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Reciprocity of thermal diffusion in time-modulated
systems
Jiaxin Li1,2,10, Ying Li 1,3,4,10✉, Pei-Chao Cao5,10, Minghong Qi3,4,10, Xu Zheng 6, Yu-Gui Peng 7,

Baowen Li 6,8, Xue-Feng Zhu 5✉, Andrea Alù 7,9✉, Hongsheng Chen 3,4 & Cheng-Wei Qiu 1✉

The reciprocity principle governs the symmetry in transmission of electromagnetic and

acoustic waves, as well as the diffusion of heat between two points in space, with important

consequences for thermal management and energy harvesting. There has been significant

recent interest in materials with time-modulated properties, which have been shown to

efficiently break reciprocity for light, sound, and even charge diffusion. However, time

modulation may not be a plausible approach to break thermal reciprocity, in contrast to the

usual perception. We establish a theoretical framework to accurately describe the behavior of

diffusive processes under time modulation, and prove that thermal reciprocity in dynamic

materials is generally preserved by the continuity equation, unless some external bias or

special material is considered. We then experimentally demonstrate reciprocal heat transfer

in a time-modulated device. Our findings correct previous misconceptions regarding reci-

procity breaking for thermal diffusion, revealing the generality of symmetry constraints in

heat transfer, and clarifying its differences from other transport processes in what concerns

the principles of reciprocity and microscopic reversibility.
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Reciprocity is a fundamental property of wave propagation1,2

and diffusion3, implying symmetric field transport in
opposite directions. Breaking reciprocity in energy and

information transport4 is essential in components such as diodes,
isolators5–8, rotators9, rectifiers10,11, and circulators12–14, span-
ning electromagnetics, photonics, and acoustic domains. Besides
the effects of reciprocal heat transfer in static15 and moving
components16–20, breaking the symmetry of heat transfer to
achieve thermal non-reciprocity21 is also of great importance for
various applications. Devices like heat pipes and thermosyphon
diodes are commonly used for thermal management and energy
harvesting22. In addition, solid-state thermal diodes23 and
rectifiers24 are the basic elements for thermal information pro-
cessing in analogy to electronics25,26.

In general, there are three types of approaches that break
reciprocity. The first is to apply an external bias that is an odd
function of time under time-reversal symmetry, like magnetic
fields or mechanical motion12,27,28. For heat transfer, a simple
external bias can be realized by introducing mass or energy fluxes
that enter and leave the system with a preferred directionality.
Such straightforward approach is not very practical, because it
usually makes the underlying systems hardly integrable. The
second is by using nonlinearity8,29–31. Asymmetric thermal
conduction has been found in nonlinear materials32 with
temperature-dependent properties such as oxides33 or shape-
memory alloys34,35, but the reliance on exotic materials limits its
applicability and working conditions.

The third approach to break reciprocity, inspired by recent
efforts in electromagnetics and acoustics36,37, has been based on
materials with time-varying properties. This scheme has received
growing interest, since it is easier to be integrated and broadly
applicable compared to the first two approaches. The propagation
of electromagnetic waves in coupled waveguides has been shown
to be non-reciprocal when the electric permittivity ε is modulated
with a traveling wave36 (Fig. 1a), thanks to asymmetric mode
conversions. Similar ideas have been successfully applied to
thermal radiation38 and acoustic waves39,40. Interestingly, time
modulation can also induce asymmetric transfer of electric
charge, which is essentially a diffusive process41. Intuitively, this is
possible because the governing equation, i.e., Fick’s law, contains
the same Laplacian term as the wave equation. Different from
wave propagation, two material parameters in the diffusion

equation—the capacitance Ce and electric conductivity σ must be
modulated simultaneously (Fig. 1b) to achieve this effect.

Conductive heat transfer in solids is another fundamental
diffusive process, whose governing equation (Fourier’s law) has
the same form as Fick’s law. The counterpart of electric con-
ductivity σ is thermal conductivity κ, while the counterpart of
capacitance Ce is the product of density and specific heat capacity
ρc. In practice, the specific heat capacity c is hardly tunable, so we
only consider the modulation of density ρ and thermal con-
ductivity κ in the following discussion. It appears quite reasonable
to expect thermal non-reciprocity induced by such time
modulation42, considering the continuous success of this
approach in electromagnetic36,37 and acoustic39,40 wave propa-
gation, and charge diffusion41.

In this work, however, we prove theoretically and present
numerical and experimental evidences that it is extremely difficult
to break reciprocity in heat transfer using time modulation
without resorting to external bias or special materials (Fig. 1c).
This result is due to the fact that a time modulation of the density
inevitably alters the governing transfer equation by taking into
account the necessary mass motion v. Our findings indicate that
diffusive heat transfer presents inherent constraints that must be
carefully treated in its manipulation to break reciprocity.

Results
Diffusion equation under time modulation. Heat transfer in
solids is governed by the diffusion Fourier’s law: ∂(ρcT)/
∂t=∇·(κ∇T), where T(r,t) is the temperature field, r is position
vector, and t is time. If the material is linear and not dynamic, the
solutions strictly obey reciprocity43. In the case of dynamic
materials, the density and thermal conductivity vary with time. If
both parameters can be freely modulated without introducing
additional effects, the Fourier’s law becomes

∂ ρ r; tð ÞcT� �
∂t

¼ ∇ � κ r; tð Þ∇T½ � ð1Þ

Since Eq. (1) has the same form as the time-modulated Fick’s
law41, it is expected that the solution would be in general non-
reciprocal42. However, as we will discuss in the following, it is
impossible to freely modulate the density, since matter that acts as
the carrier of thermal energy cannot be created or destroyed. The
variation of density ρ must obey the law of mass conservation,
which leads to a different governing equation than Eq. (1).

Fig. 1 Transport processes in dynamic materials under time modulation. a Non-reciprocal propagation of electromagnetic wave can be induced by
spatial-temporally modulating the electric permittivity ε(x,t) as a traveling wave (with speed v0). b Non-reciprocal diffusion of electric charges can be
induced by spatial-temporally modulating the capacitance Ce(x,t) and electric conductivity σ(x,t). c The reciprocity of heat transfer cannot be broken by
modulating the density ρ(x,t) and thermal conductivity κ(x,t) since it is preserved by the continuity equation. Following the law, mass movements v(x,t)
(green arrows) must exist to achieve density modulation. d, e Two types of mass movements (dark gray spheres): d along the heat transfer path (gray
region). e moving in and out of the heat transfer path.
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In continuous media, mass conservation is preserved by the
continuity equation ∂ρ/∂t+∇·(ρv) = 044. If the density varies
with time, we inevitably expect mass movement with velocity v
(Fig. 1c). Since thermal energy is inherent in any material, the
movement introduces a convective term ∇·(ρcTv), which does not
appear in Eq. (1). This implies that Eq. (1) can hardly be realized
within a physical system without providing external energy or
mass. By adding the convective term into Eq. (1), a mass-
conserving diffusive heat transfer under time modulation
becomes the convection-diffusion process

ρ r; tð Þc ∂T
∂t

þ ρ r; tð Þcv � ∇T ¼ ∇ � κ r; tð Þ∇T½ � ð2Þ

where we assume that there is no other thermal effect and that
viscous dissipation is negligible. Equation (2) is a correction of
Eq. (1) replacing a partial derivative by a material derivative (see
Supplementary Note 1 for derivation). The detailed effects of the
convective term depend on the velocity field v(r,t). In order to
focus on the mechanism of time modulation, it is reasonable to
only study systems at time-harmonic steady state without
externally applied directional mass or energy flux. To be specific,
the boundary conditions are constant, and the modulation of
material parameters is periodic with time to ensure a stable (time-
harmonic) field. No external mass flux exists: ρv · n = 0, where n
is the unit normal vector at the system boundary. In time-
modulated systems, it is suitable to require instead that the
average external mass flux in a time period t0 vanishes

ρv � n� � ¼
Z t0

0
ρ r; tð Þv r; tð Þ � ndt=t0 ð3Þ

No accumulated external bias is a central assumption that will be
used throughout our analysis.

There are only two types of setups that support density
modulation without external bias: in the first case, the density is
modulated by mass motion along the heat transfer path (Fig. 1d).
The spheres illustrated do not represent microscopic particles but
macroscopic components. There can be an exchange of mass
between the system and two thermal reservoirs at both ends, but
the three parts together restore the original state after a period,
hence there is no net directional mass flow. In the second one, the
density is modulated by mass entering or leaving the heat transfer
path cyclically (Fig. 1e).

In order to determine whether a two-port system is reciprocal
in diffusion, we define the thermal reciprocity based on the
equivalence between steady-state global non-reciprocity and
thermal diode effect21. Specifically, if the system is reciprocal,
the heat transfer is symmetric before and after swapping the
boundary conditions at two ports, then it is required that the
time-averaged heat flux 〈q〉 at harmonic steady state satisfies

qf ;2

D E

qf ;1

D E
0
B@

1
CA ¼ �

qb;1

D E

qb;2

D E
0
B@

1
CA ð4Þ

where the subscripted b and f represent the cases before and after
the exchange of boundary conditions, and 1 and 2 represent the
position of two ports. In the following, we prove that the heat
transfer in both setups is inherently reciprocal and experimentally
build a setup of the second type to validate our prediction.

Density modulations of the first type. The first type of mod-
ulation scheme follows the one-dimensional (1D) model shown
in Fig. 2a. The density ρ(χ) and thermal conductivity κ(χ) of the
material are d-periodic functions of χ = x – v0t, so their profiles
move at constant speed v0 along x. According to the 1D con-
tinuity equation ∂ρ/∂t + ∂(ρv)/∂x = 0, the mass flux ρv satisfies ρv

= (ρ − ρ0)v0 + C, where ρ0 is the average density and C is a
constant (See Supplementary Note 2 for derivation). According to
Eq. (3), there is no accumulated mass flux through the system in a
time period t0 = d/v0 (Fig. 2b). Thus, we have C = 0 (see Sup-
plementary Fig. 1 for the effects of a nonzero C) and can solve for
the velocity field as v(χ) = [ρ(χ) − ρ0]v0/ρ(χ). The 1D heat
transfer then obeys

ρ χ
� �

c
∂T
∂t

þ ρ χ
� �� ρ0

� �
cv0

∂T
∂x

¼ ∂

∂x
κ χ
� � ∂T

∂x

� 	
ð5Þ

We apply fixed temperature boundary conditions T(0,t) = Tcold
and T(L,t) = Thot (backward) or T(0,t) = Thot and T(L,t) = Tcold
(forward) at the two ends, respectively. For Eq. (5), such a
symmetry can be proved by comparing the forward and backward
heat fluxes. Assuming that Tb(x,t) is the solution for the backward
case, while Tf(x,t) is the solution for the forward case. Given any
initial conditions, both solutions at time-harmonic steady state
should be unique. Their summation Ts(x,t) = Tf(x,t) + Tb(x,t)
also satisfies Eq. (5) with boundary conditions Ts(0,t) = Ts(L,t) =
Thot + Tcold. It is easy to check that Ts(x,t) = Thot + Tcold is a
solution, and must be the unique solution thanks to the
uniqueness of Tf(x,t) and Tb(x,t). The heat flux q(x,t) is the sum of
conductive and convective heat flux: q(x,t) = −κ∂T/∂x + ρcv(T −
Tref), where the reference temperature Tref is an arbitrary constant
that can be selected based on convention (We set Tref equal to the
lowest temperature Tcold). Then the forward and backward heat
fluxes qf(x,t) and qb(x,t) then satisfy

qf x; tð Þ þ qb x; tð Þ ¼ �κ
∂Ts

∂x
þ ρ� ρ0

� �
v0c Ts � 2Tref

� �
¼ ρ� ρ0

� �
v0c Thot � Tcold

� � ð6Þ

Averaging over time gives 〈qf(x)〉 + 〈qb(x)〉 = 0. Considering that
the average heat fluxes in and out of the system should balance,
we have 〈qf(0)〉 = 〈qf(L)〉 = −〈qb(0)〉 = −〈qb(L)〉, which meets
the condition for a symmetric heat transfer as in Eq. (4), and
indicates thermal reciprocity.

We can also analytically solve Eq. (5). After a variable change
(x,t) to (χ = x − v0t, τ = t), it is easy to see that Eq. (5) is periodic
on χ, so Floquet–Bloch theorem applies and gives (see
Supplementary Note 2 for details):

T x; tð Þ ¼ eiKxf χ
� � ð7Þ

where f(χ) is a periodic function with periodicity d, and K is the
Bloch wavenumber. The time-harmonic temperature solution
should be a linear combination of Eq. (7). The dissipative nature
of heat transfer indicates that K must have nonzero imaginary
parts45. Substituting Eq. (7) into (5), the temperature field can be
analytically solved using the Fourier series of f(χ), based on the
periodicity of ρ(χ) and κ(χ).

To verify the solution, we build a 1D model with d = 1 cm and
L = 10d. The density and thermal conductivity are set to be
ρ(χ) = ρ0[1 + Δρcos(βχ)] and κ(χ) = κ0[1 + Δκcos(βχ)], where
β = 2π/d, ρ0 = 2000 kg m−3, Δρ = 0.3, κ0 = 100Wm−1 K−1, and
Δκ = 0.9. The specific heat capacity is c = 1000 J kg−1 K−1. We
choose two modulation speeds v0 = μκ0/ρ0c with μ = 1/d and 4/d.
Constant temperatures are set as Tcold = 273 K and Thot = 323 K
to generate a temperature difference ΔT = Thot – Tcold = 50 K.
Our analytical results (solid lines in Fig. 2c, d) are well validated
by finite-element simulations (scatter points in Fig. 2c, d) with
COMSOL Multiphysics®. The corresponding heat flux distribu-
tions are summarized in Supplementary Fig. 2a, b, demonstrating
the thermal reciprocity.
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For comparison, we also plot analytical and numerical
solutions to the diffusion equation42

ρ χ
� �

c
∂T
∂t

¼ ∂

∂x
κ χ
� � ∂T

∂x

� 	
ð8Þ

The solutions to Eq. (5) for the heat transfer are symmetric in
the backward (Fig. 2c) and forward (Fig. 2d) directions for all
modulation parameters characterized by μ, Δκ, and Δρ. This is in
contrast with the solutions to Eq. (8) with concave/convex
profiles (see Supplementary Note 3 for accurate solutions and
Supplementary Fig. 2c, d for heat flux distributions). The
insightful work42 shows the possibility to generate thermal non-
reciprocity at a mathematical level, with the material parameters
in Eq. (8) set as space- and time-dependent functions. However,
Eq. (8) is a hypothetical one that requires an external energy
source, because density modulation ρ(χ) cannot be achieved at no
cost, and the implementation of modulation will make the
governing equation deviate from the previous theoretical design.
In a virtual system following Eq. (8), there should be a difference
between the average heat flux entering and leaving the system at
the two ends, showing that additional energy input or extraction
is required to compensate it.

Density modulations of the second type. Another way to achieve
density modulation without net directional flow is to add/remove
matter periodically through the heat transfer path. The simplest
setup of such type is the two-dimensional (2D) model shown in
Fig. 3a, where the heat transfer path under consideration is the
transverse narrow region at y = 0. We assume constant tem-
peratures on the left and right sides at x = 0 and L, while periodic
boundaries are assumed on the upper and lower sides at y = ±dy/
2. ρ(x,y = 0,t) and κ(x,y = 0,t) are d-periodic functions of x − v0t,
so we consider 2D distributions that are d-periodic functions of
ζ = x + ηy − v0t with η = d/dy.

Next, we consider mass motion along y with speed vy(x,y,t) to
locally modulate the density. According to the continuity equation
∂ρ(ζ)/∂t + ∂[ρ(ζ)vy]/∂y = 0, we find ρvy = (ρ − ρ0)v0y + C, where
v0y = v0/η. The derivation can be obtained in the same way as in
1D case. When C = 0, the case is realizable with mass oscillations

in y direction, which is almost the same as the 1D case. Here, we
apply periodic condition to the upper and lower boundaries and set
C = ρ0v0y, so that vy(ξ,y,t) = v0y (Fig. 3a). It is noted that Eq. (3) is
still satisfied, and this case can be realized on the side surface of a
rotating cylinder. The 2D heat transfer follows

ρ ζð Þc ∂T
∂t

þ ρ ζð Þcv0y
∂T
∂y

¼ ∂

∂x
κx ζð Þ ∂T

∂x

� 	
ð9Þ

in which we consider the general case with a thermal
conductivity modeled as an anisotropic tensor. Its xx and yy
components are κx and κy, while the off-diagonal components
are assumed to be zero. Similar to the 1D case, we can prove the
thermal reciprocity by analyzing the time-averaged heat fluxes
along x direction in forward and backward regimes, which also
gives 〈qf〉 + 〈qb〉 = 0 and satisfy Eq. (4). The solution to Eq. (9)
can be solved with a similar method as in 1D case (see
Supplementary Note 4).

A practical 3D setup that realizes the time modulation of
material parameters is shown in Fig. 3b, which consists of fixed and
moving fan-shaped solid plates with density ρA = 8390 kgm−3,
heat capacity cA = 375 J kg−1 K−1, and thermal conductivity
κA = 123Wm−1 K−1. Each plate spans π/2 with inner and
exterior radius R1 = 1 cm and R2 = 2 cm, and thickness δ =
0.25 cm = d/16. The total length of the system L = 5d = 20 cm.
Temperature boundary conditions are T(0,t) = Tcold and T(L,t) =
Thot (backward) or T(0,t) = Thot and T(L,t) = Tcold (forward),
with constant temperatures set as Tcold = 273 K and Thot = 323 K.
All other boundaries are thermally insulated. Naturally, we can
regard the heat transfer path as the portion of the system
contained in the region ([R1,R2], [π/4,3π/4], [0,L]) of the
cylindrical coordinate system (r, θ, x), through which most of
the heat flux is conducted. Along the x direction, each moving
plate is π/4 ahead of the previous moving one. All of them rotate
at angular speed −Ω = −0.06π rad s−1. As the moving plates
enter or leave the heat transfer path at y = 0, the density ρ(x,y =
0,t) and thermal conductivity κ(x,y = 0,t) are effectively
modulated (Supplementary Note 5).

We perform numerical simulations on the 2D and 3D models
in Fig. 3a, b. As expected, reciprocal heat transfer is confirmed for

Fig. 2 Heat transfer under 1D density modulation. a Density ρ and thermal conductivity κ (color maps) move as traveling waves at speed v0 with
wavelength d. To achieve density modulation, actual mass movements (green arrows) at speed v must exist. b The total mass flux in a time period should
be zero to keep a cyclic and close setup. c, d Backward (c) and forward (d) temperature distributions of the system (Eq. (5)) at t = Nd/v0 (N is a large
enough integer to achieve time-harmonic steady state), compared with those of a virtual system without mass movements (Eq. (8)). Scatter points are
simulated results, lines are analytical results, and dashed lines are analytical solutions of the homogenized profiles. For clarity, the results of Eq. (5) at
modulating speed μ = 4/d are shifted to have ±0.1 offsets.
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all considered temperature distributions along the line at (r = R2,
θ = π/2) (Fig. 3c, d). The temperature distributions on the plate
surfaces are also plotted in the insets (see Supplementary Movie 1
for the evolution with time and Supplementary Fig. 3a for the
heat flow in and out of the system). Reciprocity can be easily
shown from the symmetric temperature profiles and the identical
time-averaged heat fluxes in forward and backward directions.
The reason for the absence of non-reciprocity resides in the fact
that in these diffusive systems the density variations are averaged

out over time due to the conservation of mass and hence there is
effectively no density modulation. To further illustrate this point,
we performed simulations on a hypothetical model where the
density of the moving plates is artificially modulated as ρA(t) =
ρA{1 + cos[2Ωt − (n − 1)π/4]}/2, for the n-th layer of moving
plates. The temperature distributions in Fig. 3e, f show concave
and convex profiles, indicating non-reciprocity (see Supplemen-
tary Movie 2 for the evolution and Supplementary Fig. 3b for the
heat flow).

Fig. 3 Heat transfer under 2D and 3D density modulation. a Density ρ and thermal conductivity κ profiles (color maps) of 2D traveling waves such that
the profiles move at speed v0 in x direction (marked by dashed lines). The density is modulated by mass movement in y direction at speed v0y (green
arrows). The upper and lower boundaries are periodic. b A three-dimensional (3D) model in a (r,θ,x) cylindrical coordinate system. Similar ρ and κ
modulations are achieved with fixed (white) and moving (yellow) fan-shaped plates. c–f Backward (c, e) and forward (d, f) temperature distributions on the
top line r = R2, θ = π/2 extracted from simulated results for the 2D (lines) and 3D (scatters) models at t = N2π/Ω (N is a large enough integer to achieve
time-harmonic steady state). The insets show the entire temperature distributions. The results in e and f use a hypothetical 3D model where the moving
plates have time-varying masses, violating the law of mass conservation.
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Experimental verification of reciprocal heat transfer in a time-
varying material. We have implemented the 3D geometry in
Fig. 3b, as shown in Fig. 4a. The system is built with fan-shape
plates attached to a fixed beam and a shaft revolved by a low-
speed motor (angular velocity Ω = 0.075π rad s−1) to generate a
right-handed rotating profile. The plates are made of brass with
the same material properties and shape as in the 3D simulations.
The supporting beam and shaft are made of nylon with thermal
conductivity of 0.3Wm−1 K−1. Two copper blocks are mounted
at the ends of the supporting beam to contact the heat sources
directly at 296 and 306 K, generating a temperature difference
ΔT = Thot – Tcold = 10 K. The blocks are slotted at the top to
match the upper four rotating fan-shape plates. Different from
the numerical simulations, a 0.2 mm gap is made between adja-
cent plates, which is filled with thermal grease (thermal con-
ductivity 4.38Wm−1 K−1) for conduction and silicone oil
(thermal conductivity 0.16Wm−1 K−1) for lubrication. There-
fore, the interface thermal resistance is nonnegligible.

In addition, the natural convective heat exchange with the
ambient air introduces another term h(T∞ − T), where h is the
heat exchange rate and T∞ is the room temperature. In order to

reduce the influence of ambient air convection, we set the system
in a vacuum chamber (see Supplementary Fig. 4). Molecular
pump (LF-110) and mechanical pump (BSV-16) are employed to
reduce the density of air to as low as 10−3 Pa. Temperature
profiles are measured through the inspection window with an
infrared camera (Fotric 347). Due to the interface thermal
resistance as well as natural convective heat exchange, the
temperature gradients at the center are smaller compared to the
linear profile (Fig. 4b). However, the two factors do not have any
directionality, so the temperature profiles for the backward and
forward cases are still symmetric, demonstrating reciprocal heat
transfer in the time-modulated system. See Supplementary
Movie 3 for videos of the rotating device and the temperature
profiles. Reciprocity is further confirmed by the temperature
distribution along the heat transfer path of the system (dashed
green line in Fig. 4a), where the fixed plates are placed (Fig. 4c).
In Fig. 4c, to compare with the experimental results, numerical
simulations were performed on the 3D model with interface
thermal resistance (0.2 mm thickness and 1Wm−1 K−1 thermal
conductivity) and natural air convection (h = 3Wm−2 K−1, and
T∞ was set as the ambient temperature 300.5 K.) The
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experimentally measured curves for backward and forward heat
transfer are not only symmetric, but also in good agreement with
the simulated results. Since the heat flux in x direction is
proportional to temperature gradient qx = −κ∂T/∂x, and the
equivalent thermal conductivity is homogeneous throughout the
system, the reciprocity of heat flow can be reflected from the
symmetry of the temperature difference over two intervals of
equal length (marked in Fig. 4a). We give the measured ΔT1 and
ΔT2 in Fig. 4d, and averaging the temperature difference over
time gives: 〈ΔTb,1〉 = −0.874 K, 〈ΔTb,2〉 = −1.038 K (backward)
and 〈ΔTf,1〉 = 1.046 K, 〈ΔTf,2〉 = 0.863 K (forward), showing a
symmetric relationship: 〈ΔTb,1〉 ≈ −〈ΔTf,2〉 and 〈ΔTb,2〉 ≈
−〈ΔTf,1〉. This symmetry is maintained for all angular velocities
of the shaft rotated by the motor. As another example in Fig. 4e,
the angular velocity Ω is changed to 0.14π rad s−1 and the time-
averaged temperature difference becomes: 〈ΔTb,1〉 = −0.887 K,
〈ΔTb,2〉 = −0.992 K (backward) and 〈ΔTf,1〉 = 0.996 K, 〈ΔTf,2〉 =
0.872 K (forward). In order to further demonstrate the recipro-
city, we give the numerical results of the heat flow Q in and out of
the system (see Supplementary Fig. 5). It is easy to check that
〈Qb,1〉 = −〈Qf,2〉 and 〈Qb,2〉 = −〈Qf,1〉, satisfying the condition
for thermal reciprocity in Eq. (4). This reciprocal result exhibited
in the experiment is a representative of the general situation
where the modulation parameters (e.g., rotating angular velocity)
are changed arbitrarily.

Discussion
In this paper, we have shown that physical systems preserve
thermal reciprocity under time modulation as a result of a con-
vection correction introduced by density modulation. For other
processes governed by the momentum equation (e.g., wave pro-
pagation) or the continuity equation (e.g., charge diffusion), the
driving approach of time modulation does not alter the form of
the governing equation. For heat transport, however, it is a well-
known fact that a material derivative must be used if there is a
transport of mass. As such, a convection correction should be
added in the governing equation, resulting in the reciprocity in
heat transfer. Though only several simulation and experiment
examples are given in this work, the conclusion of reciprocity is
theoretically rigorous. One evidence is that the proven symmetric
relationship between the forward and backward heat flux 〈qf〉 =
−〈qb〉 always exists, regardless of how the material parameters are
modulated. Even if the modulated material parameters are
asymmetric in spatial distribution, the system is reciprocal in heat
transfer (Supplementary Fig. 6).

While we did not explicitly discuss the case of a varying specific
heat capacity c, it is easy to recognize that our arguments equally
apply to this scenario. First of all, if the variation is simply a
consequence of mechanical motions, the material derivative of ρc
must be zero, which gives ∂(ρc)/∂t + ∇·(ρcv) = 0. Therefore, Eq.
(2) and the following analysis still apply. Second, if the specific
heat capacity of the material can really be modulated at will, it is
possible to avoid the convective term and thereby in principle
achieve non-reciprocity. However, this is only possible in very
limited scenarios, such as using caloric materials that undergo
phase transitions in the presence of electric46 or magnetic47 fields.
In addition, there are schemes that can break thermal reciprocity
beyond our assumptions. Though thermal reciprocity is preserved
as the boundary conditions are maintained at two constant
temperatures, the non-reciprocity of thermal wave48,49 under
space-time modulation may occur when the boundaries are set as
periodically oscillating heat sources50. Another trivial way to
generate non-reciprocity is introducing directional mass/energy
bias while modulating the parameters.

Our work suggests that thermal reciprocity has more funda-
mental resilience than other transport mechanisms. These find-
ings may have important implications for the design of thermal
devices and other dissipative wave propagation systems.

Data availability
All technical details for producing the figures are enclosed in the Supplementary
Information. The experimental data generated in this study are provided in the Source
Data file. Additional data that support the findings of this study are available from the
corresponding author (C.-W.Q.) on request. Source data are provided with this paper.
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