine 
self‐administration and no longer displayed escalation, in contrast 
with vehicle‐treated LgA rats. (b) NAC rescued cocaine‐ and access‐
dependent decreases in GLT‐1 protein levels both in the AcbC and 
DLS (adapted from Ducret et al., 2015, originally published under a 
Creative Commons Attribution License (CC BY)). Cyclo, cyclophilin; 
AcbC, core of the nucleus accumbens; DLS, dorsolateral striatum; 
NAC, N‐acetylcysteine; ShA, short access; LgA, long access; Veh, 
vehicle; SA, self‐administration. [Colour figure can be viewed at 
wileyonlinelibrary.com]
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manipulations of glutamate or dopamine receptors in the 
aDLS, and is instead decreased by lesions, inhibition of, 
or dopamine receptor blockade in, the network involving 
the BLA, AcbC, posterior DMS (pDMS) and orbitofrontal 
cortex (Belin & Everitt, 2008; Hutcheson & Everitt, 2003; 
Murray et  al., 2012a, 2015; Vanderschuren, Di Ciano, & 
Everitt, 2005). In marked contrast, when cue‐controlled 
drug‐seeking behaviour is well established, it becomes re-
liant on aDLS dopamine‐dependent mechanisms and their 
control by the CeN as they are dramatically decreased by 
aDLS dopamine receptor blockade, inactivation of the CeN 
or functional disconnection between the two (Murray et al., 
2015) (Figure 1).

The effect of NAC on DLS‐dependent drug‐seeking be-
haviour is in agreement with the observation by Corbit and 
colleagues that NAC restores A‐O control over behaviour in 
rats whose instrumental response was habitual and dependent 
on the aDLS (Corbit, Chieng, & Balleine, 2014).

Together with the evidence that cocaine seeking habits 
are also mediated by glutamatergic mechanisms in the aDLS 
(Vanderschuren et al., 2005), these observations suggest that 
astrocyte‐dependent glutamatergic mechanisms interact with 
dopaminergic mechanisms in different loops of the corti-
costriatal circuitry to regulate the balance between goal‐di-
rected and habitual control over behaviour.

This is far reaching, considering the large anatomical 
and functional territories one astrocyte is able to regulate: a 
single astrocyte can contact up to 140,000 synapses in a rat 
brain (Bushong, Martone, Jones, & Ellisman, 2002) and up to 
2 million synapses in the human brain (Bushong et al., 2002; 
Oberheim et al., 2009). Within the cytoarchitectonic context 
of the striatum discussed before, this would suggest that a 
single astrocyte can define a functional unit and facilitate in-
tegration of synaptic mechanisms across several functional 
territories of the striatum. The unique structural and func-
tional properties of astrocytes within the striatum place these 
cells in an excellent position to contribute to the intrastriatal 
functional coupling between, and shifts in the locus of con-
trol from ventral to dorsal territories (Belin & Everitt, 2008) 
that support the development of drug addiction.

3  |   ASTROCYTES, THE 
GREAT ORCHESTRATORS OF 
DRUG‐ASSOCIATED STRIATAL 
ALTERATIONS

Astrocytes are not only involved in maintaining glutamate 
homeostasis and regulating glutamatergic transmission, but 
they also express a broad range of neurotransmitter receptors 

F I G U R E  3   NAC reduces aDLS dopamine‐dependent drug‐seeking habits. (a) Overtraining under a second order schedule of reinforcement 
for cocaine or heroin promotes the devolvement of control over behaviour to aDLS dopamine‐dependent mechanisms in that only late, and not 
early, stage drug‐seeking behaviour is dose‐dependently decreased by bilateral intra‐aDLS infusions of the dopamine receptor antagonist α‐
flupenthixol. (b) N‐acetylcysteine is equally effective at reducing cocaine and heroin seeking behaviour at early, aDLS‐independent, and late, aDLS 
dopamine‐dependent, performance stage (Hodebourg et al., 2018, originally published under a Creative Commons Attribution License (CC BY)). 
AL, active lever; Veh, vehicle; aDLS, anterior dorsolateral striatum. [Colour figure can be viewed at wileyonlinelibrary.com]
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at their membrane depending on their cellular (neuronal) en-
vironment, including dopamine (Khan, Koulen, Rubinstein, 
Grandy, & Goldman‐Rakic, 2001), endocannabinoids 
(Navarrete & Araque, 2010), GABA (Lee, McGeer, & 
McGeer, 2011) and noradrenaline (Ding et al., 2013; Lerea & 
McCarthy, 1989) receptors. The activation of these receptors 
triggers direct modulation of intracellular calcium levels (for 
a detailed review see Moraga‐Amaro, Jerez‐Baraona, Simon, 
& Stehberg, 2014) either restricted locally or, if large enough, 
affecting more distant astrocytes through calcium waves 
(Charles, Merrill, Dirksen, & Sanderson, 1991; Cornell‐Bell, 
Finkbeiner, Cooper, & Smith, 1990). Indeed, calcium waves 
can spread from one astrocyte to another throughout the syn-
cytium that relies on gap junctions (Nagy & Rash, 2000).

Modulation of intracellular calcium levels in astrocytes 
can eventually trigger the release of neurotrophic factors, 
known as gliotransmitters, such as ATP, D‐serine, TNF‐alpha 
or, as previously discussed, glutamate, all of which play an 
important role in the regulation of synaptic activity (Beattie 
et al., 2002; Cotrina, Lin, & Nedergaard, 1998; Henneberger, 
Papouin, Oliet, & Rusakov, 2010). Thus, the release of glu-
tamate by astrocytes is far from restricted to the aforemen-
tioned homeostatic mechanism brought about by xCT. The 
ability of astrocytes to release glutamate within the synaptic 
cleft is highly dynamic and involves various pathways in-
cluding calcium‐dependent exocytosis, reverse operation of 
glutamate transporters or release through purinergic anion 
channels, volume‐regulated anion channels and even connex-
ons (for review see Malarkey & Parpura, 2008).

Even though the mechanisms of glutamate release by as-
trocytes have been identified, the conditions under which as-
trocytes employ one pathway rather than another remains to 
be elucidated. Further research is warranted to better under-
stand whether these mechanisms operate concurrently or in-
dependently, and if the same pathways are recruited under 
physiological and pathological conditions such as drug ad-
diction. Nevertheless, it is important to highlight that direct 
communication between neurons and astrocytes also control 
extracellular levels of glutamate. Stimulation of adenosine 
receptors (A2A Rcs) expressed on astrocytes by adenosine 
released by neurons triggers astrocytic glutamate release (Li, 
Nomura, Aihara, & Nishizaki, 2001; Nishizaki et  al., 2002; 
for a detailed review see Boison, Chen, & Fredholm, 2010). 
Astrocytes also influence glutamate homeostasis via delta 
opioid receptors. The activation of these G‐coupled protein 
receptors result in the upregulation of excitatory amino acid 
transporter protein levels in astrocytes (Liang et  al., 2014), 
thereby representing a potential converging mechanism be-
tween endogenous opiates and astrocyte‐mediated regulation 
of synaptic plasticity within the striatum. Finally, cannabi-
noid‐1 receptors, which are densely expressed in the striatum 
following a medial‐dorsal gradient (Martín et  al., 2008), are 
also present at the membrane of astrocytes. Activation of these 

receptors via neuronal endocannabinoids generates astrocytic 
glutamate release, which has recently been shown to play a role 
in the homotypic potentiation of medium spiny neurons in the 
striatum (Martin, Bajo‐Graneras, Moratalla, Perea, & Araque, 
2015), a mechanism that is potentially involved in the func-
tional synchronisation of adjacent striatal territories (Figure 4).

The pivotal role of astrocytes in glutamate homeostasis has 
been relatively well described. However, the contribution of 
these cells to dopamine homeostasis and its impact on gluta-
matergic transmission remains poorly understood, despite in-
creasing evidence from both in vitro and in vivo studies that 
astrocytes contribute to the function of dopaminergic synapses 
(Jennings & Rusakov, 2016). Thus, under physiological condi-
tions, following release into the synaptic cleft by the presyn-
aptic neuron, dopamine binds to D1‐ or D2‐like postsynaptic 
receptors, or to its D2‐like presynaptic receptors. The termina-
tion of dopamine transmission is governed by two mechanisms: 
a specific reuptake of dopamine via the dopamine transporter 
(DAT) and enzymatic catabolism of dopamine by the mono-
amine oxydases (MAO) and the cathecol‐o‐methyltransferase 
(COMT). Importantly, the DAT is not only expressed on the 
membrane of presynaptic terminals of dopamine neurons, it 
is also expressed on astrocytes (Inazu et al., 1999; Karakaya, 
Kipp, & Beyer, 2007), which, alongside the former, also ex-
press the MAO and COMT (Hitri, Hurd, Wyatt, & Deutsch, 
1994) (Hansson & Sellstrom, 1983; Huang, Dragan, Freeman, 
& Wilson, 2005) (Figure 4).

Apart from their role in dopamine clearance, cultured 
astrocytes have been shown to respond to dopamine, in that 
direct application of dopamine modulates cytosolic calcium 
signalling in astrocytes. These effects occur both in a receptor 
dependent manner, through D1/D2 receptors (Jennings et al., 
2017) and in a receptor‐independent manner, whereby the 
reactive oxygen species generated by the cytosolic degrada-
tion of dopamine by MAO directly control calcium signalling 
(Vaarmann, Gandhi, & Abramov, 2010).

Collectively, these data suggest an important role of the 
DAT, the gateway for dopamine into astrocytes, in the cou-
pling between dopaminergic synaptic activity and calcium 
signalling.

Thus, investigation of the role of astrocytes in the regula-
tion of striatal synaptic physiology should go beyond the pro-
totypic tripartite glutamatergic synapse and should consider 
the striatal dopaminergic synapse in a quadripartite synaptic 
environment. A more complete understanding of this quad-
ripartite system is paramount for our understanding of drug 
addiction. The contribution of dopamine signalling to the ho-
meostasis and function of the striatal quadripartite synaptic 
microenvironment remains to be elucidated but could repre-
sent the cellular mechanism by which drugs of abuse, which 
aberrantly increase dopamine levels in the striatum, trigger 
long‐lasting alterations of glutamate homeostasis that span 
the entire striatum.
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Furthermore, endogenous systems, namely endocanna-
binoids, endogenous opiates and the adenosinergic system, 
have been shown to influence glutamatergic and dopaminer-
gic homeostasis as well as the dynamic function of astrocytes 
in the striatum (for review see Fouyssac, Everitt, & Belin, 
2017) (Figure 4). The cross‐talk between these systems and 

astrocytes  is at the crossroads of drug reinforcement in the 
ventral striatum, regulation of the control over instrumental 
responding by A‐O and S‐R associations in the dorsal territo-
ries of the striatum, and ultimately striatal synaptic plasticity 
mechanisms which are hijacked by drugs of abuse. Indeed, 
repeated exposure to cocaine has been associated with a 

F I G U R E  4   Between systems‐mediated glutamate and dopamine signalling within the quadripartite synaptic microenvironment. Glutamate 
is released into the synaptic cleft where it is able to bind to its postsynaptic, presynaptic and astrocytic receptors. Glutamate reuptake is governed 
by astrocytic transporters (GLT‐1 and GLAST) and can be either enzymatically degraded into glutamine or released into the synaptic cleft by: 
exocytosis, the exchanger xCT, the connexons or reversal of the transporters. Dopamine (DA) is released by dopaminergic neurons and binds to D1‐ 
and D2‐like postsynaptic and astrocytic receptors (for the sake of clarity the two receptors are displayed here on the same MSN; however, such co‐
localisation is scarce in the striatum, observed only in up to 5% or 20% of the MSNs in the dorsal striatum and nucleus accumbens respectively). DA 
is quickly taken up back into the presynaptic terminal by the dopamine transporter (DAT). However, DAT is also expressed on striatal astrocytes 
in which DA can be degraded by enzymatic reactions leading to formation of reactive oxygen species able to influence intra‐astrocytic calcium 
levels. Adenosine is released by astrocytes or is transformed by extracellular enzymatic reactions from neuronal ATP. A1 receptors are expressed 
presynaptically both on the dopaminergic and glutamatergic terminals where their activation inhibits neurotransmitter release. A1 and A2A receptors 
are expressed postsynaptically and modulate the neuronal excitability of MSNs. Adenosinergic receptors also have the ability to form heterodimers: 
on glutamatergic projections, activation of the heterodimers A1/A2A and A2A/CB1 modulates glutamate release (depending on the extracellular 
level of adenosine) and dimerisation of postsynaptic A2A with D2, or A1 with D1, modulates negatively the affinity of dopaminergic receptors to 
dopamine. Activation of astrocytic A2A receptors enhances glutamate release from astrocytes, potentially by increasing calcium levels. Postsynaptic 
endocannabinoids bind to CB1 receptors expressed both on presynaptic glutamatergic projections where they inhibit neurotransmitter release and 
on astrocytes where they increase glutamate release. Dynorphin, released by postsynaptic neurons (and potentially by astrocytes), binds to κ‐opioid 
receptors expressed on dopaminergic terminals and their activation inhibits dopamine release. Postsynaptic Enkephalin binds to δ‐opioid receptors 
which activation in astrocytes has been shown to upregulate the expression of astrocytic glutamate transporters. β‐endorphin binds both pre‐ and 
postsynaptically on μ‐opioid receptors. Their activation on glutamatergic projections inhibits glutamate release while postsynaptically, it modulates 
negatively the neuronal excitability of MSNs. Astro, astrocyte; Glut, glutamate; DA, dopamine; ATP, adenosine triphosphate; Adeno, adenosine; 
eCBs, endocannabinoids; MSN, medium spiny neurons; DR, dopamine receptors; Dyn, dynorphin; D1, dopamine receptor D1; D2, dopamine 
receptor D2, Enk, enkephalin; B‐end, beta‐endorphin; A1, adenosine 1 receptor; A2A, adenosine 2a receptor; MOR, μ‐opioid receptor; KOR, κ‐
opioid receptor; DOR, δ‐opioid receptor; CB1, cannabinoid receptor 1; GLT‐1, glutamate transporter; GLAST, glutamate aspartate transporter; xCT, 
cystine‐glutamate exchanger; Ca2+, calcium. [Colour figure can be viewed at wileyonlinelibrary.com]
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metaplasticity phenomenon within the AcbC, i.e. a deficit in 
the ability to develop long‐term potentiation (LTP) or depres-
sion (LTD) (Moussawi et al., 2009), and with an anaplasticity 
phenomenon, i.e. a permanent impaired LTD (Kasanetz et al., 
2010), both mechanisms dependent on glutamate homeostasis.

4  |   CONCLUSION

The purpose of this review was to summarise experimental 
evidence in support of the involvement of astrocytes in the 
dysregulation of the glutamate homeostasis induced by ex-
posure to drugs of abuse across the functional domains of the 
striatum and offer a broader mechanistic view of the striatal 
quadripartite synaptic microenvironment. The disruption 
of the homeostasis and function of this striatal microenvi-
ronment may contribute to the emergence of maladaptive 
drug‐seeking habits and ultimately compulsive behaviour, 
the hallmark of addiction. A better understanding of the 
neural, behavioural and psychological consequences of the 
restoration of glutamate levels by NAC both in preclinical 
and clinical models has helped shed a new light on the cel-
lular mechanisms in the striatum that contribute to several 
facets of addiction. However, the drug‐induced alteration of 
glutamate homeostasis characterised by the downregulation 
of astrocytic xCT and GLT‐1 may only be the tip of the 
iceberg of the many adaptations these cells may undergo in 
response to drug exposure, including those associated with 
dopaminergic transmission. Further research is warranted 
better to understand the physiology of the quadripartite syn-
aptic microenvironment which, we hypothesise, represents 
the functional unit of the striatum, and the extent to which 
interactions between dopaminergic and glutamatergic sys-
tems are channelled by astrocytes. The molecular land-
scape of the quadripartite synaptic microenvironment and 
its associated physiology might differ between individuals 
and such difference may represent molecular and cellular 
vulnerability factors which could account for the inter‐in-
dividual propensity to develop maladaptive drug seeking 
habits and eventually drug addiction (Anthony, Warner, & 
Kessler, 1994).
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