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a b s t r a c t 

The evolutionary dynamics of cancer, characterized by its profound heterogeneity, demand sophisticated tools 
for a holistic understanding. This review delves into tumor phylogenetics, an essential approach bridging evolu- 
tionary biology with oncology, offering unparalleled insights into cancer’s evolutionary trajectory. We provide 
an overview of the workflow, encompassing study design, data acquisition, and phylogeny reconstruction. No- 
tably, the integration of diverse data sets emerges as a transformative step, enhancing the depth and breadth 
of evolutionary insights. With this integrated perspective, tumor phylogenetics stands poised to redefine our 
understanding of cancer evolution and influence therapeutic strategies. 
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. Introduction 

Cancer continues to be a pressing global health crisis, causing mil-
ions of deaths annually. 1 According to the International Agency for Re-
earch on Cancer, it was reported that there were 19.3 million new can-
er cases and 10.04 million cancer-related deaths in 2020. The projec-
ion for 2040 estimates a 47% increase in global cancer cases, bringing
he total to 28.4 million. 2 This high incidence, coupled with the ab-
ence of universally effective treatments, emphasizes the urgent need
or a deeper understanding of the underlying mechanisms of cancer. 

As researchers strive to discover more effective therapeutic strate-
ies, several challenges consistently surface, including metastasis, drug
esistance, and relapse. Metastasis is the spread of cancer cells from
heir primary site to distant body parts. 3 Drug resistance, especially
econdary resistance, arises when cancer cells adapt to neutralize anti-
ancer drugs. 4 , 5 Relapse, the post-treatment resurgence of cancer, often
xacerbates therapeutic challenges. 6 These phenomena are formidable
bstacles to successful cancer treatment. 7-9 Crucially, all can be traced
ack to one common root – the evolutionary nature of cancer. 10-14 Un-
erstanding the dynamics of tumor evolution is fundamental to address-
ng metastasis, drug resistance, and relapse, highlighting the critical
eed to comprehend cancer evolution. 

To gain a better understanding of the complex nature of cancer evo-
ution, researchers have been employing a variety of analytical tools and
ethodologies. One method that has proven particularly useful is phy-
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ogenetics, originally developed to study the evolutionary relationships
etween species. 15 It facilitates the reconstruction of tumor evolution-
ry trajectories, thereby equipping researchers with actionable insights
hat could pave the way for tailored. Since its inception, the field of
herapeutic interventions has rapidly advanced and gained significant
opularity, becoming a crucial branch of oncology studies. 16 , 17 

This review aims to provide a comprehensive introduction to the
orkflow in tumor phylogenetics, covering aspects from study design
nd data collection to the methods used for reconstructing phylogenetic
rees and their various applications. Finally, this review will highlight
he significance of integrating external data to enhance the interpretabil-
ty and applicability of phylogenetic analyses in cancer research. 

. Tumor phylogenetics: an overview 

The field of tumor phylogenetics has evolved considerably since Pe-
er Nowell first introduced the Clonal Evolution Model in 1976. 18 This
odel suggests that tumors originate from a single abnormal cell. Sub-

equent theories and models, including branching and linear evolution,
eutral and adaptive evolutionary models, and the concept of punctu-
ted evolution, have added depth to our understanding of intratumoral
eterogeneity and evolutionary dynamics. 19 , 20 

In general, tumor evolution is a process driven by the acquisition of
enetic and epigenetic mutations, resulting in a complex and continually
volving mosaic of cell populations within each tumor —known as sub-
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lones. Each subclone, with its unique genetic and phenotypic profile,
ontributes to the tumor’s overall heterogeneity. This heterogeneity is
riven by the increasing instability of the cancer genome, which leads to
he continuous generation of genetic diversity. 18 , 21-26 This form of het-
rogeneity is an universal feature present across all cancer types, 19 , 27 , 28 

eading to the emergence of drug-resistant subclones or induced metas-
asis, complicating the task of effective therapy. 29 , 30 

Although this diversity of tumor cells presents formidable challenges
n cancer treatment, it also provides a unique opportunity. The diverse
enetic profile of subclones, resulting from mutation accumulation dur-
ng tumor evolution, can serve as a historical record of the tumor’s evo-
utionary journey, essentially acting as a ’tumor history recorder’. Study-
ng these genetic variations enables us to backtrack the course of tumor
volution. 28 Specifically, mutations common to all cancer cells in a tu-
or can be used to delineate the ‘trunk’ of the tumor’s evolutionary tree,
hile mutations unique to specific subclones represent the ‘branches’,

hereby providing a comprehensive picture of the tumor’s evolutionary
andscape and diversity. 

In this context, tools originally designed for evolutionary biology
rove to be suitable for reconstructing these evolutionary trees from
he heterogeneous cancer genetic data. Notably, phylogenetics stands
ut as a highly developed and successful evolutionary approach, 15 of-
ering a profound perspective on the intricate dynamics of tumor evolu-
ion. Within this framework, tumor phylogenetics, or phylooncology,
merged, providing an innovative approach to understanding tumor
rogression. 

Essentially, both tumor phylogenetics and species phylogenetics
hare the same goal of utilizing genetic variation to construct phylo-
enetic trees that reveal evolutionary history. However, there are still
ome significant differences between these two fields that we need to
e aware of. Unlike species evolution, in which chromosome structures
nd numbers evolve over millions of years, chromosomes change in can-
er evolution can occur within hours due to chromosomal instability
CIN). 31 This, combined with the extremely large populations of tumor
ells, may lead to the emergence of grossly altered clones that could
ossess adaptive advantages, a phenomenon rarely seen in species evo-
ution. 19 Moreover, the dynamic change of the microenvironment pro-
ides a catalyst for tumors to generate heterogeneity and adapt to exter-
al pressures. Importantly, in tumor evolution, tumor epigenetic plas-
icity can cause phenotypic changes without genetic alterations, serving
s a fundamental force guiding tumor adaptation. On the other hand,
pecies phylogenetics seeks to uncover the evolutionary relationships
nd common ancestries among different species and to understand the
istory of speciation. Tumor phylogenetics focuses on understanding the
ynamics of cancer evolution and tracking down tumor clonal evolution
istory to identify key genetic events to improve clinical outcomes, in-
luding the formulation of accurate prognoses and personalized treat-
ent strategies. Despite these differences, the conceptual framework of

pecies phylogenetics still provides valuable insights into tumor phy-
ogenetics. For instance, methods derived from phylogeography can be
dapted to analyze tumor metastasis by tracing the geographical spread
f tumor cells within the body. 32-36 

Since its inception, the field of tumor phylogenetics has garnered
ncreasing attention and has rapidly developed. Today, tumor phyloge-
etics has evolved into a highly diversified field. This diversity manifests
tself in every facet of the workflow —from the initial study design to the
ypes of data collected, to the methods and tools used for reconstruct-
ng phylogenies, as well as the applications of tumor phylogenetics in
he real world. In the following sections, we will offer an overview that
ncapsulates this multifaceted nature, guided by the commonly used
orkflow in the field ( Fig. 1 ). 

. Study designs and data in tumor phylogenetics 

The workflow for reconstructing a phylogenetic tree begins with two
ritical steps: selecting an appropriate study design and acquiring the
98
equisite data. In the field of tumor phylogenetics, researchers com-
only utilize one of four study designs: cross-sectional studies, regional

ulk sequencing, single-cell sequencing, and lineage tracing. Each de-
ign comes with its own set of advantages and limitations. The chosen
tudy design then determines the types of data used for reconstructing
he phylogeny, which can vary from genomic data like single nucleotide
ariants (SNVs) and copy number variants (CNVs) to transcriptomic and
pigenomic data. These different types of data have been proved use-
ul in phylogenetic and tumor analysis. 16 , 37-41 For example, it has been
hown that epigenetic passenger variations are effective in reconstruct-
ng the unperturbed biology of human cancer. 40 Therefore, each data
ype is able to provide unique insights, making the resulting phyloge-
ies trees more robust and informative. 

.1. Cross-sectional tumor phylogenetics 

As the field of tumor phylogenetics began to take shape, researchers
nitially reconstructed evolutionary trees based on tumor data from dif-
erent patients. The central idea behind this approach was rooted in the
erspectives of Fearon and Vogelstein, two prominent researchers in the
eld. They proposed that by sampling and analyzing tumor specimens

rom multiple patients in bulk, researchers could infer certain charac-
eristic mutation sequences or tumor evolutionary paths. 42 These path-
ays could be considered evolutionary trajectories that most tumors

ommonly follow during their development. 
Building upon this concept, researchers started to develop what is

nown as the "oncogenetic tree". 43 By sampling different patients and
reating their tumor samples as distinct "species," these trees were cre-
ted. Within such phylogenies, tips represent tumor samples gathered
rom various patients, and they are categorized into different subtypes
ased on the clades they belong to, indicating their shared mutation pat-
erns. The edges signify genetic divergence between different tumors.
his oncogenetic tree reveals the evolutionary relationships between
ifferent tumor samples and helps identify standard tumor evolution
rajectories. 

In order to glean evolutionary evidence accumulated during tu-
or development from these samples, a variety of sequencing meth-

ds have been employed in cross-sectional tumor phylogeny. Before the
idespread adoption of next-generation sequencing (NGS), researchers

nitially relied on comparative genomic hybridization (CGH) 44 to iden-
ify CNVs by comparing fluorescence intensity between tumor and nor-
al DNA samples on a DNA array. 43 Thereafter, some researchers began

o incorporate both expression data, acquired through cDNA microar-
ays, 45 and methylation data 46 , 47 into their efforts to reconstruct tumor
hylogenies. With the advent of NGS, whole exome sequencing (WES)
nd whole genome sequencing (WGS) have become the techniques of
hoice. 48-51 These methods either sequence the entire set of protein-
oding genes (exome) or the full genome in individual tumor samples
rom different patients. Specialized bioinformatics tools like GATK, 52 

arScan, 53 and CNVnator 54 are used to identify SNVs and CNVs in the
equence data. This information is then utilized as the foundation for
ubsequent tumor phylogenetic reconstruction. A minority of studies
lso use RNAseq to analyze different tumor subtypes, generating gene
xpression data for subsequent phylogenetic analyses. 55 

However, the cross-sectional method has its drawbacks. Since it pri-
arily relies on tumor samples from different patients, the inherent

umor heterogeneity among patients can considerably impact the re-
ults. It might fail to capture the subtle variations within a single pa-
ient’s tumor, leading to inaccuracies in the reconstructed tree. More-
ver, while this approach may reveal general evolutionary paths in tu-
ors, the specific evolutionary trajectory of a tumor in an individual
atient could differ due to intertumoral heterogeneity. Nonetheless, the
ross-sectional research method has laid a solid foundation for the de-
elopment of tumor phylogenetics and has provided significant insights
nd directions for subsequent studies. 
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Fig. 1. Workflow for tumor phylogenetics. Step 1 involves selecting an appropriate study design, such as cross-sectional, regional bulk sequencing, single-cell 
sequencing, or lineage tracing. Step 2 focuses on collecting and preprocessing the data. Step 3 utilizes the preprocessed data to choose an appropriate method for 
reconstructing the tumor phylogeny. An optional fourth step integrates the phylogeny with external data to uncover specific patterns, such as subclone-specific 
mutations. 
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.2. Regional bulk tumor phylogenetics 

As the understanding of intratumoral genetic heterogeneity grows,
esearchers have turned to a multi-sampling strategy for individual tu-
ors. This led to the emergence of regional bulk sequencing methods.

n this approach, multiple regions within the same tumor, or various
umor sites from a single patient, are sampled and analyzed separately.
he technique affords a comprehensive view of the tumor landscape, en-
bling the reconstruction of phylogenetic trees that elucidate relation-
hips among the sampled regions. Due to the nature of bulk sequencing,
ata is gathered from the heterogeneous population of cancer cells in
ach tumor sample and sequenced collectively. The result is a compos-
te profile that captures the averaged characteristics of the cancer cell
opulation within the sampled tumor site. 

Nonetheless, this generalized view can cause some problems in iden-
ifying different subclones within the tumor. To address this issue, an
mportant process of deconvolution to parse the complex data obtained
rom bulk sequencing is required. This computational technique eluci-
ates the tumor’s subclonal architecture through identifying SNVs, in-
els, and CNAs to assess tumor heterogeneity. This process calculates
he variant allele frequency (VAF) to infer the cellular prevalence (CP)
nd cancer cell fraction (CCF) of mutations, distinguishing clonal mu-
ations from subclonal ones. Copy number states are then reconstructed
y analyzing local read depth and B-allele frequency (BAF), categoriz-
ng CNAs as either clonal or subclonal. Finally, SNVs are clustered into
istinct clones based on CP and CCF. Utilizing the resulting detailed
ubclonal architecture, researchers can then infer the lineage relation-
hips among subclones through integrating the genetic profiles of sub-
lones with phylogenetic models. 56 And this deconvolution can provide
s with some critical insights. For instance, the analysis of the subclone
omposition of biopsies before and after aromatase inhibitor treatment
99
n breast cancer reveals subclonal dynamics, indicating varied responses
o treatment and highlighting the subclone possibly responsible for ther-
py resistance. 57 

Several tools have been specifically developed for deconvolution.
lomial leverages a binomial mixture model on VAF data to dissect
ixed populations into distinguishable subclonal elements, Applies phy-

ogenetic principles to chart subclonal diversification through recon-
tructing mutation lineage trees. Unmixing utilizes statistical strategies
o unravel mixed genomic signals, highlighting distinct subclonal en-
ities. PyClone adopts Bayesian clustering to navigate through exten-
ive copy-number variations, identifying subclones with precision. 58 

ciClone, optimized for copy-number neutral scenarios, combines VAF
nd copy-number data to accurately trace clonal evolution across sam-
les. 57 Additionally, some tools even integrate deconvolution with phy-
ogenetic tree reconstruction. Further discussion on this aspect will be
rovided in the upcoming phylogeny reconstruction session. 

In regional bulk tumor phylogenetics, the data collection strategy
enerally aligns with the methodologies used in cross-sectional tumor
hylogenetics. Initially, microsatellite markers 59 and aCGH 

60 were em-
loyed for capturing CNVs, and then transitioned to utilizing WES and
GS-derived SNVs and CNVs for a more comprehensive and accurate

nalysis of tumor genetics. 
Yet, the bulk sequencing-based approach is not without limitations.

t fails to capture the full extent of intratumor heterogeneity due to
he averaging effect of bulk sequencing. Additionally, some key mu-
ations with low frequency may be overlooked. Moreover, the number
f sequenced tumor regions significantly impacts the ability to distin-
uish genuine clonal mutations. 61 , 62 Despite these challenges, the bulk
equencing-based approach laid a solid foundation for the development
f more refined techniques in tumor phylogenetics. With its affordabil-
ty and comprehensive view of tumors derived from multi-region sam-
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ling, bulk sequencing continues to be a widely used method in the field
f cancer research. 

.3. Single-cell tumor phylogenetics 

The advent of single-cell sequencing technologies has revolutionized
umor phylogenetics by providing researchers with significantly higher
esolution for analyzing tumor evolution. 63 , 64 This technology enables
he dissection of tumors at the cellular level by individually sequencing
ach cell’s genome, thereby offering a detailed view of the tumor’s ge-
etic diversity. By comparing mutation profiles across many individual
ells, a phylogenetic tree can be reconstructed with different tumor cells
s tip nodes and distinct clades representing subclones. This allows for
 clear visualization of the clonal evolution of cancer cells within the
umor. 

Before the emergence of single-cell sequencing technologies, re-
earchers utilized various methods to dissect tumor evolution at the
ellular level. For instance, fluorescence in situ hybridization (FISH) 65 

as employed to acquire CNVs for specific genes at the single-cell level.
ethods like single-cell qPCR were utilized to obtain single-cell-level

enetic markers, including SNVs, CNVs, and microsatellites. 66 , 67 While
hese methods contributed valuable insights, they had limitations in
erms of throughput, accuracy, and the range of detectable genomic fea-
ures. The advent of single-cell sequencing has substantially mitigated
hese challenges, heralding a new era in tumor phylogenetics. One of the
ost common techniques is single-cell DNA sequencing, which allows

or high-throughput and high-resolution genomic analyses, identifying
NVs and CNVs at single-cell levels. 68 , 69 Single-cell RNA sequencing is
sed to collect expression matrices and to estimate copy number vari-
tions, 70 , 71 both of which can be utilized in subsequent phylogenetic
econstructions. 

Despite its tremendous potential, single-cell sequencing-based tu-
or phylogenetics faces several challenges. Technical issues like allelic
ropout and amplification noise are difficult to eliminate, even with
pecialized correction tools, thereby obscuring the tumor’s true genetic
andscape. 72-74 Additionally, the current high cost and labor-intensive
ature of single-cell sequencing techniques limit the number of cells that
an be feasibly analyzed in a single experiment. 72 , 74 This may lead to an
nderrepresentation of the tumor’s genetic diversity, potentially missing
are but clinically significant subclones. 

.4. Lineage tracing tumor phylogenetics 

Lineage tracing, a technique widely used in biological studies, pro-
ides insight into cell origin, differentiation, and movement within an
rganism. By mapping the ancestral lineage of cells, it provides a lens to
isualize developmental processes and has been instrumental in fields
anging from developmental biology and neuroscience to regenerative
edicine and oncology. In cancer research, lineage tracing offers an in-

aluable tool for understanding tumor development, growth, and evo-
ution. 66 , 75 

Traditional lineage tracing techniques rely on marking specific cells
ith dyes or fluorescent proteins, radioactive labels, or genetic markers

uch as microsatellites. With these markers, the behavior and destiny of
he cells and their progeny can be observed. Traditional lineage tracing
ethods provide us with some significant insights into tumor phylo-

enetics. 66 , 75-78 However, these traditional methods falter in tracking
arge cell populations over time and struggle with the heterogeneity of-
en found in tumors. 79 , 80 

Single cell dynamic lineage tracing, a newer advancement in the
eld, employs cutting-edge technologies such as the CRISPR-Cas9 sys-
em 

81-83 and recombinase systems 84 , 85 to create exogenous barcodes.
pecifically, the CRISPR-Cas9 method leverages the gene-editing capa-
ility of the system to create unique, inheritable marks in the genomic
NA of individual cells, while recombinase systems, like the Polylox
100
ystem, use site-specific DNA recombination events to generate perma-
ent and unique genetic marks (reviewed in 79 , 80 ). Using the single-cell
equencing technique, we can identify unique genetic marks for high-
esolution lineage tracking, enabling the study of numerous cells over
xtended periods within their genomic context. Its robust performance
n interpreting zebrafish lineage trees 82 , 86 , 87 has led to its application
n tumor phylogenetics, providing a more detailed and comprehensive
nderstanding of tumor heterogeneity and the dynamics of tumor evo-
ution. 75 , 88-91 

CRISPR-Cas9-based dynamic lineage tracing methods employ short-
ead sequencing and enable simultaneous capture of transcriptomes and
ineage recordings via single-cell RNA sequencing. 88 , 91 In contrast, re-
ombinase approaches necessitate long-read sequencing technologies,
uch as PacBio SMRT sequencing, to obtain barcode DNA sequences,
hereby limiting their compatibility with single-cell methods. 

Dynamic lineage tracing faces considerable challenges, including
echnical limitations like incomplete barcode capture, potentially affect-
ng the accuracy of downstream analysis. 80 The computational burden
f interpreting barcode data to reconstruct phylogenetic trees and sig-
ificant costs hinder its widespread adoption. 79 , 80 Despite these draw-
acks, its unique ability to track cells at single-cell resolution and in
eal-time offers unparalleled insights into tumor heterogeneity and evo-
ution. 

. Phylogeny reconstruction 

In the previous session, we delved into various study designs perti-
ent to tumor phylogenetics and elucidated the types of sequencing data
ssociated with each strategy. After acquiring and processing this data,
he next challenge is utilizing it effectively to reconstruct phylogenetic
rees. 

Phylogeny reconstruction methods mainly fall into two categories:
istance-based and character-based. Distance-based methods, such as
PGMA, 92 neighbor-joining (NJ), 93 and minimum evolution, 94 primar-

ly operate by estimating morphological or genetic distances between
pecies or sequences, based on observed differences or similarities.
pecifically, UPGMA and NJ cluster species hierarchically and minimum
volution aims for a tree that minimizes the sum of branch lengths. Al-
hough they may be less accurate than character-based methods due to
he potential information loss during the creation of the distance ma-
rix, their computational efficiency and straightforwardness make them
aluable for handling large datasets. Generally, when applying distance-
ased methods to reconstruct a tumor phylogeny, the calculation of a
istance matrix demonstrating the pairwise evolutionary distance be-
ween samples is required. Data obtained from previous steps are often
inarized or categorized, such as gene expression being classified into
pregulated, downregulated, or normal states, and CNVs being denoted
s gain, loss, or neutral states. Techniques like Euclidean distance are
hen employed to generate this matrix. The generated distance matrix
ffectively quantifies the genetic dissimilarity between individual sam-
les, serving as the foundational substrate upon which the aforemen-
ioned distance-based algorithms act to reconstruct the phylogenetic
ree. 

Conversely, character-based methods are a more sophisticated ap-
roach in phylogenetics that considers unique attributes or character-
stics of organisms to elucidate their evolutionary relationships. These
ethods include Maximum Parsimony (MP), 95 which aims to identify

he tree that requires the least number of evolutionary changes. Maxi-
um Likelihood (ML), 96 on the other hand, seeks to find the tree that
aximizes the probability of observing the given data under specific

volutionary models. Another important character-based method is the
ayesian Markov Chain Monte Carlo (BMCMC). 97 It differs from Maxi-
um Likelihood as it considers the model’s parameters as random vari-

bles, merging prior knowledge with observed data. This allows for di-
ect and clearer interpretations of the probabilities for different phy-
ogenetic trees. Character-based methods utilize the sequencing data
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Fig. 2. Insights from tumor phylogeny. Utilizing tumor phylogenetics enables 
the extraction of critical insights in areas including, but not limited to, the fol- 
lowing: subclonal architecture, key milestones in tumor evolution, subclone- 
specific mutations, tumor evolutionary dynamics, subclone features, and tumor 
classification. 
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s unique attributes for each sample. Unlike distance-based methods,
hich require a pre-calculated distance matrix, these attributes are cat-
gorized and then used directly in the algorithms we mentioned above
o reconstruct phylogenetic trees. 

Many studies in tumor phylogenetics continue to leverage traditional
volutionary biology tools like PHYLIP, 98,99 Beast, 100,101 and phang-
rn 102–104 for tree reconstruction. In cross-sectional tumor phylogenet-
cs, traditional phylogenetics methods have played a significant role,
argely because this study design itself is among the earlier avenues of
xploration within tumor phylogenetics. Initially, tools like oncotrees
ere employed, which primarily used aCGH-derived large-scale CNVs
nd relied on MP-based tree reconstruction. 43 However, due to the lim-
tations of MP’s assumptions in capturing the intricacies of tumor evo-
ution, more recent approaches have pivoted toward optimization tech-
iques based on ML and BMCMC algorithms, 105 such as Mtreemix 106 

nd Rtreemix. 107 In order to handle large datasets, distance-based meth-
ds are also gaining traction. 108 The range of data types applied has
xpanded as well, encompassing DNAseq-derived CNVs, 48 SNVs, 49 and
xpression data. 45 

Regarding regional bulk tumor phylogenetics, the trajectory of al-
orithmic and data type developments is somewhat parallel to that of
ross-sectional studies. Yet, because bulk sequencing has its limitations
n pinpointing subclones accurately, the focus of many software solu-
ions has shifted toward integrating deconvolution techniques with phy-
ogenetic frameworks, such as TCS, 109 TrAp, 110 TITAN, 111 Subclone-
eeker 112 and CITUP. 113 The goal is to accurately infer the subclonal
requency of tumors and use this refined framework for subsequent
hylogenetic tree reconstruction. For example, TrAp was used to iden-
ify specific mutation co-localizations and temporal orders in melanoma
etastases through the reconstruction of subclone architecture and lin-

age relationship, offering critical insights into the mechanisms of tu-
or progression and chemoresistance. 110 Some specialized tools like
hyloWGS 114 and Canopy 115 are even exploiting the differing rates and
echanisms of SNVs and CNVs, synthesizing them into a unified analy-

is based on BMCMC methods. 
For single-cell phylogenetics, traditional methods falter due to is-

ues like technical artifacts, false positives, and false negatives inher-
nt to scRNAseq data. Newly developed methods like OncoNEM 

116 and
CITE 117 tackle this by incorporating these uncertainties directly into
heir likelihood calculations with SNV data. However, they still make
he infinite-sites assumption (ISA), which is often violated in tumor evo-
ution. To address this, newer models like SiFit 118 and SphyR 

119 have
merged, adopting finite-site evolution models that better fit the nu-
nces of cancer data. 

In lineage-tracing studies, the unique challenges posed by barcode
ite data are not well-handled by traditional algorithms. Unlike typical
hylogenetic studies that deal with a wide and short matrix of nucleotide
hanges across a limited number of species, lineage-tracing barcodes
roduce a tall and narrow matrix, capturing thousands of cells with lim-
ted mutable sites. This dramatic increase in computational complexity
as led to the development of specialized methods. The Cassiopeia suite
ffers three different algorithms tailored for varying dataset sizes and
onsistently outperforms traditional methods, proving the need for cus-
omized approaches in lineage tracing data. 120 

In addition to the tools discussed earlier, there are various other
ethods specifically designed for reconstructing tumor phylogenies. For

eaders’ convenience, we have compiled a brief summary of key tools
n Supplementary Table 1. Additionally, several articles also offer more
omprehensive reviews of these tools. 16 , 17 , 121 

. Insights obtained from tumor phylogenetics 

After examining the methods for reconstructing tumor phylogenetic
rees, this section pivots to the critical insights these trees offer into
umor evolution, heterogeneity, and classification ( Fig. 2 ). 
101
.1. Tracing tumor evolutionary history 

Originally conceptualized to articulate the evolutionary history of
iological species, tumor phylogenetics naturally excels in tracing the
volutionary paths of cancers. In the context of oncology, reconstructing
he evolutionary history of a tumor can yield invaluable insights. Early
esearch in this arena primarily focused on identifying distinct modes
f tumor evolution 68 , 122 , 123 and determining the timing of key evolu-
ionary milestones. 124-126 For example, a study that employed whole-
xome sequencing and various phylogenetic methods on 40 matched
amples —normal, primary, and metastatic —discovered that the genetic
ivergence of metastatic lineages often predated the initial diagnosis. 127 

ecent advances in research have allowed for more comprehensive
xplorations of tumor evolutionary dynamics combining multi-omics
ata. 88 For instance, one study using a CRISPR-Cas9-based KP-tracer
ouse model with the Cassiopeia-Hybrid algorithm found that specific

are subclones with unique transcriptional programs drive tumor evolu-
ion and metastasis following a period of increased cellular plasticity. 91 

nother study delved into the genomic and immune landscapes of multi-
egional metastases in 10 therapy-resistant breast cancer autopsies, re-
ealing intricate evolutionary dynamics within metastatic genomes. 128 

hese retrospective analyses furnish critical insights into the tumor’s
rigins, progression patterns, and potential future behaviors, thereby in-
orming treatment strategies and potentially unveiling new therapeutic
argets. 

A key application of tracing tumor evolutionary history is that it can
elp researchers resolve the formation of therapy resistance. It often
rises from genetic mutations and cellular adaptations that enable can-
er cells to evade the effects of therapeutic agents. 4 , 5 Particularly under
he pressure of anti-tumor therapy, tumor cells may be selected for sub-
lones with high metastatic potential. This metastasis can be monoclonal
r polyclonal, indicating the presence of potentially diverse selection
atterns. Cells from metastatic tumors may recirculate and seed new
etastatic lesions, which, under the pressure of treatment, can develop

arying degrees of drug resistance. 129-131 Diverging from the traditional
on-phylogenetic bioinformatics that offers a static analysis of drug tar-
et mutation sequences, 132 tumor phylogenetics provides us with a dy-
amic view of tumor evolution. It enables an in-depth analysis of the
umor’s internal clonal diversity and evolutionary history, enabling re-
earchers to pinpoint the timing and causes of the emergence of therapy
esistance. This can identify the origins of different treatment-resistant
ells, guide clinical decisions, and determine the choice of treatment and
heir order. For example, phylogenetic analysis of lung adenocarcinoma
eveals that cisplatin therapy induced a localized surge of mutations,
eading to the evolution of EGFR T790M resistance to erlotinib. 133 
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.2. Resolving tumor heterogeneity 

Tumor phylogenetics stands as a robust tool for unraveling intratu-
oral heterogeneity. By doing so, it illuminates the relationships be-

ween distinct subclones, reconstructing a more complete picture of the
umor’s internal landscape. Utilizing tumor phylogenetics, researchers
an investigate the structure of subclones within a tumor, 134-137 and
tudy their changes in frequency during tumor evolution. 138 Further-
ore, the mutation profiles of individual subclones can be integrated

o showcase subclone-specific mutations. 139 Lastly, features of these
ubclones can be highlighted to expose phenotypic differences among
hem. 48 , 91 The knowledge gained from resolving intratumoral hetero-
eneity holds the potential for the improvement of patient prognosis
nd the development of more effective therapies. 

.3. Tumor classification 

Beyond its applications in studying tumor evolutionary history, tu-
or phylogenetics also functions as a clustering tool. It offers another

venue for predicting and classifying tumor types. It can be employed to
roup tumors based on their mutation or expression profiles, effectively
egmenting them into distinct subtypes. Compared to traditional clus-
ering, phylogenetic classification trees provide a more precise analysis
y avoiding geometric assumptions and the arbitrary selection of clus-
er numbers, as well as capturing information on the degree of separa-
ion between various clusters that hierarchical clustering lacks. 45 , 55 , 126 

 study utilizes phylogenetic methods to classify tumors based on gene
xpression levels, demonstrating success in separating small round blue-
ell tumors into four major groups and distinguishing breast tumors with
RCA1 and BRCA2 mutations in two specific datasets. 45 A precise classi-
cation of tumor types can offer valuable insights for targeted therapies
nd prognostic evaluations, as each subtype may respond differently to
arious treatments. 

In summary, tumor phylogenetics has deeply influenced oncology,
ffering crucial insights into tumor classification, intratumoral hetero-
eneity, and evolutionary pathways. These findings pave the way for
ore personalized and effective treatments. As the field matures, we

an expect tumor phylogenetics to increasingly inform both cancer re-
earch and clinical practice. 

. The power of data integration in tumor phylogenetics 

From the application examples mentioned in the previous chapters,
t’s evident that as tumor phylogenetics has evolved, newer studies
arely rely solely on tumor phylogenetic trees for basic evolutionary
nalysis. Reconstructing the tumor phylogeny is a key step, but it’s not
he endpoint. An extra step of integrating external data into the tumor
hylogeny is often required to elucidate complex biological phenom-
na. For tumor phylogeny, this integration enriches tree interpretation,
evealing deeper insights into tumor evolution. For the external data,
his integration enriches the analysis by adding an evolutionary context,
hereby providing a new dimension for interpreting the data within an
volutionary framework. 

However, the current practice of integrating external data with phy-
ogenetic trees remains rudimentary and infrequent. While some stud-
es attempt to unify different types of data with phylogenetic analy-
is, these initial steps are typically simplistic and lack depth, often lim-
ted to straightforward combination methods, like using symbolic points
nd text on trees to indicate cancer clone and mutation profiles respec-
ively, 137 or simply display them in different figures. 126 These prelim-
nary combinations, although a step in the right direction, yield only
 marginal increase in interpretative value and leave much room for
mprovement. 

The simplicity of current methods for integrating external data with
hylogenetic trees is largely due to the substantial challenges present in
he endeavor. Firstly, there’s a wide variety of formats for phylogenetic
102
rees, making the task of reading these pre-reconstructed tumor evolu-
ion tree files far from straightforward. Additionally, the heterogene-
ty of external data introduces significant obstacles during the integra-
ion process, with variability spanning from genomic to transcriptomic
cales, diverse data structures like continuous or categorical forms, and
ifferent sources such as clinical records or molecular assays. Lastly, vi-
ualizing the integrated data brings its own set of challenges. While pre-
enting and annotating tumor phylogeny is already demanding, adding
ultidimensional external data only heightens the complexity. 

Looking ahead, the maturation of tumor phylogenetics anticipates
 new era where the integration of multi-omics data unveils the intri-
ate genetic, epigenetic, and transcriptomic interplays that propel can-
er evolution. Paving the way for these advances, pioneering studies
re setting the stage for comprehensive analysis. Some studies have al-
eady begun to delve into deeper layers of data integration, harnessing
 broader array of datasets for a multidimensional display and analysis
hat enriches the understanding of tumor phylogeny, seeking to uncover
he full spectrum of evolutionary forces at work within tumors. For in-
tance, in the examples mentioned in our previous session, subclonal
utations were identified by integrating mutation profiles, 139 and tu-
or evolutionary dynamics were investigated through the integration

f multi-omics data. 91 Based on these examples, it becomes evident that
ncorporating multidimensional data into tumor phylogenetic trees is a
owerful means that leads to new discoveries. Compared to a basic com-
ination of data, such integration provides a multi-faceted perspective
o phylogenetic constructs, proving that synergistic data convergence
as a promising potential for revealing the underlying mechanisms of
umor genesis and progression. 

To better elucidate the complex interplay between genetic alter-
tions and tumor evolution, two general approaches have been high-
ighted for the integration of external data with phylogenetic trees
 Fig. 3 ). 140 These methods were brought up with the emergence of the
gtree package in order to provide a versatile way of combining exter-
al data with phylogenetic trees. The first method maps external data di-
ectly onto the tree structure, annotating the tree with visual characteris-
ics like symbolic points or labels. In the context of tumor phylogenetics,
his can be invaluable in emphasizing specific evolutionary events 141 or
ighlighting important subclones. 142 Secondly, we can generate side-
y-side visual comparisons by aligning graphs, like mutation profiles or
ubclone features, with the structure of the phylogenetic tree. In tumor
volution research, it can potentially spotlight concurrent events or pat-
erns, like mutations shared by specific subclones 139 , 143 or the consis-
ency of genetic variations. 70 This approach excels at displaying multidi-
ensional data alongside the tree. It’s also useful to combine both meth-

ds, enhancing the richness and depth of analytical insight. In a study on
uman triple-negative breast cancer (TNBC), an analysis combining the
nnotated tree and copy number profiles revealed a complex hierarchy
f many subclones and fewer superclones, all from a common evolution-
ry root. Key early events include TP53 mutations and genome doubling
hat occurred before a common ancestor, followed by a burst of sub-
lonal diversification that stabilized during tumor growth. 125 Through
hese examples, it’s clear that these two methods are universally appli-
able and effective in representing complex data layers. Utilizing such
ethods enhances our ability to display a comprehensive view of the

umor’s evolutionary trajectory, paving the way for richer insights and
otential therapeutic interventions. 

An expanding range of tools and methodologies sharing this concept
re being developed to assist researchers in elucidating the complex in-
erplay between genetic alterations and tumor evolution. For instance,
he ggtree packages suite that we mentioned above stands out by bring-
ng integration of phylogeny data into R, offering a set of data impor-
ation and manipulation functions via treeio and tidytree, and enhanc-
ng annotated phylogenies with multi-dimensional data through ggtree
nd ggtreeExtra, which support the flexible combination of both visu-
lization methods. 144-146 Besides ggtree, phytools is an R package well-
nown for its comprehensive range of phylogenetic analysis functions,
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Fig. 3. Methods of plotting tree with data. 
Method 1 involves directly mapping data onto 
the tree structure by adding visual annotations 
such as symbolic points or labels. Method 2 
consists of plotting the data adjacent to the tree 
after proper alignment. 
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lso offering advanced tree visualization functions. 147 , 148 EvolView
resents an interactive, user-friendly interface for annotating and cus-
omizing phylogenetic trees, making it accessible for users with limited
oding experience. 149 On the other hand, iTOL stands out for its robust
nline platform for visualizing, editing, and sharing detailed phyloge-
etic trees. 150 Additionally, E-scape offers an interactive browser-based
isualization suite specifically designed to present tumor phylogeny. 151 

tilizing these tools enhances our capacity to display a comprehensive
iew of the tumor’s evolutionary narrative, paving the way for richer
nsights and potential therapeutic interventions. 

In conclusion, the essence of fully understanding tumor evolution
ies not just in the tree itself but in its intricate interplay with external
ata. By integrating this data, researchers are empowered with a more
olistic view, allowing them to uncover hidden evolutionary patterns
hat might otherwise remain obscured. 

. Discussion and conclusions 

Throughout this review, we have undertaken an extensive explo-
ation of the various study designs employed in tumor phylogenetics.
he utilization of cross-sectional tumor phylogenetics (TP) has dimin-

shed in recent research, largely due to the widespread adoption of NGS.
ven when comparing tumors from different patients, bulk sequencing
P and single-cell TP are more commonly used to reconstruct individual
hylogenies that can later be compared. 91 , 139 , 152 Both bulk sequencing
P and single-cell TP come with their respective drawbacks —lower res-
lution for the former and computational complexity for the latter. The
erging of these two approaches has been proposed as a complementary

trategy. 153 Lineage tracing TP offers granular details of tumor evolu-
ionary dynamics, but its high cost and computational intensity often
iscourage widespread use. 

We have also discussed various data types used for reconstructing
umor phylogenies. While genomic-derived SNVs and CNVs have long
een the mainstays, the development, and incorporation of other ’omics’
ata, such as transcriptomics and epigenomics, are equally essential,
roviding another aspect to inspect tumor evolution. 45-47 , 71 The attempt
o combine these diverse data types could also enrich the quality and
epth of the resulting phylogenies. 115 , 134 

Tumor phylogenetics has grown substantially over the past several
ecades. Its advantage in capturing the evolutionary history and com-
lex structure of tumor heterogeneity has brought our understanding
f tumor evolution to another level. In current tumor phylogenetics, an
ncreasing number of researchers are now leveraging the multi-omics
haracteristics of tumor heterogeneity by integrating data across ge-
omic, transcriptomic, and epigenetic for comprehensive phylogenetic
nalysis, including methods for deconvolution and tumor phylogenetic
econstruction that synergize multi-omic data. 91 , 154-158 As technology
103
dvances, cutting-edge techniques like spatial transcriptomics are also
eing used to explore the spatial dimensions of tumor evolution, mark-
ng a significant step forward in the field. 143 , 159 , 160 Meanwhile, the
tilization of machine learning methods for tumor phylogeny topology
nference has provided new angles for tumor phylogenetic reconstruc-
ion. 161-164 The advancement of tumor phylogenetics promises access
o increasingly multidimensional and multimodal data, enhancing our
nderstanding of tumors. By integrating these complex data sets with
umor phylogenetics using tools such as the ggtree package suite, we
re able to analyze tumor evolution from a more comprehensive per-
pective, as discussed earlier. Therefore, it’s compelling to say that the
uture potential of this field may well lie in the integration of tumor
hylogenetics with external data. 

In conclusion, tumor phylogenetics serves as a critical lens through
hich we can unravel the complexities of cancer evolution and hetero-
eneity. This multidisciplinary field holds the potential not only to elu-
idate fundamental mechanisms of tumor growth and spread but also to
nform patient-specific treatment strategies. By providing insights into
he origins, progression, and diverse evolutionary paths of tumors, phy-
ogenetics is poised to make a transformative impact on cancer research
nd patient prognosis. 
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