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Abstract: Platinum anticancer drugs inhibit the division of cancer cells through a DNA binding
mechanism. The bimetallic platinum compounds have a possibility for blocking DNA replication via
the cross-linking of DNA functional groups at different distances. Many compounds with metals
of the platinum group have been tested for possible antitumor activity. The main target of their
biological action is a DNA molecule. A combined approach to the study of the interaction of DNA
with biologically active compounds of this type is proposed. The capabilities of various methods
(hydrodynamic, spectral, microscopy) in obtaining information on the type of binding of coordi-
nation compounds to DNA are compared. The analysis of DNA binding with platinum binuclear
compounds containing pyrazine, tetrazole, 5- methyltetrazole, 3-propanediamine as bridging ligands
in a solution was carried out with the methods of circular dichroism (CD), luminescent spectroscopy
(LS), low gradient viscometry (LGV), flow birefringence (FB) and atomic force microscopy (AFM).
The competitive binding of different platinum compounds to DNA and the analysis of platinum
attachment to DNA after protonation of its nitrogen bases simply indicates the involvement of N7
guanine in binding. Fluorescent dye DAPI was also used to recognize the location of platinum
compounds in DNA grooves. DNA conformational changes recorded by variations in persistent
length, polyelectrolyte swelling, DNA secondary structure, and its stability clarify the molecular
mechanism of the biological activity of platinum compounds.

Keywords: DNA-platinum complexes; binuclear platinum (II) compounds; pyrazine; tetrazole;
1,3-propanediamine

1. Introduction

Since it is a well-known fact that nuclear DNA is the main target for platinum antitu-
mor drugs in vivo, the study of DNA interaction with novel platinum compounds in vitro
is an effective way to reveal the molecular basis of their possible biological activity. It is
also the easiest way to select the most promising compounds for further testing. New
trends in molecular medicine are associated with the creation and usage of multi-functional
complexes to solve several problems at once [1–7]. In this connection, metal coordination
compounds can act not only as anticancer drugs, but also as excellent agents that provide
the involving of different ligands into multifunctional construction via coordination bonds.
Note that binuclear coordination compounds can form bridging bonds between distant
regions of biopolymers. DNA’s ability to form various ordered nanoscale structures by
complexation with synthetic polymers, charged compounds, surfactants, and others agents
may be used in these technologies as well. Therefore, the understanding of the molec-
ular mechanism of DNA binding with coordination compounds is of great interest for
many reasons.
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Since the discovery of the anti-tumor activity of cisplatin (cis-DDP) [8,9], only a
very few other platinum compounds were introduced into clinical practice [10–12]. It is
known that the activity of platinum compounds may be improved by the introduction of
heterocyclic ligands containing N donor atoms [13–17]. For example, tetrazole [18,19] and
pyrazine [20,21] are used as ligands for coordination compounds. The usage of binuclear
coordination compounds has high potential for drug design [19,22–25]. Unlike cisplatin,
such complexes are usually electrolytes with good solubility in water. The understanding
of how platinum compounds bind to DNA molecules in a solution may help to find their
structural features responsible for preventing DNA replication. Indeed, the inhibition of
cell division is usually explained by the coordination of platinum to DNA [26,27].

Water–salt solutions are close to the natural environment in the cell and are suitable
to study the DNA interaction with potential drugs. Analysis of the DNA interaction
with new compounds in vitro, combined with a comparison of the obtained data with the
result of DNA-cisplatin binding, is a convenient method for selecting the most promising
compounds for further in vivo testing.

It should be noted that a specific DNA methylation is one of the important events
among the range of alterations found in tumor cells [28–30]. Therefore, during in vitro
studies, we must keep in mind that similar variations of the chemical structure of DNA
bases can influence DNA-platinum binding in vivo. In addition, cytosine methylation plays
a crucial role in the development of acquired chemoresistance, including when using cis-
DDP [31–35]. These events modify the electronic structure of heterocycles. Of course, this
affects the binding of platinum to DNA. In this case, additional coordination of binuclear
platinum compounds with DNA can promote the formation of complexes that prevent
DNA replication.

DNA-platinum interaction has been studied in great detail, although there are still
unresolved issues related to this interaction. Different methods have been used to consider
this interaction. Some methods (NMR, spectral methods) provide information about
binding positions and about the state of the secondary structure of DNA, other methods
(electrophoresis, sedimentation, viscometry, light scattering) allow us to evaluate global
conformational changes in DNA during the interaction, scanning microscopy makes it
possible to visualize structural DNA changes in the formation of platinum-DNA adducts.

We should also mention such methods of analysis of DNA interaction with platinum
compounds as the FRET-melting method and Fluorescent intercalator displacement (FID)
assay. The FRET-melting method is one of the effective approaches for the analysis of the
interaction of nucleic acids with different ligands, including platinum complexes with DNA
quadruplexes [36]. It is known that platinum complexes have an affinity for G-quadruplex
DNA [37,38]. G-quadruplexes formed in human telomeres are considered attractive targets
for anticancer drugs. For example, it was shown that telomeres in cisplatin-treated HeLa
cells are markedly shortened and degraded [39]. Possibly, a platinum affinity for G-
quadruplex DNA and the role of N7 guanine in the binding of Pt complexes to DNA may
explain the activity of cisplatin.

The fluorescence-based Förster Resonance Energy Transfer-melting method is based
on the stabilization of nucleic acid structure induced by ligands. This method has been used,
for example, to estimate whether a compound is a good quadruplex ligand or not [40,41].
We did not use this method in our work due to significant inconvenience when using high
molecular weight DNA.

Fluorescent intercalator displacement (FID) is also one of the methods used to analyze
the binding of ligands to DNA [36,42,43]. It is a convenient tool for understanding the type
of binding and for assessing the relative binding affinities of compounds to DNA. A dye
molecule with a greater fluorescence intensity, when bound to DNA, is used. It can be
displaced by a ligand during its binding to DNA. As a result, one can see a reduction in the
fluorescence intensity of the dye. The traditional FID is based on the intercalation of the dye
molecule into DNA. Nevertheless, any mode of dye binding to DNA which may actually
cause a decrease in fluorescence after dye release from DNA to solution can be used.
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We propose an integrated approach to the analysis of DNA interaction with biolog-
ically active compounds, based on the usage of the set of experimental methods. Along
with well-known methods, we propose to use such approaches as the analysis of DNA
protonation in complexes with platinum compounds or the analysis of competition between
various platinum compounds for binding sites on DNA, as well as competition between
the selected platinum compound and the fluorescent dye DAPI, which can bind to DNA
at known positions. We focused on the analysis of DNA conformational changes in com-
plexes with binuclear platinum (II) compounds with tetrazole, 5-methiltetrazole, pyrazine,
and 1,3-propanediamine ligands. The combination of spectral (UV spectroscopy, circular
dichroism), hydrodynamic (low gradient viscosity and flow birefringence) methods, and
atomic force microscopy (AFM) made it possible to monitor the state of the DNA secondary
structure and change in the DNA conformation (persistent length, shape, size and poly-
electrolyte swelling of the molecular coil). We have used 0.005 M NaCl as a supporting
electrolyte. We examine the interaction of DNA with binuclear compounds containing one
or two common heterocyclic ligands.

2. Materials and Methods

We have used the high molecular calf thymus DNA (Sigma–Aldrich, St. Louis,
MO, USA). The molecular mass of DNA M = 107 was determined by the usage of the
value of the DNA intrinsic viscosity [η] (in dL/g) in 0.15 M NaCl with the formula [44]:

[η] = 6.9 · 10−4 ·M0.7

DNA sample was dissolved in distilled water at a room temperature, and after 5 days
of storage at 4 ◦C a certain amount of salt solution (1 M NaCl) was added to achieve
0.005 M NaCl. Then, this prepared DNA solution was filtered and used as the initial stock
solution. The DNA concentration in a stock solution was determined from the difference in
the absorbance ∆D at two wavelengths 270 and 290 nm after DNA hydrolysis at 100 ◦C
in 6% HClO4 for 15 min [45].: This approach (determining the DNA concentration using
pre-hydrolyzed solutions) makes it possible to control the stability of the DNA double
helix in complexes by determining its molar extinction coefficient from the absorption of
solutions at 260 nm: E260(P) = 31.1 × D260/C(DNA,%). If necessary, the DNA solutions in
1 M NaCl were prepared by the adding of NaCl solution with a higher concentration.

Figure 1 shows the structure of the platinum compounds used. Platinum compounds
were obtained by procedures described in [15–17,23–25].

The binuclear Pt1 compound has two common tetrazole ligands. Binuclear platinum
compounds named as Pt2, Pt3, and Pt4 (Figure 1) consist of two Pt(II) atoms with two am-
monia ligands in cis-configuration and one bridging ligand (tetrazole, 5- methyltetrazole, or
pyrazine). A sufficiently long chain (1, 3-propanediamine) in a trans-position to the chlorine
ions links two platinum atoms in Pt5. We use also cis-DDP and trans-DDP compounds.
DNA interaction with Pt4, trans- and cis-DDP were studied earlier [21,46–48]. Several
experimental data for these compounds were obtained in this research for comparison.

2.1. Low Gradient Viscosity, (LGV)

The relative solution viscosity ηr =
η
η0

(where η—is the viscosity of the solution and
η0—is the viscosity of the solvent) was measured at different velocity gradients g in the
range of g = (0.5 ÷ 2) s−1. The usage of ηr value at g→0 and DNA concentration c gives the
reduced viscosity of the DNA solution ηred = ηr−1

c . The extrapolation of the dependence of
ηr−1

c on c to zero-concentration allows us to determine the DNA intrinsic viscosity [η]:

[η] = lim
c→0

(
ηr − 1

c

)
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For DNA with molecular mass M > 2 × 106 the model of swollen statistical coil in
a solution can be used. The Kuhn’s model of polymer chain (freely jointed chain, FJC)
with the hydrodynamic length L and the average length of the statistical segment A is
suitable. The worm-like chain with the persistence length p can also be used to describe the
conformation of DNA in a solution. The parameter <h2 > 1/2 (the mean square distance
between the ends of the polymer chain) defines the linear size of the molecular coil. The
relation <h2> = LA (for Kuhn’s model) is correct for macromolecules in the absence of
volume effects (ideal solution). The length of the statistical segment A indicates the chain
rigidity. For a long polymer chain with more than 10 segments the A value links with DNA
persistent length p as A = 2p.

The value [η] for high molecular mass DNA is related to DNA conformation parame-
ters by Flory’s formula (see, for example, [49]):

[η] =
Φ
(
h2) 3

2

M
= Φ

(L2p)
3
2

M
α3 (1)

Here, Φ is the Flory parameter, M is the molecular mass of DNA, L is the hydrodynamic
length of the DNA molecule, and α is the linear swelling coefficient defining the volume
effects, including the polyelectrolyte swelling. For the real polymer solution we have
<h2 > 1/2 = α(LA)1/2 = α(L2p)1/2.

In our research, we use viscometric titration. The dependence of the reduced viscosity
of DNA solutions on the concentration of platinum compounds at constant DNA concen-
tration reflects the change in the volume of DNA random coil at constant M and L. The
swelling (or packing) of the molecular coil can be caused by variation in DNA persistent
length p or/and by the change in the electrostatic interactions and polyelectrolyte volume
effects (they contribute to α value).
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2.2. Flow Birefringence (FB)

The birefringence ∆n of DNA solutions of different concentration value c was mea-
sured at different velocity gradients g. The value (∆n/g) at g→ 0 was determined. The
laminar flow that occurs during the experiment provides the orientation of ellipsoidal
molecular coils. The value (∆n/g)g → 0/cη0 at c→ 0 was used to find the dynamo-optical
constant [n]. This value together with the intrinsic viscosity of DNA [η] can determine
the optical anisotropy of the polymeric coil. The difference in the polarizabilities of the
statistical segment (α1 − α2) along (α1) and across (α2) the axis of the DNA double helix
can be calculated with the formula [50]:

[n]
[η]

=
4π

45kTns

(
n2

s − 1
)2

ns
(α1 − α2) (2)

The statistical segment of double-stranded DNA consists of 250–280 base pairs [39].
For DNA the following equation is valid:

lim
g→0

∆n/g

(ηr − 1)η0
=

4π

45kTns

(
n2

s − 1
)2

ns
(α1 − α2) (3)

Indeed, due to the giant intrinsic (inherent) optical anisotropy of DNA, which is two
orders of magnitude greater than the optical anisotropy of the macromolecule due to the
so-called shape effect, we can use the ratio obtained for certain concentrations of DNA
without extrapolating to c = 0. Hence, an optical anisotropy of DNA statistical segment

(α1 − α2) can be determined for any concentration of DNA from the value
(∆n/g)g→0
(ηr−1)η0

. It is
known that

(α1 − α2) = S∆β = (A/l)∆β, (4)

where S—is the number of base pairs in the statistical segment, l—is the base pair length
along the DNA axis (0.34 nm), A = 2p (p—is the persistent length of DNA), ∆β—is the
optical anisotropy of a base pair along and across the axis of the DNA helix.

All hydrodynamic measurements in our research were performed at a temperature
of 21 ◦C.

2.3. Spectral Methods

UV absorption spectra of DNA in complexes with platinum compounds were recorded
using an SF-56 Spectrophotometer (OKB Spectr, Saint Petersburg, Russia). Circular dichro-
ism (CD) spectra were recorded with Mark IV Autodichrograph (Jobin Ivon, Villeneuve-
d’Ascq, France). The circular dichroism value ∆ε = ∆D/cd (∆ε is the difference in extinction
coefficients determined from the difference in the absorption ∆D for left and right circular
polarized light, c—is the DNA molar concentration, and d is the optical pathway). The
luminescence of solutions was measured with a Hitachi-850 fluorescence spectrometer
using a 1 cm–thick quartz cuvette after the solutions were held for 1 h at the ambient
temperature. Luminescence excitation and the emission spectra were corrected for the
spectral sensitivity of the instrument.

2.4. Atomic Force Microscopy (AFM)

The images of DNA and its complexes with platinum compounds were obtained on
a freshly chipped mica surface. Appropriate exposure for 10 min was performed after
applying a drop of a DNA solution with various compounds containing magnesium ions
to better fix the DNA. Unfixed molecules were washed off. Then the sample was dried, and
direct scanning was performed with NanoScope 4a (Bruker, Santa Barbara, CA, USA).
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3. Results and Discussion

The absorption spectra and other experimental data for DNA-platinum complexes
were usually obtained after one-day storage of resulting solutions at 4 ◦C. This was done to
make sure that coordination bonds had formed.

Platinum compounds with heterocyclic ligands have an absorption in the UV region
that partly overlaps with the DNA absorption band. In most cases, the contribution of
platinum compounds to examined absorption spectra is much smaller than the absorption
DNA. The linear dependence of the optical density of the solutions of platinum compounds
on their concentration C(Pt) (in the used range of concentration) shows the absence of any
aggregation in solutions with 0.005 M NaCl. A certain salt concentration is present in all
investigated solutions to exclude changes in electrostatic interactions.

Assuming that the absorption of free binuclear compounds is the same as their ab-
sorption in complexes with DNA, we can calculate DNA spectra in complexes (see, for
example, Figure 2A for Pt2). One can see that the binding of Pt2 causes the emergence of
a long-wave “shoulder” in the DNA absorption band with small hypochromism at low
C(Pt) followed by a hyperchromism at higher C(Pt). Hereinafter, C(Pt) indicates the molar
concentration of the compound. The same result was obtained for DNA-cis-DDP complexes
(Figure 2B). The bathohromic shift of maximum can be caused by the involvement of N7
guanine (N7G) in binding. The increase in DNA absorption can be explained by the local
destruction of DNA base pairs stacking. One can see similar spectral changes observed
for DNA in complexes with Pt1, Pt2, Pt3 and cis-DDP (Figure 3). The basic model for
cis-DDP binding to DNA is the bidentate platinum coordination to adjacent guanines (or
guanine and adenine) of the same DNA strand (so-called intrastrand crosslinks) [51–53].
It should be noted that cis-DDP can also form two coordination bonds with DNA bases
from opposite strands (interstrand crosslinks) [54–56]. Interstrand crosslinks explain better
the blocking of the DNA replication, although the number of these complexes in a cell
is quite small. The binding like the chelate complex with N7 (N7G) and O6 of guanine
can also be formed. It is known that the binding of positively charged ligands to N7G in
a major groove of DNA induces the bathochromic shift of the band maximum with the
hypochromic effect at 260 nm at low ligand concentrations followed by the hyperchromism
at a high concentration of ligands in DNA solutions [57,58].
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Figure 2. (A) Calculated DNA absorption spectra in complexes with Pt2 in 0.005 M NaCl
(A) at C(Pt2) × 105 = 0 (1), 1.5 (2), 3.4 (3), 4.9 (4), 6.4 (5) and spectrum of Pt2 without DNA at
C(Pt2) = 3.42 × 10−5 (6), C(DNA) = 0.0024% =7.2 × 10−5 M (P); (B) absorption spectra of DNA in
DNA-cis-DDP complexes C(Pt) × 105 = 0 (2), 1.2 (3). 2.2 (4), 3.9 (5), 5.6 (6). Spectrum for cis-DDP (1)
was registered at C(Pt) =3.9 × 10−5 M.
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Figure 3. Differential absorption spectra (calculated absorption of DNA in complexes minus ab-
sorption of free DNA) for DNA complexes in 0,005 M NaCl with cis-DDP (A) at C(Pt) × 105 =
complexes C(Pt) × 105 = 1.2 (1). 2.2 (2), 3.9 (3), 4.1 (4), 5.6 (5); for DNA complexes with Pt2
(B) at C(Pt2) × 105 = 1.5 (1), 2.0 (2), 3.9 (3), 4.5 (4), 6.4 (5); for DNA complexes with Pt3 (C) at
C(Pt3) × 105 = 1.6 (1), 2.4 (2), 3.8 (3), 4.6 (4), 6.4 (5) and for DNA complexes with Pt1 (D) at
C(Pt1) × 105 = 0.54 (1), 2.7 (2), 3.8 (3), 5.4 (4).

In this way, the similar changes in DNA spectrum in complexes with Pt1, Pt2, Pt3,
and cis-DDP may specify that N7G is the important binding site for binuclear platinum
compounds. From the comparison of the structure of these compounds follows that the
difference in the structure and numbers of the common ligands does not affect the result
of the experiment. We can assume that DNA interacts only with one platinum atom of
binuclear compounds, and chromophores of platinum compounds (common ligands) do
not participate in this binding.

Circular dichroism (CD) spectra of DNA-platinum adducts depend on the type of
platinum binding to the macromolecule [59–61]. An increase in the intensity of the positive
band in CD spectra observed for DNA adducts with cis-DDP at a low concentration
of platinum compound indicates the formation of intrastrand crosslinks (Figure 4B). A
decrease in the intensity of positive CD band registered at a higher cis-DDP concentration
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as well as for DNA-trans-DDP adducts indicates the other type of binding. The positive
band amplitude in CD spectra of DNA in complexes with Pt1, Pt2, Pt3, Pt4, and Pt5
(see, for example, Figure 4A) does not increase in contrast to that observed for DNA in
complex with cis-DDP. We can explain this result by the absence of the appropriate type of
platinum binding to DNA. The monodentate coordination of platinum atom to N7G may
be supposed. It should be emphasized that the platinum compounds under investigation
do not show themselves any optical activity.
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Figure 4. CD spectra of DNA in complexes with Pt3 in 0.005 M NaCl (A), and the dependence of the
relative change in the amplitude of positive maximum of DNA CD spectra (B) on concentrations of
Pt3 (1), Pt4 (2) and cis-DDP (3).

Previously, we have studied in detail the interaction of Pt4 binuclear compound with
DNA in 0.005 M and 1 M NaCl [21]. Let us compare the influence of Pt1, Pt2, Pt3 and Pt4
on the DNA structure. All these binuclear compounds are electrolytes, unlike cis- and
trans-DDP. They are soluble in water with the dissociation of chlorine ions. The positive
charge of platinum compounds can increase after further replacing of chlorine ions by
water molecules within the coordination sphere of Pt2, Pt3, Pt4. DNA charge density is
extremely high, and the negative phosphates easily attach positively charged platinum
complex ions. The electrostatic attraction of platinum compounds to DNA contributes
to further coordination of platinum to heterocyclic nitrogen atoms of bases. N7 atoms
of guanine (N7G) and adenine (N7A) are located in a more hydrophilic major groove of
DNA. These sites are most accessible to formation of platinum adducts. The generally
accepted viewpoint is that cis-DDP forms two coordination bonds with N atoms of the
adjacent DNA purine bases (1,2 intrastrand bidentate coordination). The N7 and O6 atoms
of guanine provide an attractive position for the location of positively charged complex
ions, whereas NH2 of adenine is a less convenient neighbor. In this way, platinum binding
with guanine is more favorable than a similar interaction with adenine. Other possible
sites for the coordination of platinum (N3 cytosine and N1 adenine) are involved to the
hydrogen bonds with complementary bases. They can be accessed only after a partial
destruction of the double helix. Therefore, N7G or/and N7A atoms are first binding sites
on the bases of double stranded DNA. The cis-DDP may form interstrand bifunctional
adducts with the destruction of hydrogen bonds in the GC pair and some unwinding of
the helix at the site of platinum binding. Monofunctional adducts can also occur. The
addition of NaCl as a supporting electrolyte allows us to control the ionic strength in DNA
solution. At high NaCl concentration (1 M) the polyelectrolyte swelling of DNA molecule
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is suppressed. The negative charges of phosphate groups are shielded effectively by Na+

ions. It was shown that cis- and trans-DDP do not interact with DNA in 1 M NaCl [46,47].
Similarly, DNA interaction with Pt1, Pt2, Pt3 and Pt5 is not observed at high salt

concentrations. This result indicates the important role of electrostatic interactions in
platinum binding to DNA. Contrary to that, it was shown that Pt4 could form complexes
with DNA in 1 M NaCl [21]. The charge of Pt4 is 2+ after being dissolved in water.
Previously it was shown that divalent and trivalent metal ions can interact with DNA in
1 M NaCl [58,62,63]. Apparently, a greater charge of Pt4 compounds in DNA solution is
responsible for the formation of their complexes with DNA in 1 M NaCl. The difference
in binding of Pt4 and other binuclear platinum compounds to DNA is observed also in
0.005 M NaCl (see Figure 4B). The compound Pt4 has a heterocyclic pyrazine in contrast to
a smaller ring of tetrasole and methyltetrasole in Pt1, Pt2, and Pt3 compounds. We have
suggested that the type of the heterocyclic ligands in the binuclear compounds determines
the geometry of the compound and the ability of the coordination of both platinum atoms
to DNA in bidentate complexes. Indeed, the binding of Pt4 causes changes in DNA CD
spectra similar to that observed for Pt2 and Pt3, but at concentrations two times smaller (see
Figure 4B). This can indicate that Pt4 binds to DNA via two platinum atoms, in contrast to
one platinum atom for Pt2 and Pt3. Note that Pt1 differs from other binuclear compounds
by the presence of two common heterocyclic ligands. Nevertheless, Pt1 causes a change in
DNA absorption in complexes similar to that observed for DNA binding with Pt2 and Pt3.
This also indicates that heterocyclic ligands of Pt1, Pt2, and Pt3 do not participate in the
formation of complexes with DNA.

Global conformational changes of the DNA molecule in complexes with platinum
compounds are observed by hydrodynamic methods (Figure 5). The combination of low
gradient viscometry with flow birefringence method allows checking the volume of DNA
macromolecular coil and its persistent length. Indeed, the segmental optical anisotropy
(α1−α2) is determined by the number of the base pairs in DNA statistical segment (Kuhn
segment). Since all platinum compounds have or acquire a positive charge in the solution,
the change in DNA solution viscosity can also indicate the variation of DNA polyelectrolyte
swelling. Figure 5A shows a fall in DNA solution viscosity with the rise of Pt1, Pt2, Pt3,
cis-DDP and trans-DDP concentration (the experimental errors are indicated as a size of
signs in Figures).

The decrease in reduced viscosity of DNA solution reflects the shrinkage of the DNA
coil due to the excluded volume effects and/or the reduction in the chain rigidity (DNA
persistent length). The dependences in Figure 5 indicate the existence of at least two binding
modes for cis-DDP (at low and at high C(Pt)). There are bidentate complexes without
destabilization of the double helix at low C(Pt) that cause a decrease in viscosity without
hyperchromism and without change in the DNA optical anisotropy. Further decrease in
DNA volume with the drop in DNA optical anisotropy (in DNA persistent length) with
a local unwinding of the helix and some destabilization of DNA secondary structure is
observed at C(Pt) > 3 ×10−5 M. Intrastrand crosslinks do not cause destabilization of
the double helix because of the excellent steric coincidence of the distances between the
adjacent bases in DNA strand and between the chloride ions in cis-DDP. We believe that
the first adduct of DNA and platinum (1,2-intrastrand crosslink) is supplemented by the
appearance of a second type of complexes transforming DNA secondary structure. The
formation of interstrand crosslinks (coordination bonds of platinum with the bases on
the opposite DNA strands) is becoming possible. Spectral data show an increase in DNA
absorption with a decrease in the intensity of the CD positive band. Local bending of
DNA helix can also induce a decrease in the optical anisotropy of DNA [21,48]. Trans-DDP
binding also induces the decrease in the volume of the DNA molecular coil, but the increase
in (α1 − α2) value is observed. The local destabilization in base stacking at high C(Pt)
influences the (α1 − α2) value at higher trans-DDP concentration.
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These experiments imply that trans-DDP and cis-DDP cause fundamentally different
changes in DNA conformation. Indeed, their binding to DNA shows different effects on
DNA optical anisotropy, on DNA volume in a solution, and on DNA spectral properties.
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(C) shows the dependence of the relative change in the segmental optical anisotropy (1) and in the
intrinsic viscosity (2) of DNA on C(Pt) for Pt4 (a) and Pt5 (b). All measurements were carried out in
0.005 M NaCl.
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The decrease in the reduced viscosity of DNA solutions and change in DNA segmental
optical anisotropy as a result of DNA binding with Pt1, Pt2, and Pt3 show that these
binuclear compounds have a similar influence on DNA conformation to that observed
for cis-DDP–DNA interaction (Figure 5A,B). However, in this case, we cannot distinguish
two types of binding from the data of hydrodynamic methods, although the spectral data
indicate this (Figure 2).

Figure 5 shows also that the binding of the compound Pt5 (a binuclear compound
with a long linker in trans-configuration) induces an increase in the DNA intrinsic viscosity
in contrast to all binuclear platinum compounds under study, because of intermolecular
crosslinking (Figure 5C). Both platinum atoms in Pt5 link non-adjacent DNA groups. The
DNA optical anisotropy changes with the rise of Pt5 concentration similar to that observed
for complexes with Pt1, Pt2 and Pt3, but at a concentration twice smaller (similar to Pt4),
which may indicate the formation of DNA bonds with two platinum atoms. Figure 5C
indicates also the unique type of Pt4 binding to DNA. The compound structure allows DNA
binding with two platinum atoms. The drop of viscosity and of DNA optical anisotropy at
low Pt4 concentration is followed by their increase at higher C(Pt4). That can be explained
by two alternative binding modes in DNA solutions at different concentrations of Pt4. The
structure of the compound provokes a sharp bend of DNA double helix (a kink) after the
formation of two coordination bonds of Pt4 with DNA. This bending causes change in
the DNA optical anisotropy (in the persistent length of DNA). The drop in the persistent
length of DNA causes a corresponding decrease in DNA intrinsic viscosity. With the rise
of C(Pt4) the second type of binding (DNA binding with one platinum atom) becomes
more profitable, and the DNA conformation transforms similar to that in complexes with
trans-DDP. The pyrazine ligand can be fixed in the major groove of DNA.

We emphasize once again that the experimental data allow us to conclude that Pt1, Pt2,
and Pt3 demonstrate similar influence on DNA conformation and have common features
with that of cis-DDP-DNA complexes, with the exception of the ability to form crosslinks.
We eliminate the bidentate coordination of each platinum atom in Pt1, Pt2, and Pt3. We
suggest that DNA interacts only with one platinum atom of these compounds.

Fluorescent intercalator displacement (FID) is a convenient tool for understanding the
type of binding and for assessing the relative binding affinities of compounds to DNA. We
have used the fluorescence dye DAPI and analyzed its possible competition with platinum
complexes for the binding sites in a minor groove of DNA. It was done to clarify the
position of platinum complexes on DNA. It should be noted that DAPI is not a classic
intercalator, in contrast to EtBr, for example. However, the method used in this work is
based on a similar approach.

The luminescence of DAPI (4′,6-diamidino-2-phenylindole) and EtBr (ethidium bro-
mide) dyes after their binding to DNA-platinum adducts was studied to elucidate the
binding sites of biplatinum compounds on DNA [64–66]. It was shown that DAPI can form
complexes in the DNA minor groove with the preferential binding to A-T pairs [67,68].
The possibility of dye intercalation or partial intercalation with the formation of hydrogen
bonds with DNA groups in the minor groove is being discussed. When DAPI heterocycles
intercalate (or partially intercalate) between planar hydrophobic DNA bases, DAPI becomes
virtually unsusceptible to external influences and demonstrates a very high fluorescence
quantum yield. This binding with the binding constant K = (3.0 ± 0.5) × 106 M−1 and with
the number of binding sites n = 0.02 (approximately one DAPI molecule per 50 DNA base
pairs) causes the DAPI luminescence with the maximum at 460 nm (λex = 340 nm). An
increase in DAPI concentration causes its binding with DNA phosphates with the DAPI
luminescence at 540 nm (λex = 420 nm). When the concentration ratio C[DAPI]/C[DNA]
reaches z = 0.3 two binding modes can be well distinguished in the luminescence spectra
(Figure 6). We studied the formation of DAPI binding to DNA after or before platinum
coordination to DNA. Figure 6 demonstrates data obtained for DNA complexes with Pt2.
Other binuclear compounds show similar results.
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Figure 6. Absorption spectra (A) of DAPI in complexes with DNA in 0.005 M NaCl (1), DAPI in com-
plexes with DNA after the addition of cis-DDP (2) and after the addition of Pt2 (3); after the addition
of DAPI to the solution with DNA-cis-DDP (4) and with DNA-Pt2 (5) adducts; absorption of DNA-
Pt2 (6), DNA-cis-DDP (7) and DAPI (8) solutions. C(DNA) = 1.5 × 10−5 M, C(DAPI) = 5 × 10−6 M,
C(Pt) = 4 × 10−5 M. Luminescence spectra (B,C) of DAPI in complexes with DNA in 0.005 M NaCl at
λex = 340 nm (a) and λex = 420 nm (b) for same systems. (D) Comparison of data presented in (B) and
in (C): black bars—the strong binding of DAPI in DNA minor groove (λex = 340 nm, λem = 420 nm);
shaded bars—the electrostatic binding of DAPI with DNA phosphates (λex = 420 nm, λem = 620 nm).

Two different schemes were developed for the mixing of DNA, DAPI, and Pt2 solutions
in 0.005 M NaCl: (1) DNA-DAPI complexes were formed, and Pt2 solution was added
later; (2) the DAPI solution was added to the solution with DNA-Pt2 complexes (after
one-day storage of DNA solution with Pt2). The measurements were performed one day
after the second mixing. The concentrations of DNA, DAPI, and Pt2 were the same in all
systems including the control DNA-DAPI and DNA-Pt2 solutions. Cis-DDP was used for
comparison in a similar experiment.

The absorption band of DAPI (out of DNA absorption area) in complexes with DNA
is not noticeably changed after the addition of cis-DDP. Indeed, the dye is localized in the
minor groove of DNA or near the phosphates, whereas cis-DDP interacts with N7G or N7A
in the major groove. On the contrary, the addition of Pt2 returns DAPI absorption to that
typical for the free DAPI molecules. One can see this result in all solutions with DNA-Pt2
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complexes. We can conclude that the presence of Pt2 in a solution prevents DAPI from
binding to DNA.

The DAPI luminescence in complexes with DNA at λex = 340 nm (the maximum of the
DAPI absorption band) at z = 0.3 produces a wide band c with a maximum at 490 nm due
to the coexistence of several spectral forms of DAPI (Figure 6B). Two different DAPI-DNA
complexes (a strong binding in the minor groove and an electrostatic binding with the
DNA phosphates) and free DAPI determine the luminescence of examined solutions. The
addition of cis-DDP to the solution with DNA-DAPI complexes, as well as DAPI binding to
DNA-cis-DDP complexes (Figure 6B, spectra 2 and 4) cause a slight decrease in the DAPI
luminescence without sufficient change in the shape of the spectrum. This result shows
that cis-DDP does not prevent the binding of DAPI with DNA in a minor groove. The
addition of Pt2 to the solution with DNA-DAPI complexes almost completely quenches the
luminescence of DAPI associated with phosphates, but has no influence on the strong dye
binding in the DNA minor groove. We can conclude that the electrostatic interaction of
binuclear compounds with DNA phosphates plays a more visible role compared to that
of cis-DDP. It follows that Pt2 is located near phosphates or within the major groove and
does not prevent DAPI binding with DNA in the minor groove. One can see that in this
experiment the addition of Pt2 really quenches the luminescence of DAPI localized on
DNA phosphates.

The main conclusion from these experiments is that Pt2 and cis-DDP are located out
of DNA minor groove. However, Pt2 binding to DNA more effectively prevents the DAPI
interaction with DNA phosphates.

How can we check whether the coordination bonds of DNA with binuclear compounds
are formed? It is known that during the equilibrium binding of ligands with DNA the ratio
of free and bound ligands in a solution change with the varying in DNA concentration.
It is necessary to keep this ratio constant with the dilution of the stock solution during
the experiments. It is known that the intrinsic viscosity of DNA can be determined by the
extrapolation of the dependence of reduced viscosity on DNA concentration c(DNA) to
c(DNA) = 0. This dependence becomes nonlinear when the ratio of free and bound ligands
changes. However, for complexes with coordination of platinum to DNA (being formed
for quite a long time—i.e., few hours) the intentional change in the concentration of free
ligands does not has time to influence platinum—DNA binding during the experiment.

We prepare the stock solution with DNA-platinum complexes. The dilution was
implemented in two different ways. In the first case, 0.005 M NaCl was used for the
dilution (the ratio C(Pt)/c (DNA) was constant in the experiment). The second dilution with
constant C(Pt) in DNA solutions was also performed (the solution of a platinum compound
with initial concentration was used as a solvent). The duration of the experiment (within
1 h) allows us to exclude the formation of the additional coordination bonds of platinum
to DNA. These two dilutions change the balance between fractions of free and bonded
compounds. In our experiments, both methods of dilution lead to similar concentration
dependences for DNA complexes with cis-DDP and Pt5 (Figure 7A). The results of similar
experiments with Pt1, Pt2, and Pt3 (Figure 7B) show that the correct extrapolation of the
dependences to c(DNA) = 0 is impossible. Hence the reason why we cannot determine
the intrinsic viscosity of DNA in complexes with compounds Pt1, Pt2, and Pt3. But
we must remember an important role of electrostatic interactions with phosphates for
binuclear platinum compounds in addition to the experimentally observed strong binding
of platinum to DNA bases. This binding with phosphates certainly depends on the dilution
method. In this case, the fraction of molecules with platinum coordinated to DNA bases
remains unchanged, but other binding with phosphates noticeably changes. This result
indicates the predominance of the equilibrium binding of platinum compounds with DNA
phosphates, but does not exclude the formation of a small number of coordination bonds.

Another way to test the formation of the platinum coordination bonds with N7 of
guanine is to study the protonation of DNA molecules in complexes with platinum com-
pounds [48]. The absorption and the CD spectra of the protonated DNA [48,69,70] reflect
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the emergence of positive charges on the DNA bases. It is known that the primary proton
acceptor group for double-stranded DNA is N7G. Indeed, other suitable groups N1A and
N3C are involved in hydrogen bonds between complementary strands. DNA protonation
depends on NaCl concentration in a solution (pK = 4.75 in 0.005 M NaCl and pK = 3.1
in 1M NaCl). A typical change in the CD spectrum of DNA as a result of protonation
in 0.005 M NaCl is shown in Figure 8A. We do not observe the DNA protonation after
the formation of its complexes with cis-DDP, trans-DDP, Pt4, and Pt5 in 0,005 M NaCl at
pH < pKa (Figure 8). Our experiments indicate that platinum atoms in Pt4, Pt5, trans- DDP
and cis-DDP compounds coordinate to N7G and block this position for DNA protonation.
The absence of Pt5 coordination to N7G in 1 M NaCl is evident from the spectra (Figure 8E)
demonstrating DNA protonation under these conditions (note that for double-stranded
DNA in 1 M NaCl the pK value is smaller than in 0.005 M NaCl).
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Figure 7. Dependences of the reduced viscosity of solutions on DNA concentration. Two methods of
dilution of a stock solution with DNA-platinum complexes were used: at C(Pt)/C(DNA) = constant
(a) and at C(Pt) = constant (b). (A) Results for DNA-cis-DDP adducs (1) and DNA-Pt5 adducts (2)
are shown; (B) results for DNA adducts with Pt1 (1), Pt2 (2) and Pt3 (3) in 0.005 M NaCl are shown.
C(Pt1) = C(Pt2) = C(Pt3) = 6 × 10−5 M.

We also study the competition for the binding site on DNA between several coordina-
tion compounds. Figure 9 shows that Pt4 binding prevails over the interaction of cis-DDP
with DNA. The binding with N7G occurs for both compounds. It was shown that Pt4
coordinates to DNA via two platinum atoms and induces bending of the double helix.
Our results indicate that the binding of Pt4 blocks the formation of bidentate complexes of
cis-DDP with DNA. The competition for the binding sites on DNA between Pt1, Pt2, and
Pt3 with cis-DDP is not so pronounced. However, the initial binding dominates. Note that
in this experiment the concentrations of compounds are not high enough to completely
block the potential binding sites on DNA bases.

Finally, let us compare the AFM images of DNA complexes with platinum com-
pounds (Figure 10). For DNA complexes with cis-DDP one can see the occurrence of
DNA shrinkage at C(cis-DDP) = 4 × 10−5 M, and a lot of kinks in the DNA helix at
C(cis-DDP) = 5.5 × 10−5 M. DNA complexes with trans-DDP cause a shortening and thick-
ening of the DNA strands with the occurrence of intra- and interstrands crosslinking. The
local destabilization of the double helix [64] allows us to explain the observed structures.
The trend towards shrinkage of the molecular coil and further curtailing the chain is also
observed for DNA complexes with binuclear platinum compounds.
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Figure 8. Circular dichroism spectra of DNA in 0.005 M NaCl (A) and of DNA complexes in 0.005 M
NaCl with cis-DDP at C(cis-DDP) = 2.8 × 10−6 M (B); with Pt4 at C(Pt4) = 6 × 10−6 M (C); with Pt5
in 0.005 M NaCl at C(Pt5) = 5 × 10−6 M (D); with Pt5 in 1 M NaCl at C(Pt5) = 5 × 10−6 M (E), pH
values are given near the lines.; and with Pt3 (F) in 0.005 M NaCl at C (Pt3) = 0 (1) 6 × 10−6 M (2) and
1.07 × 10−5 M (3), at pH = 6.2 (a) and 4.2 (b).
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Figure 9. UV (A–D) and CD (E) DNA spectra (1) and normalized DNA spectra in complexes with
cis-DDP (2), with biplatinum compounds, bi-Pt (3), in complexes DNA + cis-DDP + bi-Pt (4) and DNA
+ bi-Pt + cis-DDP (5). The absorption spectra in complexes with Pt1 (A) and normalized absorption
spectra in complexes with Pt1 (B), Pt2 (C), Pt3 (D) and CD spectra of DNA in the test experiment for
the competition between cis-DDP and Pt4 for the binding site on a DNA molecule in a 0.005 M NaCl:
(C) (bi-Pt) = 3 × 10−5 M. Explanations in the text.
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Figure 10. AFM images of DNA (A) and DNA complexes with cis-DDP (B,C), trans-DDP (D,E), Pt1
(F), Pt2 (G), and Pt3 (H). Size of images is 2 µm (A), 3 µm (B–E) and 1 µm (F–H), (B,D) Fixation
on mica was carried out at C(DNA) = 0.001 %, C(cis-DDP) = 4 × 10−5 M (B) and 5.5 × 10−5 M
(C) C(trans-DDP) = 3.9 × 10−5 M (D) and 5.3 × 10−5 M (E). C(Pt1) = C(Pt2) = C(Pt3) = 5 × 10−5 M.
C(MgCl2) = 5 × 10−4 M.

4. Conclusions

The experimental data obtained by different methods demonstrate a good agreement,
and point to the main reasons for the observed change in DNA conformational parameters.
Our experiments show that all binuclear platinum compounds interact with DNA in a
solution with the predominant binding with phosphates at the first stage of interaction.
The coordination of one platinum atom in Pt1, Pt2, and Pt3 to N7G is also clearly observed
in the experiment. The binding of those binuclear platinum compounds does not overlap
the minor groove of DNA—the binuclear molecules are located near the phosphates and
in the major groove. Pt4 due to its geometry binds to DNA through two platinum atoms.
This binding induces great bending of the double helix. Each platinum atom in Pt5 can
coordinate via monodentate complex to separate sites on DNA molecule due to a long
linker chain. The proposed experimental approach gives information on the changes in
the secondary and tertiary DNA structure as a result of DNA-platinum interaction. It can
clarify the mode of platinum binding to DNA. Indeed, the combination of spectral and
hydrodynamic methods with AFM using different concentrations of platinum compounds
in a DNA solution shows different ways of their binding with different influences on the
DNA conformational parameters. From the comparison of DNA binding with different
platinum compounds, one can offer the correct models of interaction.
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